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ABSTRACT 

The objective of this paper is to propose an image authentication 
scheme, which is able to detect malicious tampering of images even 
they have also been incidentally distorted. By modeling incidental 
and malicious distortions as Gaussian distributions with small and 
large variances, respectively, we propose to embed a watermark 
in the wavelet domain by a mean quantization technique. Due to 
the various probabilities of tamper response at each scale, these 
responses are integrated to make a decision on the tampered areas. 
Statistical analysis is conducted and experimental results are given 
to demonstrate that our watermarking scheme is able to detect 
malicious attacks while tolerating incidental distortions. 

1. INTRODUCTION 

Image authentication becomes very important due to the availabil- 
ity of Internet. To save bandwidth and storage, digital images are 
usually transmitted or stored in a compressed form. In addition, 
images may be processed by blurring or equalization operations by 
users for specific purposes. Thus, an image authentication system 
should be able to tolerate incidental modifications while detecting 
malicious updates. A number of researches used digital signatures 
for image authentication [l, 2, 3, 51. Bhattachajee and Kutter 
[l] extracted salient feature points and store their positions as the 
digital signature. Because feature points are assumed not to be 
shifted too much under incidental distortion, the tampered area can 
be identified as those area where their corresponding feature points 
mismatch. Lin and Chang [5] stored the relation of DCT coeffi- 
cients at all pairs of two random 8 x 8 blocks as digital signature. 
They proved that these relations are invariant to JPEG compres- 
sion. Their method can detect malicious tampering under JPEG 
compression, The main disadvantage of digital signature-based 
methods is that it cannot be used for multipurpose watermarking 
[6] since the image is not watermarked. On the other hand, the 
watermark-based image authentication approaches detect tamper- 
ing based on the fragility of the hidden watermark. Kundur and 
Hatzinakos [4] embedded a watermark value by modulating a se- 
lected wavelet coefficient into the quantized interval determined 
from the corresponding watermark value. They defined that the 
type of tampering is JPEG compression if the TAF values decrease 
monotonically from high resolution to low resolution. However, 
they didn’t provide a mechanism to detect the combination of ma- 
licious tampering and incidental distortion. Recently, Lu et al. 
[6,7] proposed multipurpose watermarking scheme for image and 

audio authentication and protection. They combined an asymmet- 
ric quantization technique and complementary watermarks [8] to 
achieve a certain degree of robustness and fragility. Although the 
survival of incidental manipulations and the stability have been im- 
proved, their methods still fail to resist some incidental distortions 
(like Gaussian noise adding). 

Because quantization-based watermarking is very sensitive to 
modification, it is necessary to decrease the fragility of the hid- 
den watermark in order to distinguish malicious tampering from 
incidental distortion. Based on the observation of Lin and Chang 
[5], increase of robustness will not sacrifice fragility too much 
because individual distortion always has smaller variance. The 
robustness of an embedded watermark can be improved by either 
enlarging the quantization interval or reducing the amount of mod- 
ification caused by image processing. Given a set of samples, 
the population mean has a smaller variance than that of individual 
samples. It is expected that watermark embedded by modulating 
the mean of wavelet coefficients is more robust than by modulating 
individual coefficient. It has been observed that the changes of 
wavelet coefficients have the tendency of increasing magnitudes 
under equalization or sharpening and decreasing magnitudes un- 
der JPEG compression or blurring[8]. To make the embedded 
watermark robust to incidental distortions, the watermark is em- 
bedded by modulating the mean value of weighted magnitudes 
of wavelet coefficients. The amount of modification on wavelet 
coefficients can be modeled as Gaussian distribution with small 
and large variances for incidental distortion and malicious tamper- 
ing, respectively. Thus, the probability of watermark error caused 
by incidental distortion is smaller than that of malicious tamper- 
ing. Because wavelet coefficients at each scale represent compo- 
nents having different frequencies, the amounts of modification on 
wavelet coefficients at each scale are different based on the type 
of incidental modification. By integrating the tamper response at 
each scale, we propose a unified approach to distinguish malicious 
tampering from incidental distortion. 

