Efficient Address Generation for Affine Subscripts in
Data-Parallel Programs

Kuei-Ping Shih
Department of Computer Science and
Information Engineering
National Central University
Chung-Li 32054, Taiwan
Email: steven@axpl.csie.ncu.edu.tw

Jang-Ping Sheu
Department of Computer Science and
Information Engineering
National Central University
Chung-Li 32054, Taiwan
Email: sheujp@csie.ncu.edu.tw

Chih-Yung Chang
Department of Information Science
Tamsui Oxford University College

Tamsui, Taipei, Taiwan
E-mail: changcy@jupiter.touc.edu.tw

Abstract

This paper presents an efficient compilation tech-
nique to generate the local memory access sequences for
block-cyclically distributed array references with affine
subscripts in data-parallel programs. For the mem-
ory accesses of an array reference with affine subscript
within a two-nested loop, there exist repetitive patterns
both at the outer and inner loops. We use tables to
record the memory accesses of repetitive patterns. Ac-
cording to these tables, a new start-computation algo-
rithm is proposed to compute the starting elements on
a processor for each outer loop iteration. The complex-
ities of the table constructions are O(k+sz2), where k is
the distribution block size and so is the access stride for
the inner loop. After tables are constructed, gemerat-
ing each starting element for each outer loop iteration
can run in O(1) time. Moreover, we also show that the
repetitive iterations for outer loop are Pk/ gcd(Pk,s1),
where P is the number of processors and sy is the access
stride for the outer loop. Therefore, the total complez-
ity to generate the local memory access sequences for
a block-cyclically distributed array with affine subscript

in a two-nested loop is O(ﬁ +k+s3).

1 Introduction

Distributed-memory multicomputers are widely used
for applications in scientific and engineering fields.
However, programming on multicomputers is a vi-

tal disadvantage to multicomputers owing to the ab-
sence of a global shared memory. Fortunately, data-
parallel languages, such as Fortran D, Vienna For-
tran and High Performance Fortran (HPF), provide
a global name space and data distribution directives
for programmers to specify the data placement on
distributed-memory multicomputers. Although data-
parallel languages make programming on distributed-
memory multicomputers much easier, the tasks to dis-
tribute computation and data onto processors and to
manage communication among processors are left to
parallelizing compilers. Hence, the efficiency of paral-
lelizing compilers is the key factor affecting the perfor-
mance on distributed-memory multicomputers.

Generally speaking, data-parallel languages support
three regular data distributions: block, cyclic, and
block-cyclic data distributions. The address genera-
tion problems for compiling array references with block
or cyclic distributions have been studied thoroughly
[5]. The more general problems for compiling array
references with block-cyclic distribution also have been
studied extensively [2, 4, 6, 10, 11]. Recently, several
efforts on compiling array references with affine array
subscripts are proposed [1, 3, 4, 7, 11]. Affine array
subscript means the array subscript is a linear com-
bination of multiple induction variables (MIVs). In
[1], the authors use a linear algebra framework to gen-
erate communication sets for affine array subscripts.
Complex loop bounds and local array subscripts of
the generated code will incur significant overhead. A
table-based approach is proposed in [11]. The authors

classify all blocks into classes and use a class table to
record the memory accesses of the first repetitive pat-
tern. By using the class table, they derived the com-
munication sets for non-local accessed data among pro-
cessors. Both [1] and [11] are addressing the compila-
tion of array references with affine subscripts within a
multi-nested loop. However, these methods are not ef-
ficient enough, especial for dealing with the case within
a two-nested loop.

In [8], they have made an empirical study of pro-
gram characteristics that are important to paralleliz-
ing compiler writers. The report shows that one-
dimensional array references account for 56 percent
among array references examined and 60 percent are
affine subscripts for one-dimensional array references
checked. Moreover, two-nested loops are also very com-
mon in real programs. Therefore, in a two-nested loop,
one-dimensional array references with affine subscripts
should be paid more attention.

For compiling array references with affine subscripts,
some researchers pay their attention on the array refer-
ence enclosed within a two-nested loop to find a better
result [3, 4, 7]. Based on FSM approach [2], Kennedy
et al. proposed another approach to solving the compi-
lation of array references with affine subscripts within a
two-nested loop [3, 4]. They proposed an O(Pk) algo-
rithm to find the local starting element on a processor,
where P is the number of processors and k is the dis-
tribution block size. For the global starting element,
they found that the repetitive iterations for the outer
loop are Pk iterations. Hence, the total complexity to
generate the local memory access sequence for an ar-
ray reference with affine subscript within a two-nested
loop is O(P2k?). On the other hand, Ramanujam et al.
proposed an improved work to find the local starting
elements on each processor [7]. Since a traverse step
is incurred, the complexity of their proposed algorithm
is O(k). Thus the total complexity of Ramanujam’s
algorithm is turned out to be O(Pk?).

