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Partitioning and Mapping Nested
Loops on Multiprocessor Systems
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Abstract—Intensive scientific algorithms can usually be formu-
lated as nested loops which are the main source of parallelism.
When a nested loop is executed in parallel, the total execu-
tion time is composed of two parts—the computation time and
the communication time. For a message-passing multiprocessor
system, performance declines rapidly as the communication over-
head is higher than the corresponding computation. In this paper,
a method for parallel executing nested loops with constant loop-
carried dependencies on message-passing multiprocessor systems
to reduce the communication overhead is presented. First, we
partition the nested loop into blocks which result in little com-
munication without concern for the topology of machines. For
a given linear time transformation found by the hyperplane
method, the iterations of a nested loop are partitioned into blocks
such that the communication among the blocks is reduced while
the execution ordering defined by the time transformation is
not perturbed. Then, the partitioned blocks generated by the
partitioning method are mapped onto multiprocessor systems ac-
cording to the specific properties of various machines. We propose
a heuristic mapping algorithm for the hypercube machines.

Index Terms— Hypercubes, hyperplane method, message-
passing multiprocessor systems, parallelizing compilers, systolic
arrays, wavefront method.

I. INTRODUCTION

N many numerical programs, nested loops are the most

time-consuming parts and usually offer the most amount of
parallelism. Lamport [9] proposed two parallel approaches to
exploit this parallelism called the hyperplane method and the
coordinate method according to different constraints upon the
time transformation. In the past few years, several researchers
studied the problem of transforming nested loops into parallel
forms and mapping them onto special purpose architectures.
Chen [3], [4], Lee and Kedem [11], Liu, Ho, and Sheu [13],
Miranker and Winkler [14], and Moldovan and Fortes [15]
synthesized systolic arrays based on the hyperplane method.

In message-passing multiprocessor systems, the communi-
cation overhead is still one order of magnitude higher than
the corresponding computation [1]. Thus, an efficient parallel
execution of algorithms or programs requires low ratio of com-
munication overhead when computation is performed. Because
of this requirement, various techniques have been developed
for partitioning and mapping algorithms onto multiprocessor
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systems to reduce the communication overhead [2], [5], [7],
(81, [17], [18], [20].

Some approaches, such as the greatest common divisors
method [16], [18], the minimum distance method [18], Shang
and Fortes’ method [20], and D’Hollander’s method [5],
partition the iterations of nested loops into independent blocks
so that there are no dependence relations between computa-
tions that belong to different blocks. In other words, these
methods separate the iterations into several blocks so that
there is no data communication or synchronization between
them. For many important nested loop algorithms, such as
matrix multiplication, discrete Fourier transform, convolution,
transitive closure, and so forth, these index sets cannot be par-
titioned into independent blocks. Therefore, these algorithms
will execute sequentially by their methods. The grouping
method [8] partitions the algorithms into blocks with limited
communication and gains more parallelism. For algorithms
which cannot be partitioned into independent blocks, the
grouping method will get better performance than the above
partitioning methods. '

In this paper, we concentrate on partitioning and mapping
nested loops with constant loop-carried dependencies for exe-
cution on message-passing multiprocessor systems. In the par-
titioning phase, we divide the nested loop into blocks which re-
duce the interblock communication, without regard to the ma-
chine topology: First, the execution ordering of the iterations is
defined by a given time function which is based on Lamport’s
hyperplane method [9]. Then, the iterations are partitioned
into blocks so that the execution ordering is not disturbed and
the amount of interblock communication is minimized. In the
second, or mapping phase, we map the partitioned blocks to the
topology of the target machine. These blocks are mapped onto
a fixed size multiprocessor system in such a manner that the
blocks which have to exchange data frequently are allocated
to the same processor or neighboring processors. In this paper,
we only consider the mapping for hypercubes.

The rest of this paper is organized as follows. Section II
introduces the nested loop model, the hyperplane method, and
the basic concept and terms used in the partitioning method.
In Section III, an algorithm for partitioning the index set
(iterations) of nested loops is described. In Section IV, we
discuss the problems of mapping the partitioned blocks onto
multiprocessor systems, and present a mapping method for
hypercube computers. Moreover, the performance analysis of
the partitioning and mapping algorithms by the matrix-vector
multiplication is described. Finally, our conclusion is presented
in Section V.
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II. BASIC CONCEPT AND DEFINITIONS

Throughout this paper, the set of real numbers and the set
of integers are denoted by R and Z, respectively. The set of
nonnegative real numbers and the set of nonnegative integers
are denoted by R* and Z7, respectively. The symbols R™
and Z" represent the nth Cartesian powers of all real numbers
and integers, respectively. Finally, we use boldface characters
to represent the vertices in an n-dimensional graph; when the
vertices are used in an equation, they represent the coordinates
of these vertices. In this paper, we consider an n-nested loop
of the form

for Il = ll to u; by kl
for I, = I3 to us by ko

for I, = I,, to u, by k,
Statement;;
Statement,;

Statement p,;
end
end
end

where [; and u; are integer-valued linear expressions possibly
involving Iy,I3,---,I;_; for 1 < j < n. Without loss
of generality, we assume that [; < u; and k; = 1 for all
1 € 7 £ n. We make additional assumptions about the
statements. These statements contain no I/O instructions, no
transfer of control to any statement outside the loop, and no
subroutine or function calls which can modify data. These
assumptions are first used by Lamport [9]. The index set
Jr = {(’il,iz,"',in)|lj < ’ij < Uj, for ] = 1,---,n} is
the set of loop index (or the iteration space).