2. MEAN QUANTIZATION 

In watermarking, quantization-based approach is the simplest one 
because it requires the least storage. In addition, it is oblivi- 
ous by nature. However, a conventional quantization-based ap- 
proach is very sensitive to image modification and cannot distin- 
guish incidental distortion from malicious tampering. Usually, a 
quantization-based blind watermarking approach [4] divides a real 
number axis into multiple uniform intervals, and then assigns wa- 
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each interval periodically. Given a quantization 
z can be quantized as z = .q+r, where q is 

a quantization level and 0 5 r < q is a quantization noise. (To pre- 
serve the visual quality of watermarked image, the modifications 
of wavelet coefficients should not exceed the marking threshold 
[9]. ) Assume there are two watermark symbols, the quantization 
function is defined as: Q(z, q)  = s k  if mod 2 = k ,  where 
z is a real value, q is a quantization level and Sk, k = 0,1  are the 
watermark symbols. For binary watermark, the embedding rules 
are as follows. In case of target watermark 1 ,  if Q(z, q )  = 1,z is 
unchanged. If &(z, q)  = 0, then z is increased or decreased by 
q, such that the new value z’ satisfies Q(d, q )  = 1. Similarly, in 
case of target watermark 0, a similar update rule can be applied. 
Kundur and Hatzinakos [4] have used a quantization approach in 
the wavelet transform domain to perform image authentication. 

The reason why they designed the new mechanism is based 
on the assumption that any modification on image will lead to 
the change of corresponding wavelet coefficients and watermarks. 
By examining the extracted watermark, the areas with watermark 
errors are marked as tampered areas. 

Let A’ and AM denote the amount of tampering caused by 
incidental distortion and malicious tampering, respectively. In the 
case of incidental modification, A‘ can be modeled as a Gaussian 
distribution with small variance, that is &‘ - N(O,o’),  where 
U’ denotes the variance of an incidental distortion. On the other 
hand, in malicious tampering, AM can be modeled as a Gaussian 
distribution with large variance, that is AM - N ( 0 ,  oM), where 
uM denotes the variance of a malicious tampering. Here, we 
have made an important assumption, i.e. o’ < uM according to 
[5] .  Figure 1 illustrates the Gaussian distributions of tampering on 
wavelet coefficients due to incidental modification and malicious 
tampering. The probability of watermark error is P(lA1 > 0.5 x 
q). As shown’in Figure I, the probability of watermark error 
due to incidental modification is smaller than malicious tampering 
because incidental modification produces comparatively smaller 
variance. If the variance of incidental modification can be further 
reduced, the probability of watermark error can be reduced. 

Given a set of samples, the population mean has smaller vari- 
ance than that of individual samples. The proposed mean quan- 
tization approach embeds a watermark by revising the mean of 
weighted wavelet coefficients such that the variation is relatively 
small even if the changes on individual samples are large. In 
incidental distortion, the magnitudes of wavelet coefficients are 

x,} is a set of wavelet 

L:J 

Lsl 

where i = 1 , .  . . , n and n is the number of coefficients. In 
Equation (I), the sign of each x, is discarded, and each coefficient 
is weighted by artificial sign, (-1)’. This arrangement has the 
advantage of preserving small variation when incidental distortions 
such as equalization, blumhg, sharpening, and JPEG compression 
are encountered. For example, if the magnitudes of all z l ’ s  are 

increased by A due to some high-pass processing, then 

n n n 

n 

‘=1 

where n is an even number. Similar outcome holds for the case of 
low-pass processing. 

In this paper, the watermark embedding process is based on 
the quantization function Q. The value 5 remains unchanged if 
the target watermark symbol is the same as Q(0, 9). Otherwise, 
P should be increased or decreased with an amount q, such that 
the new watermark symbol, Q(0‘,q), is the same as the target 
watermark symbol. To update weighted mean 0, each individual 
coefficient zt must be updated accordingly. The amount of update 
on z1 depends on its sign and weight. For example, to modify the 
magnitude (51 by A, the following rule can be applied to update 
z,, 2 = 1,. . . , n, 

z: = 2, + (-1)’ x sign(z,) x A, (2) 

where sign(z)  = 1 if z 2 0, and szgn(z) = 0 if z < 0. If the sign 
is changed after applying equation (2), i.e., szgn(s:) # szgn(z,), 
then zi is set to 0. The reason of this arrangement is that the 
minimum value of magnitude cannot be smaller than zero. 

For the amount of tampering, the distribution of magnitudes, 
IAl, is different from its value, A. Let z’, = x, +A, be a tampered 
coefficient, where z, is the original coefficient and At is the amount 
of tampering. Because A, - N ( 0 , o ) .  the probability distribution 
function can be formulated as 

Let Y,  be the amount of change on lzal, i.e. 1~11  = Iz,( + Y,, 
and -lz,l 5 Y ,  5 00. Because z: = x, + A, and IziI 2 0, the 
probability distribution of Y, is 

p ( X )  P N ( & )  + P N ( 2 l z a l  - At) 
- L e - t ( + ) 2  1 - 1 ( 2 1 = * I - - p L ) 2  - + - e 2  e . 