In this paper, we propose a new and more efficient
algorithm to find the local starting element. A prepro-
cessing step is required before we compute the starting
elements. The complexity of the preprocessing step is
O(k + s2), where sy is the access stride for the inner
loop. After preprocessing step is done, the time com-
plexity to generate each starting element on a proces-
sor just needs O(1). In addition, we also find that the
outer loop repetitive iterations are Pk/ gcd(Pk, s1) it-
erations, where s is the access stride for the outer loop.
Therefore, the total complexity of our proposed ap-
proach is O(Pk/ gcd(Pk, s1) +k+ s2), which is asymp-
totical to O(Pk + s2). Strictly speaking, our proposed
approach is better than the existing methods when

IHPF$ PROCESSORS PROC(P)
IHPF$ DISTRIBUTE A(cyclic(k)) ONTO PROC

do il = 0,711
do i2 = O,ng
A(Slil + 327:2 + 0) = -
enddo
enddo

Fig. 1: HPF-like program model considered in the pa-
per.

so < PE?. In general, the inner loop access stride s is
much smaller than the value of Pk. Hence, the term ss
can be omitted. Thus, we may say that the proposed
algorithm is an O(Pk) algorithm. As a result, the pro-
posed approach is much efficient against the existing
methods.

The rest of the paper is organized as follows. Sec-
tion 2 formulates the problem and describes the con-
ventional techniques to generate local memory access
sequences for compiling the array references with affine
subscripts within a two-nested loop. An efficient ap-
proach to finding the starting elements from a given
global start is proposed in Section 3. The performance
analyses and comparisons with the existing work are
demonstrated as well. Section 4 concludes the paper.

2 Address Generation for Affine
Subscripts

Compiling array references with block-cyclic distribu-
tions to generate an efficient SPMD (Single Program
Multiple Data) code is one important and necessary
phase in a parallelizing compiler. The address gener-
ation problem is quite complex especially when array
references involve multiple induction variables (MIVs).
In this section, we deal with the problem of generating
local memory access sequences for compiling array ref-
erences with multiple induction variables. We first de-
scribe the problem and then propose an efficient tech-
nique to solve the problem.

2.1 Problem Formulation

Specifically, Fig. 1 illustrates the program model con-
sidered in this paper. Array A is distributed onto P
processors with cyclic(k) distribution. The array ref-
erence contains two induction variables i1 and ¢>. The
access strides of the array reference with respect to i
and iy are sy and s, respectively. The access offset of

Processor p,, Processor p, Processor p, Processor p,

.123 F567 F91011 5131415
16

17/18]19] |20121|22|23| |24]25/26|27| |28/29/30|31
32133|34]35 @38 39 440{41 42|43 ﬂ[“ 46|47
E[49 50|51| |52)53]54/55| |56|57/58/59| |60| 61|62 63
L 64656667 168]69|70/71] |72 73E {76 77178| 79
{80 81/82/83 [84 85/86(87| |88(89/90|91| |92]/93|94]|95
96]97/98/99| |1001011102103 1041105106107 10810911'
ﬂm 114115 |116117}118119 ﬂm 122123 |124/125[126/127
1281291301131 1132133134135 1136137138139 140141142143
[144145(146/147 1491150151 [152 153154155 [156 157/158159
{160 161162163 164165166167 168169170171 |172[173174175
176177178179 [1801181/182[183 |18 186187 [1841894190/191
1931930194195 [19(197198199 2002011202/203 204\205206207

Fig. 2: An MIV address generation example, where
P=4 k=45 =37, =2,0=0,and ny =9.

the array reference is 0. Fig. 2 is an example amenable
to the program model shown in Fig. 1, where P = 4,
k=4,5s =37, 8 =2 0=0, and no = 9. The
gray-colored elements are the array elements accessed
by the array reference in the two-nested loop. The
MIV address generation problem is to generate the lo-
cal addresses of these gray-colored elements for some
processor.

Although the example is very uncommon, for com-
parison, we use the same example with [3, 7]. Actu-
ally, the values of s; and s make no difference with
the difficulity of the problem. There may exist out-
put dependences in the program model, the proposed
method can generate the local memory access sequence
in order without breaking the execution ordering.