Definition 1: Dependence vector: In an n-nested loop, sup-

pose variable A is generated at iteration i = (iy,%2, " ,%n)
and used at iteration j = (ji, j2,* -+, jn), then the dependence
vector d of variable A is a vector (dy,ds, -+,ds)t € Z"
where di, = jx —ir for 1 <k <n. ]

Note that, the hyperplane method can only be used on nested
loops with constant loop-carried dependencies [8], [15]. In
other words, every index point of the index set has the same
set of dependence vectors.

Example 1: Consider a 2-nested loop L1.
fori=0to 3
forj=0to3
S1: Ali+1,5+1] := Ali + 1, 5] + B[4, j);
Sy : B[ +1,7] = Afi,j] * 2+ C;
end
end.

The index set J2 = {(4,5) | 0 < 4,7 < 3}. The dependence
vectors of variable A are d; = (0,1) and dy = (1,1)%. The
dependence vector of variable B is d3 = (1,0)%. The set of
dependence vectors D = {d;d2d3}. In the index set of a nested
loop, two iterations can be executed concurrently if and only
if they are independent of each other. From this point of view,
Lamport proposed the hyperplane method [9]. The index set

(L1)

is traversed by many hyperplanes defined by a linear function
I if ITd; > O for any d; € D. Because there is no dependence
relation between the points lying on the same hyperplane, these
points can be executed simultaneously. Given II, the execution
time of every index point can be determined. For loop (L1),
let the time function II = (1,1). The hyperplanes : + j =
constant are shown in Fig. 1.

The hyperplane method is composed of two parts, the
time transformation and space transformation [15]. The time
transformation is used to determine the execution time of
each index point and the space transformation assigns the
index points onto processing elements. The hyperplane method
is used widely in the synthesis of loops in systolic arrays
[4], [11], [13]—-[15]. Based on this method, the execution
ordering of index points can be scheduled easily. Thus, the
time transformation of the hyperplane method is used in
our approach. However, the space transformation used for
systolic arrays is not suitable for message-passing multi-
processor systems; we must do this in another way. We
propose the following partitioning and mapping algorithms
for multiprocessor systems: First, we partition the nested
loops into larger blocks which result in little interblock com-
munication, without regard to the topology of the target
machine. Then, these blocks are mapped onto message-passing
multiprocessor systems according to the specific properties of
various machines. Some terms are defined in the following
before the description of our algorithm.

We can represent an n-nested loop L as a directed graph
@ in an n-dimensional space. Each vertex in () represents an
iteration (also called the index point) and has a coordinate
(31,22, -+ ,in) in the space if the corresponding iteration has
a loop index (41,42, - ,in). There is an arc from vertex v;
to vertex vj;, if the iteration corresponding to v; depends
on the iteration corresponding to v;. Such a graph is called
the computational structure [8)] of the nested loop L. The
computational structure of loop (L1) is shown in Fig. 1.

Definition 2: Computational structure [8]: A computational
structure Q) of a nested loop L is a two-tuple, Q = (V, D),
where V = {i | i = (41,42, -+, in) € J"} is the set of vertices
in @, and D is the set of dependence vectors. O

In a computational structure Q = (V, D), a vertex v; € V
is dependent on another vertex v; € V along a vector d,
if v; — v; = d. Moreover, a vertex v; is reachable from
a vertex v; via the set of vectors {d1,---,di} if v; =
v+ aidy + -+ + apdy, where a; € Zt,1 <1 < k, and
v;, v; € V. If vertex v; is reachable from v; via a path v,
Viy1, ", Vitk, Vj, then v; should depend on the vertex v; yx,
and v, is dependent on v;4;_1, for 1 <[ < k. On the other
hand, if two vertices v;, v; € V and there does not exist a path
between v; and v;, then v; and v; are independent, i.c., v; is
not reachable from the vertex »; and vice versa. Note that any
computational structure correspondent to a nested loop must
be acyclic.

Definition 3: Projection vector: Let § = (py, - - -, pr) denote
a projection vector. We define the projection of the vector
J = (j1,-*+,Jn) with respect to the projection vector p as
3 = (3%,---,3B), where j* = j - iEp, ie, jP is the
projection of vector j onto a plane that is perpendicular to 5. O
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Fig. 1. The computational structure and hyperplanes of loop (L1).

Fig. 2(a) is the graphical representation of the projection
method. For a computational structure @ = (V,D) of a
nested loop L, the projection of a vertex v; € V and a
dependence vector d; € D with respect to the vector p are
called the projected point and the projected dependence vector,
respectively.

Definition 4: Projection line: The projection line which
corresponds to a projected point v along the direction 7 is
the line with the parametric equation j = v +t5,t € R. O

From the geometric view, p is the normal vector of the
hyperplanes such that pz = constant, where T € R™. The
hyperplane 5z = 0 is called the zero-hyperplane. If we project
a vector j with the projection vector p by the manner defined
in Definition 3 then it is similar to projecting 7 onto the
zero-hyperplane. As a result, the projection of j is lying on
the zero-hyperplane. Fig. 2(b) shows the relation between a
projected point and the corresponding projected line.