&U &U 

Under the circumstances, the expected value ,U, of Y,  is greater 
than 0, and the variance uy is smaller than o. That is, (up)>” = 
E(Y,’) - p: 5 E(A:) = (U) ’ .  For weighted mean, the distri- 
bution becomes N ( 0 ,  :by), where n is the number of coefficients 
used to embed a watermark. The advantage of weighted mean- 
based quantization is that when an incidental distortion decreases 
or increases wavelet coefficients uniformly, the weighted mean will 
not be changed significantly. However, there is a tradeoff between 
robustness and resolution. 

3. TAMPERED AREA ESTIMATION USING 
INFORMATION FUSION 

A possible way to estimate the maliciously tampered area is to 
integrate the detection results from all scales. When malicious 
tampering is applied, the amount of changes on wavelet coeffi- 
cients are large at both coarse and fine scales. If the amount of 
modification on wavelet coefficient exceeds a quantization level, 
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this coefficient is treated as a tampered coefficient. However, the 
quantization-based approach assigns a same watermark symbol 
to multiple intervals, the coefficients having significant modifica- 
tions may not reflect the changes of watermark symbols. Thus, 
it is expected that the probability of watermark error caused by 
malicious tampering is i. On the other hand, the probability of 
watermark error caused by incidental distortion ranges from 0 to i. 
The accuracy of estimated tampered area at each scale is different. 
To compute a reliable and accurate shape of tampered area, the 
responses at each scale are weighted and integrated. 

For the sake of estimating the distribution of tamper response, 
the minimum Chess-Board distance [ 101 between a tampered point 
z and its nearest tampered point y, y # 2, is defined as density, 
Density(z), of the coefficient z. If z is not tampered, then 
Density(%) = 0. Those tampered points with Density(.) = 1, 
are called dense and other tampered points with Density(.) > 1, 
are called sparse. Dense points are defined to be malicious, so a rule 
of extracting the malicious tampered area is to group those dense 
points. Those tampered points are called point tamper responses. 
In addition, we define N;Otaf, N;amper, Npense, and NfParse 
as the total number of coefficients, the total number of tampered 
coefficients, the number of dense tampered coefficients and the 
number of sparse tampered coefficients, respectively, at each scale 
1. The value of N;amper can be computed by counting the number 
of tampered coefficients with density greater than zero. Those 
tampered coefficients can be further classified into dense and sparse 
set. So, the relation, Tfamper - - qdense + T2sparse, holds. 

In this paper, an estimation of the tampered area is the tamper- 
ingratio (TR), which is defined as TRl = (2.0 x Nfense)/N;Otal. 
Because the probability of watermark error in malicious tampered 
area is about i, it is estimated that the number of malicious tam- 
pered coefficients would be twice of Nfense .  Another measure of 
the importance at scale 1 is WGX = Npnse/(N:amper)2. The 
definition of WGTf is based on the observation that smaller tamper 
response, N:amper, implies smaller N:parse. 

To emphasize the importance of dense points and suppress 
the sparse response, the point tampering responses at each scale 
are transformed into tamper response map (TRM) based on their 
Chess-Board distances among tampered coefficients. The tamper 
response function (TRF) of a tampered point zl(i*,j*) is defined 
as 

ifmax{(i* -il, Ij* - j l }  5 (Density(zf(z*, j*))+l). Ifzl(i*,  j ' )  
is not tampered or the Chess-Board distance between zf (z* , j * )  and 
zl (i, j) is greater than Density(zf(i*, j')), then 
TRF(z l ( i* , j*) ,  z ~ ( i , j ) )  is equal to 0. Each tampered coef- 
ficient has its corresponding tamper response. All tamper re- 
sponses are integrated to form the tamper response map, i.e., 
TRMf( i , j )  = Cz.,3. TRF(zl( i* , j*) ,s f ( i , j ) ) .  The tamper re- 
sponse maps at each scale are weighted by WGTl and integrated 
to form the final tamper response map, i.e. T R M f z n a f ( i , j )  = 
Cl WGTl x T R M i ( i , j ) .  Let I' denote the scale with minimum 
TAF, then the ratio of tampered area over entire image is TRi*. If 
we sort the values of T R M f z n " ' ( i , j )  in a decreasing order, then 
the tampered areas are indicated by those points with large value 

During the information fusion of multiscale point tamper re- 
sponse, the following rules can be applied to distinguish malicious 
tampering and incidental distortion. 

of TRMf 'n"[( i , j ) .  

Rule 1: If TAFl = 0 at all scale I ,  then the watermarked 
image is neither maliciously tampered nor incidentally dis- 
torted. 