2.2 Table-Based Address Generation
for Affine Subscripts

Consider the program model shown in Fig. 1. For each
outer loop iteration, the MIV address generation prob-
lem is reduced to an SIV address generation problem.
Thus we can utilize the FSM approach [2] to generate
the local memory access sequence for that SIV prob-
lem. Generating the local memory access sequence
for an MIV problem can, therefore, be easily solved
by enumerating the local memory access sequence for
each outer loop iteration until reaching the outer loop
bound.

For example, consider the example illustrated in
Fig. 2. Let i3 = 0. Thus, we can just focus our at-
tention only on the inner loop. The MIV address gen-
eration problem is reduced to the SIV problem, i.e., to

generate the local addresses of the accessed elements for
the array reference A(2i2). Thus a finite state machine
(FSM) can be built to enumerate the local memory ac-
cess sequences for the SIV problem. The initial state
of the FSM depends on the position of the starting ar-
ray element in a block. For instance, when i; = 0, the
starting element on processor py is 0 and its position
in a block is 0, thus the initial state of the FSM for
the case when 7; = 0 is at state 0. In addition to the
initial state of the FSM, we also need to know the local
address of the starting element since FSM only records
the local memory gaps between successive array ele-
ments allocated on the processor. FSM has no enough
information to show where to start in terms of local
address. For example, when i; = 0, the local address
of the starting element 0 on processor pg is 0. It means
that, to use the FSM to generate the local memory ac-
cess sequence for the case of i3 = 0, the initial state
of the FSM is at state 0 and the beginning of the se-
quence starts from 0. Therefore, when i; = 0, the local
memory access sequence for processor pg is 0,2, 4, and
so on. Similarly, it is done likewise for each outer loop
iteration 17 =1,2,3,---, n;.

In fact, there is no need to iterate all of the outer
loop iterations from 0 to n;. We have found out that it-
erating Pk/ gcd(Pk, s1) outer loop iterations is enough
because there is a repetitive pattern for the outer loop.
Having this discovery can save a lot of time due to
the avoidance of recomputation for repetitive patterns.
Moreover, it can also reduce the table size which is used
for recording the starting elements for outer loop iter-
ations. The following theorem demonstrates that the
repetitive period of the outer loop is Pk/gcd(Pk, s1)
iterations. For the sake of space limitation, we omit
the proofs. The details please refer to [9].

Theorem 1 For the program model shown in Fig. 1,
the memory accesses of the array reference have a
repetitive pattern for the outer loop and its repetitive
period is Pk/ gcd(Pk, sy) iterations. O

According to the above description, evidently, de-
termining the local address of the starting element for
each outer loop iteration is the primary step to solve
the MIV address generation problem. The problem to
find the local address of a starting element for each
outer loop iteration will be described in the next sec-
tion. A new approach to generating the local addresses
of the starting elements will be presented in the next
section as well.

3 Generating Starting Elements
for s > k

It is obvious that for a given outer loop iteration the
memory accesses just depend on the inner loop access
stride s». Therefore, in this section, we use s to in-
dicate the inner loop access stride s, except otherwise
notified. The method to find the starting elements in
case of s < k can be found in [3, 7]. Both of them
are O(1) in complexity. However, their methods to
find the starting elements in case of s > k are O(Pk)
and O(k), respectively. We propose a new method to
find the starting elements in case of s > k and the
time complexity of the algorithm is O(1). The case of
s > k occurs very often. In many real programs, cyclic
distribution is usually used for load-balance consider-
ation. However, cyclic distribution is a special case of
a block-cyclic distribution (cyclic(1) distribution) and
the distribution block size is 1. Therefore, the access
strides are always larger than the distribution block
size (1). Consequently, the problem in case of s > k
deserves to be paid more attention. The problem and
its solution are described as follows.

3.1 Problem Description

We formally describe the induced problem as follows.
Let the initial accessed element for some fixed outer
loop iteration be a global start and G denote the local
address of the global start. Specifically, given a global
start G, the processor p where G is allocated and the
processor ¢ which we would like to find its starting ele-
ment, the problem is to figure out &, the local address
of the starting element, for processor q. For example,
consider the example shown in Fig. 2. The gray-colored
elements are the elements accessed by the array refer-
ence, in which the deep-colored shaded elements are
the global starts corresponding to every outer loop it-
eration and the light-colored shaded elements on each
processor are the starting elements corresponding to
every global start. Suppose a given global start is 37
whose local address is 9 on processor p;. The start-
ing elements on processors pg, p2, and ps are 49, 41,
and 45, respectively, in terms of global addresses. The
problem is to figure out the local addresses of these
starting elements. That is, 13, 9, and 9, respectively.
Finally, we want to build a table to record the local
addresses for those shaded elements on processor gq.
Due to the space limitation, in this paper, we
only present the case that the access stride s is rel-
atively prime to the distribution block size k. That is,
ged(s, k) = 1. The approach can be easily extended
to the general case by slightly modification. For the

general solution, please refer to [9].