Definition 5: Projected structure: The projected structure
QP = (V?, D?) of an n-dimensional computational structure
Q = (V, D) with the projection vector 7 is a directed graph
such that

a) The vertex set V7 is the set formed by the projected

points.

b) DP is the set of projected dependence vectors

¢) There is an arc from v} to v, for v?, o7 € V7, iff

there exists a projected dependence vector dlz, such that
b —of =&, O

Suppose the dimension of a computational structure Q is
n. Because Q is projected onto the zero-hyperplane whose
dimension is n — 1, the projected structure QP is an n — 1
dimensional structure. From the definitions of the projection
line and projected point, every projected point defines a unique
projection line with the projection vector p. Assume that there
are two vertices v and vJ of a projected structure. Vertex
v? is said to be dependent on vj , if there exists a projected
dependence vector df € DP such that CAE AR db. This
means that each 1ndex point on the correspondmg prOJectlon
line of v? depends on a index point which lies on the
correspondlng projection line of 'v” except the boundary index
points of the index set J”.

Consider the Example 1, we use II = (1, 1) as the projection
vector, ie, p = IL Let 7 = (j59,55) be the projected
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(a) Projection of vector j with the projection vector p. (b) Projected
point and the corresponding projection line.

Fig. 2.

point corresPondmg to the index point j = (j1,J2), and
jp=_]—nnn=] LLH where 0 < 4,5 < 3. We
get seven projected points, Vp ={(-3/2,3/2), (-1, 1), (-1/2,
1/2),(0,0), (1/2, —1/2), (1, —1), (3/2, —3/2)}. Seven projection
lines are defined with the projected points along the direction

= (1, 1). The projected points and projection lines are
depicted in Fig. 3(a) where the projected points except (0,
0) are illustrated by open circles. From Fig. 3(a), we know
that the index points lying on the same projection line do
not belong to the same hyperplane. Furthermore, the index
points of neighboring lines do not lie on the same hyperplane,
either; for instance, the index points belonging to the line /4
lying on the hyperplanes i +j = 0, i +j = 2, i+ j = 4,
and 7 + j = 6; and the index points belonging to /3 lying
on the hyperplanes i + j = 1, i+ j = 3,and i + j =
Therefore, the index points located on these two lines can be
grouped into a block and assigned to the same processor. Fig.
3(b) depicts the partitioning of loop L1. There are four groups
and each consists of two projected points except the boundary
group Gy. Let block B; be the set of index points which are
projected to the projected points belonging to group G;. If
we assign each block to one processor, the number of data
dependencies between index points is 33, and only 12 of them
require interprocessor (interblock) communication.

Definition 6: The partitioning Gri(Q) of a computational
structure @ = (V, D) with the projection vector (time func-
tion) II = (ai,---,ay,) is the partitioning of all vertices of
Q into disjoint blocks By,---,B,_; where o is the total
number of partitioned blocks in a nested loop. Suppose the
disjoint groups of the projected structure QP = (V?, DP) are
denoted by Gy, - - -, Go—1 which correspond to By, - -+, Bo—_1,
respectively. Then

1) each group G;, for 0 < 4 < o — 1, contains 7 projected

points except the boundary groups, i.e., G4 of Fig. 3(b);
2) for each group G;, 0 < i < «a — 1, there exists an
ordering along a direction d? € DP for all vertices in
Gi, ie., (vf, -, v7_;), such that vf | — vf = dP for
0<j<r-2

3) and each block B; = |J {jeJ"|j=v}+I,

'UZGGi
teR}, for0<i<a-1. O

Each subset B; is called a partitioned block of G(Q). The

first vertex vf of G; in the ordering is called the base vertex. A
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Fig. 3. The projected structure of loop (Lvl) with II = (1, 1). (a) Projected
points, projection line, and hyperplanes. (b) Groups and the corresponding
blocks of loop (L1).

group G; is dependent on another group G; along dP if there
is a vertex v}, € G; which depends on a vertex u} € G; along
dP. In Fig. 3(b), the projected dependence vectors &%, d5, and
d5 are (—1/2,1/2)%, (0,0)t, and (1/2,—1/2), respectively.
Along the direction of (—1/2,1/2)%, the base vertex of G
is (1, —1).

III. PARTITIONING OF INDEX SET IN NESTED LOOPS

The partitioning problem considered in this paper can be
stated as follows. Given an n-nested loop L, the problem is to
determine the partitioned blocks of L such that 1) the amount
of interblock communication is as small as possible and 2) the
execution ordering defined by the time transformation function
IT is not disturbed. The partitioning algorithm is composed
of two phases: the projection phase and the grouping phase.
First, in the projection phase, the vertex set of @ (or the
index set of L) is projected onto the zero-hyperplane, I1Z
= 0. Every projected point represents some iterations whose
corresponding vertices in () are projected to this point. In other
words, these iterations lie on the corresponding projection
line of the projected point. Because this projection line is
perpendicular to the hyperplane, these computations of the
index points lying on the projection line will not be executed
at the same time. Therefore, the iterations located on any one
projection line can be assigned to the same processor without
increasing the total number of execution steps.

Next, we group the projected points into a group whose
corresponding projection lines do not interfere with each other.
If there are more projected points within a group, then there
are fewer data exchanges among the corresponding partitioned
blocks. We want to group as many projected points into one
group as we can. As a consequence, a good grouping scheme
will make the size of groups and the corresponding blocks as
large as possible.