Rule 2: If T A 4  = 0 at some scale I ,  then the water- 
marked image has been processed by only some incidental 
di st orti ons . 
Rule 3: Let s* denotes the scale such that 
T A F p  = minl{TAfi}. If TAFp > 0, and < 
a x N,!:mper, where the range of constant a is 0.5 5 Q 5 
1.0, then the watermarked image has been processed by 
only incidental distortion. 

Rule 4: If Naense = Niamper, at all scale 1 ,  then the 
watermarked image is only maliciously tampered. 

Rule 5: If all the above rules do not hold, then the water- 
marked image is both maliciously tampered and incidentally 
distorted. 

The success of the above decision rules relies on the rela- 
tive degree of point tamper response between malicious tampering 
and incidental distortion. However, it is difficult to distinguish 
malicious tampering and incidental distortion when the following 
conditions occurred. If the tampered area is too small or many 
small tampered areas are very small, the decision rules will fail to 
identify the source of tampering. To detect this type of malicious 
tampering, the user should examine those point tampering response 
at each scale manually. Only if the probability of watermark error 
caused by incidental distortion is zero, we can claim that the small 
area tamper response generated by malicious tampering. The num- 
ber of scale and the number of coefficients used for watermarking 
are two important factors, which will affect the entire performance. 
When the number of scale increases, the resolution decreases and 
the allowable modification of wavelet coefficients decreases. 

4. EXPERIMENTAL RESULTS 

The proposed method is tested using the Pepper image of size 512 x 
512, as shown in Figure 2(a). In the experiment, 4 scale wavelet 
transform is performed and each mean coefficient corresponds to 
16 wavelet coefficients. The watermarked image is shown in Figure 
2(b) with PSNR 35.91 dB. The image with two artificial objects 
and the superimposed image are shown in Figure 2(c) and (d), 
respectively. The tampering image will be used to simulate the 
malicious tampering in the following experiments. 

Figure 3 illustrates the intermediate results of a maliciously 
tampered image verified using the proposed method. Figure 3(a) is 
the image maliciously tampered and incidentally distorted by JPEG 
compression with quality factor 90. Those areas corresponding to 
watermark errors at scales 1 to 4 are depicted in Figure 3(b)-(e). At 
scale 1 to scale 4, the area corresponding to malicious tampering 
all have dense point tamper response. Those point tampered re- 
sponses are then transformed into tamper response maps as shown 
in Figure 3(g)-(j). We can see that sparse response corresponding 
to incidental distortion will have weak response as shown in Figure 
3(Q. These tamper response maps are weighted by WGT" and 
integrated to form final tamper response map, shown in Figure 3(f). 
In this example, the superimposed object is correctly located. 

Further experimental results about maliciously tampered and 
incidentally distorted images are as follows. First, the tampered 
image is blurred using a 3 x 3 mask. The detection result is shown in 
Figure 4(a). Because the behavior of blurring is similar to a mean 
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quantization, the tampered area is correctly identified. Second, 
the watermarked image is not only tampered but also equalized. 
Because the amounts of modification on wavelet coefficients are 
pretty large, most areas of image are treated as maliciously tam- 
pered. Third, the tampered image is further JPEG compressed with 
quality factor 50 and the detection result is shown in Figure 4(c). 
Due to the behavior of JPEG compression tends to decrease the 
magnitudes independently, the proposed approach can identify the 
tampered area correctly. Finally, the tampered image is sharpened 
with factor 0.5. The detection result is shown in Figure 4(d). Once 
again, the tampered area is correctly identified. 

From the above experiments, it is verified that the assump- 
tion of small variance and large variance with respect to malicious 
modification and incidental distortion, respectively, is reasonable. 
Using mean quantization-based watermarking, the detected tam- 
pering regions resulted from incidental distortion are quite small, 
but malicious tampering is detected at each level. In addition, when 
the number of coefficients used in mean quantization is increased, 
the robustness of the watermark is increased, but at the expense of 
little fragility. 

5. CONCLUSION 

In this paper, a mean quantization blind watermarking approach 
has been presented. The proposed method is able to perform 
image authentication even when images are JPEG compressed and 
then maliciously tampered. Statistical analysis and experimental 
results have proven that the proposed method is indeed superb. 
Future work will focus on analyzing the effect of weighted mean 
quantization on the tradeoff between robustness and fragility. 

f l  Incidental Modification 

I \/ Malicious Tampering 

, -0.54’ 0 054’  A Amount of 
T a m p ”  

0 I 0 1 0 Watermark 
Symbol 

Fig. 1. The statistical distribution of incidental modification and 
malicious tampering on wavelet coefficients. 

(a) (b) (C) 

Fig. 2. The process of malicious tampering 

Fig. 3. Example of tampered area response. 

Fig. 4. Some detection results 
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