Definition 7: Grouping and auxiliary grouping vectors: The
grouping vector is a vector used for grouping the projected
points into groups. All the projected points are grouped along
the grouping vector. The auxiliary grouping vectors are a set
of vectors which determine the base vertex of every group in
the projected structure.

Suppose DP is the set of projected dependence vectors
that corresponds to the dependence vectors D of a nested

loop L. The matrix formed by the projected dependence
vectors is denoted by mat(DP); the rank of a matrix 4
is represented by rank(A). From the definition of a vector
space, n linearly independent vectors form a basis of an n-
dimensional vector space. That is, an n-dimensional vector
space can be generated using exactly n linearly independent
vectors. Since the dimension of the projected structure is n—1,
there are at most n — 1 vectors that can be used as grouping
and auxiliary grouping vectors in the grouping phase. If we use
more than n — 1 vectors, then some vectors can be expressed
as a linear combination of the other n — 1 linearly independent
vectors. Thus, it will cause a conflict when we determine the
base vertices of groups. Now, we will explain how to choose
the grouping and auxiliary grouping vectors.

When two index points are interdependent, there are data
transfers occurring between them. If these index points belong
to the same partitioned block, then the number of interblock
data exchanges will be reduced. Since the dependence rela-
tion between two projected points represents the dependence
relations of the index points that are projected to these pro-
jected points, we will gather the projected points which have
dependence relations among them. We want to choose the
grouping and auxiliary grouping vectors from DP such that the
communication among partitioned blocks is minimized. Let r;
be the smallest positive integer such that rﬂf € Z™. Then, r;
projected points can be grouped along the direction of df as
a group and all the index points which are projected into this
group are executed at different execution steps. This means
that these index points can be mapped to the same processor.
We will prove this in Lemma 1 of the Appendix. Suppose
@ is the projected dependence vector whose 7y is the largest,
i.e., 71 = maxgrc ps{r;}. If there is more than one projected
dependence vector whose 7; is equal to the largest value, then
we choose one from these vectors arbitrarily. The vector d7 is
called the grouping vector. The size of each group is r = 7.

The selection of the auxiliary grouping vectors is discussed
in the following. From the definition of rank, the rank of a ma-
trix represents the maximum number of linearly independent
columns (or rows) of this matrix [10]. Since rank(mat(D?)) =
B, it is possible to choose [ linearly independent vectors from
Dr. We select 8 — 1 vectors from DP — {d}'} as the auxiliary
grouping vectors such that these 3—1 vectors and the grouping
vector are linearly independent. Since all the data exchanges
are caused by the data dependence relations, we can reduce
the amount of communications among the groups by choosing
the auxiliary grouping vectors from D? — {Jg’ }. We will show
these facts in Lemma 2 and Lemma 3 of the Appendix.

Definition 8: Forward and backward neighboring groups:
Let the set of auxiliary grouping vectors be denoted by .
Suppose ufj, vi, and w} are the base vertices of groups G;,
Gj, and Gy. If u} = v} — rd? and u}) = wf + rd?, then G;
and Gy, are the forward and backward neighboring groups of
G along the grouping vector df, respectively. If uf = vf —d}
and uf = wj + Jf, where ti? € ¥, then G; and Gy, are the
forward and backward neighboring groups of G; along the
auxiliary grouping vector Jg’ , Tespectively. O

After the grouping and auxiliary grouping vectors have been
determined, we will group the projected points into groups.
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The idea is similar to the region growing method [6] in image
processing that is used to find all groups of the projected
structure. We group 'some projected points into a group and
from this determine the other groups along the directions of the
grouping and auxiliary grouping vectors. First, the projected
points are grouped along the direction of the grouping vector.
The projected structure is split into many parallel lines along
the direction of d}. We select one line from these parallel
lines arbitrarily, and choose the projected point v} lying on
the selected line to be the base vertex of the first group Go.
Then, we group r projected points along the direction of the
grouping vector from vf and generate the first group Gg. The
following step is to determine the base vertices of the other
groups and the members of them. We use the first group as the
initial seed group. From the seed group, we get the backward
and forward neighboring groups along the directions of the
grouping and each of the auxiliary grouping vectors. After
this, the neighboring groups found above are used as the seed
groups and from these groups find all neighboring groups
which have not been determined in the previous step. Using the
groups found in the last step as the seed groups, we determine
the other groups in the way described above repeatedly until
there exists no neighboring group of the seed groups.

If there are some projected points that have not been
gathered into groups, we select an ungrouped line, and group
r projected points on the line into a group. Using the group
as the initial seed group, we perform the grouping procedure
described above until all the projected points have been
gathered into groups. After all groups of the projected structure
have been determined, the corresponding partitioned block of
G; = {v], ---,vP_,} is the set

Bi= |J {FeJ"|7=v}+tIL teR}.
VI EG:

If we group the projected points by the manner described
above, then Lemma 2 proves that a group only depends on
another group along the direction of the grouping vector and
each of the auxiliary grouping vectors. In addition, Lemma 3
proves that a group depends on at most two groups along the
direction of vectors € DP— (T U{d}}). The formal partitioning
algorithm is described as follows:

Algorithm 1: (Partitioning a nested loop)

Input: A computational structure ) = (V, D) of an n-nested
loop L and a time transformation function IT = (a;, ---,a,)
found by the hyperplane method as the projection vector.

Output: A set of partitioned blocks G (Q) = {By, ---
B,_1} of the computational structure Q.

Projection Phase: [* Phase 1 */

Project the vertex set V, and the dependence vectors
D, onto the zero-hyperplane with respect to II. After
projection, we get two sets—the set of projected points
VP and the set of projected dependence vectors D?. These
two sets constitute the projected structure Q? = (VP D?)
of Q.

Grouping Phase: [* Phase 2 */

/* In Step 1 and Step 2, we select vectors as grouping and

auxiliary grouping vectors, where 3 = rank(mat(DP)). */

)
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Step 1: Let r; be the smallest positive integer such that
r;db € I™, for & € DP. Then, the size of every
group is r = maxge¢ ps {r;}. Assume that &} € DP
is the vector whose r; = r. Then we choose Jf’ as
the grouping vector. If there are many vectors € DP
whose r; values are equal to r, then we choose one
arbitrarily.

Choose the other § — 1 projected dependence
vectors as the auxiliary grouping vectors from
DP — {d¥} such that these 8 — 1 vectors and
d are linearly independent. Let the set of the
auxiliary grouping vectors be denoted by ¥ =
{dl, ... dp 4}

/* After Step 2, the projected structure can be split into
many parallel lines along the direction of dj. */

Step 3: Select a line arbitrarily; choose a projected point
which is lying on this line as the base vertex of a
group. Then, starting from the base vertex, group
r projected points along Jf into a group. Let the
group be the initial seed group.

Step 4: From the seed groups, find all the backward and

forward neighboring groups. Then, the groups

found above are used as the seed groups. Repeat
this step until there exists no neighboring group of
the seed groups.

After Step 4, if there are some lines whose pro-

jected points are not grouped, go to Step 3.

For every group of the projected structure

G; = {v},---,v%_;}, the corresponding parti-

tioned block B; € Gr(Q) is the set

Step 2:

Step 5:

Step 6:

U {Gesrii=f+tILteR}.
VIEG:

a

Algorithm 1 generates a partitioning so that every parti-
tioned block contains as many index points as possible under
the time function II. Hence, the interblock communication is
as small as possible and the execution ordering defined by II
is not disturbed.

Theorem 1: The partitioned blocks generated by Algorithm
1 obey the scheduling defined by the time function II.

Proof: Algorithm 1 groups the projected points by the
manner of Lemma 1. From Lemma 1, the iterations that
correspond to a group will not execute simultaneously. Hence,
the partitioned blocks generated by Algorithm 1 do not disturb
the scheduling defined by the time function II. a

Theorem 2: Let there be m dependence vectors and one
grouping vector and 8 — 1 auxiliary grouping vectors, where
B = rank(mat(DP)). Then, a group has to send data to at
most 2m — (3 groups.

Proof: From Lemma 2, a group will send data to another
group along each direction of & € ¥ U {d}'}. From Lemma
3, the group will send data to at most two groups along
each direction of &f € DP — (¥ U {dF}). Then, there are
at most 3 and 2(m — () groups that depend on the group
along the direction & € YU {d} and & € D? — (Y U{d}),
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respectively. Thus, the number of groups depends on a group 03 fo3 03) 03
is at most 3 + 2(m — ) =2m — . O N U N L
Example 2: Consider the matrix multiplication algorithm: 23 32 23 33
fori =0to3
fori = 0103 02 - G0z o 02 \{U 02) L
fork =0to3 22 1@\%:' 22 22
Cli, ) := Cli, ] + Ali, | * Blk, 5); (£2) 1T Y
end 01 {01 o1 30
end 11 194 1147 31
end. 2 34 G 31) & 31 £ 33
This program can be rewritten into the following equivalent k ™ ”» ~ 3
form. 10 10 @ 10)
fori = 0to3 20 = 420 ~ 20 " 20 X
forj =0to3 i
fork =0to3 )
AGIR[ k] := AGI-LR)[; k];
B(.3.k) [k, 5] == BG-1.3:k) [k, 7]; Fig. 4. The computational structure of matrix multiplication.
CGIR[4, §] := CGHE-1[ 4]; (L3)
C@iRlg j] i= CEIDi, j| 4 AGID[i, KxBEIHK, 5]; i )
end a,=(-1/3, 23, -1/3) : 4 =3, -1/3, -1/3)
end Grouping vector
end.

L. az =(-1/3, -1/3, 2/3) : Auxiliary grouping vector
The dependence matrix is

(1) é 8 . i+j-2k=6 ,J,,,,,,, . i (‘1 -2)
0 01 j‘f o

dadpdc
i+j-2k=3 (-1.2,- n (0.1,-1) (1,0,-1) \

The computational structure @ is shown in Fig. 4. Let the time .
function IT = (1, 1, 1), then the zero-hyperplane is i+j+k = 0. 2 [ :\
Projection Phase: () is projected onto the zero-hyperplane. = w
The projected structure QP = (V?, DP) is depicted in Fig. 5. i+i-2k=0 J\f B Ll
There are 37 projected points shown by solid circles; the points
|+|2k-3\ (101)

shown by the open circles are the projected points generated
by the projection when the upper (or lower) bounds of the loop
indexes are larger. The projected dependence vectors are D” =

{d = (-1/3,2/3,-1/3)¢, d&& = (2/3,-1/3,-1/3)¢, &

(-1/3,-1/3,2/3)%}. T
Grouping Phase: i+j-2k=-6 7 )
-1/3 -1/3 2/3 R
/* Since rank( 2/3 —1/3 —1/3 ) = 2, we select 2i-j-k=-8 mma‘f

-1/3 2/3 -1/3 . . "
. . . Fig. 5. Th cted struct f Fig. 4.
two projected dependence vectors such that one is the grouping ® ¢ projecied simelire of Mg

vector and the other one is the auxiliary grouping vector. */

Step 1: The size of a block is r = = maxgre D,,{r,} = as shown in Fig. 5. The vertex v}, in this group is
3. Then, there are three projected points in one vh =(-1,-1,2) + 2d&% = (-5/3,1/3,4/3).
group except the boundary groups. We select the Step 4: Determine the base vertices of other groups along
grouping vector arbitrarily. Let & = df) = d?, = (-1/3,-1/3,2/3). The resulting groups are
(-1/3,2/3,-1/3)*. depicted in Fig. 6, every group is shown by a

Step 2: The auxiliary grouping vector is d7, = (—1/3, —1/3, dashed box.

2/3)t. Step 5: In this example, all points can be grouped, and

/* After Step 2, the projected structure is split by d%, into terminate the step.

seven parallel lines, lo, ---,ls. */ /* Consider the group G as shown in Fig. 6; there are two

Step 3: Select the projected points (-1, —1, 2), (—4/3, groups Gz and G311 depending on Gy along the direction
—1/3, 5/3), (—5/3, 1/3, 4/3) from Iy to form the & = (-1/3,2/3,-1/3) and &% = (-1/3,-1/3,2/3),
group G4 and let (—1, —1,2) be the base vertex v} respectively. In addition, it also sends data to G2 and Gy3
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Fig. 6. Grouping the projected points of Fig. 5.

along d¥ = (2/3,-1/3,—1/3) which is not a grouping or

auxiliary grouping vector. Hence, there are 2 x 3 —2 = 4

groups that depend on the group Gig. */

Step 6: The procedure partitions the nested loop into 17
partitioned groups. We use a node to represent a
partitioned group, and if G; will send data to G,
then there is a edge from G; to G;. The resulting
graph is illustrated in Fig. 7. O

IV. MAPPING THE PARTITIONED BLOCKS
OF NESTED LOOPS ONTO HYPERCUBES

When an algorithm is executed on a message-passing mul-
tiprocessor system, the overhead due to interprocessor com-
munication/synchronization, and idle processors due to con-
tention for shared hardware resources can lead to poor overall
performance [19]. Therefore, we have to map the parallel
component of the algorithm on the processors in such a
way that minimizes the time required to perform necessary
interprocessor communication and the amount of processor
idle time. In Section III, a nested loop is partitioned into
blocks without concern for the machine topology. The next
step is to map the partitioned blocks of a nested loop onto
a specific target machine. We choose the hypercube topology
as the target machine because of the recent interest in this
configuration. Hypercubes are loosely coupled parallel pro-
cessors. based on the binary n-cube interconnection network.
An n-dimensional hypercube computer consists of N = 2"
identical processors, each provided with its own local memory,
and directly connected to n neighbors.

In general, the problem size is much larger than the machine
size. Without loss of generality, we assume that the number of
partitioned blocks of a nested loop is larger than the number
of processors in the target machine. Therefore, we first divide
these blocks into clusters which are suitable for mapping
onto the target machine. After this processing, the clusters
are assigned to processors by some mapping algorithm.

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on October 02,2025 at 16:23:52 UTC from IEEE Xplore. Restrictions apply.

Fig. 7. Graphical representation of Fig. 6 with communication links.

First, we divide the total partitioned blocks into two clusters,
of equal size, and divide every resulting cluster into two
subclusters until there are N clusters generated. Then these
N clusters can be mapped to an n-cube. Since the number of
clusters increases by a factor of two after each dividing, we
divide the partitioned blocks n times to generate N clusters.
Our mapping approach is based on the concept illustrated
above. Moreover, the partitioned blocks are first modeled by
the Task Interaction Graph (TIG) model [19]. In the TIG
model, the vertices represent blocks of the partitioning, and
the edges of the TIG represent communication requirements
between blocks.

Assume that there is a partitioning of a nested loop and
it will be mapped onto an n-dimensional hypercube. The
mapping algorithm proceeds in two phases:

1) Cluster formation: The TIG is partitioned into as many
clusters as the number of processors. We start with the
entire partitioning as a single cluster, and successively
divide each cluster into two equal size of blocks n times.

2) Cluster allocation: The clusters generated in the first
phase are numbered using the Gray code scheme. After
this numbering, a cluster is allocated to the processor
whose binary representation is identical to the binary
number of the cluster. The mapping algorithm is de-
scribed as follows.

Algorithm 2: (Hypercube Mapping)

Phase I: Cluster Formation.

/* Let @ = {gg,---,dp-1} be the set of grouping and

auxiliary grouping vectors defined in Section III */

Let j = 0;
Do the following operations n times:
i = j mod S

Select a vector g; from §;

Partition every cluster generated in the last partitioning
along the direction g, into two equal size of subclusters;
J=J+5

/* After Phase I, the TIG is divided into N = 2" clusters. */

Phase II: Cluster Allocation.

/* Because of N clusters generated in Phase I, it is necessary

to use n-bit binary codes to number these clusters. */

Step 1: Suppose the TIG have been divided along m dif-
ferent directions in Phase I. If 3 > n, i.e., there
are n vectors chosen from € in Phase I, then
m = n else m = (. Assume the TIG is divided
p; times along the g, direction. Because there are
2™ clusters generated in Phase I and 2P: partitions
in the g; direction, thus n = py +pa+- -+ pp,, i.€.,
2™ = 2P1.2P2 ... 2Pm We use p;-bit Gray code for
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the g, direction. Then every cluster has a unique
n-bit binary representation which is obtained by
concatenating the sth coordinate, for 1 < i < m.

Every cluster is allocated to the processor whose
binary number is the same as that of the cluster. O

Step 2:

Algorithm 2 divides the partitioned blocks of a nested loop
into clusters such that the neighboring blocks will be allocated
to the same cluster. From the discussion of our partitioning
method, most of the communication happens at neighboring
blocks. Hence, the amount of data transmission of the clusters
is reduced.

Example 3: Suppose a 4 x 4 mesh-like TIG as shown in
Fig. 8(a) will be mapped onto a three-dimensional hypercube
as shown in Fig. 8(b). Since there are 8 = 23 processors,
the TIG has to be divided 3 times. Let ¥ = {Z,7} be the
grouping and auxiliary grouping vectors. Assume that the TIG
is divided twice along 7 and once along T. Choosing a 2-
bit Gray code for the 7 direction and 1-bit Gray code for
the T direction, we number each cluster where the binary
representation is obtained by concatenating its binary T and
7 coordinates. Every cluster is assigned to the node whose
number is identical to the binary representation of the cluster.
For example, the blocks B; and B are grouped within cluster
Cy whose binary representation is 000. Then the blocks in
cluster Cy are allocated to processor 000. Such a mapping is
illustrated in Fig. 8(b).

In the following, we use an example, the matrix-vector
multiplication, to discuss the performance of our partitioning
algorithm and mapping algorithm for hypercubes.

The matrix-vector multiplication is described as follows:

fori:=1to M
forji=1to M
yli) = yli] + Ali, ) * <l (L4)
end
end.

The above loop can be rewritten into the following equiv-
alent form:

fori:=1to M
forji=1to M
D[] = l-LI[);
Y] 1= y I D[] + ACD[i, 5]+ 2I[j]; (L)
end
end.

The set of dependence vectors is D = {Ez = (1,0),
dy = (0,1)!} and the computational structure is shown in
Fig. 9. We choose II = (1, 1) as the time transformation
and the nested loop will be executed on a hypercube with
N = 2" transformation and the nested loop will be executed
on a hypercube with N = 2™ processors. In the machine, the
time to perform a floating-point multiply or add is Z.aic, and the
time to communicate including two parts—=tstart, Which is the
startup time for communication, and #.,my, Which is the time
to transmit a single real word. Therefore, the time to transmit
k real words between two processors is tsart + ktcomm:-

In our partitioning and mapping algorithms, the two-
dimensional computational structure is projected with the

C=1{58;, 85}  G= {8, 85}

Go= (1 By9. B4/

= (Bys, Bys}
(®)
Fig. 8. Mapping of a TIG into a three-dimensional hypercube.

HO—0—@ - @

1111
G

/

Fig. 9. The computational structure of loop (L5).

projection vector IT = (1, 1), and a one-dimensional projected
structure is formed by the projected points and the projected
dependence vectors. The set of projected dependence vectors
is DP = {& = (1/2,-1/2)% (&) = (~1/2,1/2)'} and
there are 2M —1 projected points. Suppose we choose the
vector 32 as the grouping vector, then there are M groups
and every one has two projected points except the one at
boundary. That is each corresponding block contains two
projection lines. Because these M blocks have to be mapped
onto N processors, every processor consists of M/N blocks.
The largest block is the one that contains the main diagonals of
the computational structure. Therefore, the maximum number
of index points assigned to a processor is W = 2?11 i,
where | = [YZ2M| + 1, and the computation time needed
for the processor is 2Wit ,i.. Moreover, the communication
time needed is (2M —2) (¢start +tcomm)- Hence, the maximum
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execution time of the processors is
Texec(N) = 2Wtcalc + (2M - 2)(tstart + tcomm)‘

Table I illustrates the maximum execution time for parallel
executing a nested loop, where the problem size M =1024.
From Table I, we know that the communication time of our
method is invariant when the machine size becomes larger.
The reason is that the communication time is determined by
the largest amount of interblock communication that occurred
between two processors. The main diagonal of the computa-
tional structure is always the boundary points of a processor,
that is, these index points must communicate with other
adjacency index points. Therefore, the amount of interblock
communication needed by the index points on main diagonal
is 2(M —1) which is independent of the machine size. In our
method, the ratio of communication time to computation time
declines rapidly as the grain size grows. Thus, our method is
suitable for medium- to coarse-grain computation.

V. CONCLUSION

In this paper, we consider the problem of executing nested
loops in paralle] on message-passing multiprocessor systems.
We partition the nested loop into blocks which result in
little interblock communication and then map these blocks
efficiently onto the processors.

In the partitioning method, a given time transformation is
used for deciding the execution ordering of all the index points
in the index set. Using as the projection vector, we project the
index points and dependence vectors along the direction which
is perpendicular to II. The projected points are grouped along
the direction of projected dependence vectors into groups in
the manner such that all index points that are projected to
the projected points within one group will not be executed
at the same time. The group size is as large as possible in
order to reduce the communication overhead. Finally, we get
every partitioned block by finding all the index points that are
projected to the corresponding group.

After partitioning, the blocks of the nested loop are divided
into clusters suitable for the topology and size of the target
machine. Then, we can use techniques developed for the
task allocation on multiprocessor systems to map the clusters
onto machines. In this paper, we propose a heuristic mapping
algorithm for hypercube machines by successively dividing
the partitioning of a nested loop and numbering the resulting
clusters using the Gray code sequence. Then every cluster is
allocated to the processor whose binary number is the same
as that of the cluster.

APPENDIX

In this Appendix, we prove Lemma 1, Lemma 2, and
Lemma 3.

Lemma 1: Let r € I be the smallest positive integer
such that rd; € Z". Let the projected points vh, o vh_
be grouped into the same group where v%, | = vf + &%, for

0 <% <7 —2. Then, all the index points € J™ projected to
v, for 0 < < r — 1, will be executed at different time.

TABLE 1
THE EXECUTION TIME Texec(INV) WITH M = 1024

N=1 2097152t calc

N=4 786944t . 11 +2046(tcomm + tstart)
N=16 245888t a1c +2046(tcomm + tstart)
N =64 64544t 51 +2046(tcomm + tstart)
N = 256 16328t .,1c +2046(tcomm + tstart)
N = 1024 4094t .51 +2046(tcomm + tstart)

Proof: From the hyperplane method, two iterations can be
executed at the same time if they lie on the same hyperplane.
That is, the index points of J" which lie on the same

hyperplane, IIz = ¢, where T € R™ can be executed
simultaneously. Consider the projected points v} and v}
chosen from {v,---,v}_,}, where i < j, ie., v} = of +

(j —i)d}. The corresponding projection lines of v¥ and vf are
g=v'+tlland z = v? +slI, where t and s € R, respectively.
Assume that two index points ¢ = v} + oIl and j = v} + bII
belong to the same hyperplane II1Z = ¢, where a,b € R, i.e.,
Ili = IIj = c. We will prove that 7 and j do not belong to
the index set J™ simultaneously. Since v} and v% lie on the

zero-hyperplane, IIZ = 0, then

IIi = I(v? + all) = Mo? + all? = oIl* = ¢,
and ITj = T(v} + bIT) = Ilv} + bII* = BII* = c.

It implies that @ = b. Assume i = v? + all € Z". Then,
j=vi+all=of +(j —9)df +all = v} +all + (j —i)d}.

Because r is the smallest positive integer that makes rﬁf ez
and (j — i) < r, the term (j — ¢)d; ¢ Z™ and o% + oIl € Z".
Then, j ¢ Z", it means that § ¢ J™. Hence, the index points
€ J" that are projected to v} and v} do not belong to the
same hyperplane, i.e., they will not be executed at the same
time. O

Lemma 2: A group only depends on one group along the
direction of the grouping vector and each of the auxiliary
grouping vectors.

Proof: Let the vertices of G; and G; be ordered according
to the projected dependence vector df as (uf,---,uf_;) and
(vh,---,vh_;), respectively. That is, u§ = uf + jd} and
v} = vj +jdj for 1 < j < r — 1. Suppose G; is the
forward neighboring group of G; as shown in Fig. 10(a), i.e.,
v = ub + rd¥. Since the grouping is along the direction
d?, there is only one vertex v} depending on u?_, along d}.
Hence, G; only depends on G; along the direction df.

Assume that G; is the forward neighboring group of G,
along (2,’; € ¥ as shown in Fig. 10(b). Because the base
vertices are chosen along the auxiliary grouping vector df,
then vf) = u§ + dy. For the vertices u% = u§ + jdf € G; and
v} = v + jdf € G;, we know that

o = v +jd] = ug+dy+id] = (ug+id))+ & = ul + .

That is to say, each vertex in G; depends on a vertex of G;
along d%, respectively. Therefore, G; only depends on one
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®

Fig. 10. (a) The dggendence relation between groups along the direction
of grouping vector d; . (b) The dependence relation between groups along
the direction of auxiliary grouping vector di. (c) The dependence relation

between groups along the direction of vector € DP — (\I’ U {d,"" })

group G; along the direction & € U. O

Lemma 3: A group depends on at most two groups along
the direction of each projected dependence vector € DF —
(¥ U {@)).

Proof: Let the group G; = {uf,---,u?_,} and u} be
the base vertex of G;. These vertices are ordered along the
direction of grouping vector df, i.e., ug-’ = uf + jd, for
1 < j < 7—1. Assume that there is a projected point v¥ which
depends on uf along df € D? — (VU{d}), that is, vf —uf =
dy, and the projected points v?,,,---,v?_ _; are dependent
on uf,---,ul_, along the direction of E‘,;, respectively. The
relationship between ug,---,uf_; and v%,---,vf, _, is de-
picted in Fig. 10(c).

Since the groups are grouped-along Jf and every group has
T projected points except the groups at the boundary, these
7 projected points v¥,---, v _, will belong to at most two
groups. Therefore, the group G; sends data to at most two
groups in the direction of df which is not a grouping or
auxiliary grouping vector. O
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