3.2 Preprocessing

Given a global start G, we propose a new approach to
find the local address of the starting element S, for
processor ¢ in case of s > k. Since the proposed ap-
proach is a table-based approach, it is necessary to pre-
compute a few tables in order to evaluate the starting
elements for a given global start. In this section, we de-
scribe the characteristics of these tables and how they
are used in the proposed approach. The constructions
of these tables are omitted in the paper. The details
please refer to [9]. The complexities in time and space
to construct and store the tables will be analyzed in
Section 3.4.

3.2.1 (C2P and P2C Tables

As well-known, there is a repetitive pattern for the
accessed elements on blocks. By [11], all blocks can
be classified into m classes according to the posi-
tions of the accessed elements on a block!. Note that
blocks of the same class have the same format. Let
C = Wssk) A repetitive pattern contains blocks from
class 0 to class C — 1. In addition, since s > k, there
is at most one accessed element on a block. Therefore,
we can use a table to record the position of the only
accessed element for every class. The blocks with no
accessed element are recorded by “—”. We denote the
table C2P table. With the table we can easily and ef-
ficiently get the position of an accessed element on a
block from the class number of the block.

Take Fig. 3 as an example, in which it assumes that
array elements are distributed over 4 processors with
cyclic(4) distribution and the access stride is 5. With-
out loss of generality, the access offset is set to 0 for sim-
plifying discussion. The accessed elements on classes 0,
1, 2, and 3 are at positions 0, 1, 2, and 3, respectively.
Therefore, the values of C2P(0), (1), (2), and (3) are
0, 1, 2, and 3, respectively. Moreover, there is no ac-
cessed element in class 4. So, C2P(4)=“-". Thus we
can obtain the C2P table for this example and it has
been shown in Fig. 4(a).

We can get the position of an accessed element on a
block according to the class number of a block by using
C2P table. By contrast, if the position of the accessed
element on a block is given, can we get the class number
of that block efficiently? Intuitively, we can get the
class number of a block according to the position of the

LAll blocks can be numbered in terms of class according to
the rule: b mod C, where b is the block number of that block
and C' is the number of classes.

Py P 2 P

@:n) CED) CCEY) CEED

Class 0 Class 1 Class 2 Class 3
wwwmmma@mmmmm
Class 4 Class 0 Class 1
632\33\34) 636\ 37‘38‘39D 40 41 \42\43D ()
Class 3 Class 4 Class 0 ”W’C"’l’aj:vml 77777777777777

() Csz 53] 54 E} (56 57]s8 59} oo)

Class 2 Class 3 Class 4 Class 0

@n@@n@@wﬂﬂﬁw@

Class 1 Class 2 Class 3 Class 4

Fig. 3: An SIV example assuming that array elements
are distributed onto 4 processors with cyclic(4) distri-
bution and the access stride of the array reference is
5.

a) C2P [0]1]2[3]]
b) P20 [0]1]2]3]

) Act [0]1]2]3]3]
d Jump [0]OJOJO]1]

Fig. 4: Tables used in starting elements findings for the
example shown in Fig. 3.

accessed element on the block by means of C2P table.
However, it requires a search operation. Thus, we use
a table to record the class number according to the
position of the accessed element on a block. With the
table we can get the class number of a block according
to the position of the accessed element on that block
directly and efficiently.

Since a block can have at most one accessed element
in case of s > k and the blocks with the same position of
the accessed element are classified into the same class,
thus a position can have at most one class number to
correspond to. As a result, it is feasible to use a table
to record the corresponding class number by a given
position of an accessed element. Let the table record-
ing the class number according to the position of the
accessed element on a block be P2C table. For exam-
ple, we explain the P2C table for the example shown
in Fig. 3. Obviously, for positions 0, 1, 2, and 3, the
corresponding class numbers are 0, 1, 2, and 3, respec-
tively. Consequently, P2C=(0, 1, 2, 3), which is shown
in Fig. 4(b). It is worth mentioning that since we have

assumed that ged(s, k) = 1, it is sure that each position
has an accessed element to map to. Thus, each posi-
tion has a class number to correspond to. However, it
is not true any more if ged(s, k) # 1. It should be paid
more attention when we are dealing with the general
problem.

3.2.2 ActT and Jump Tables

As previously described, a block contains at most one
accessed element when the access stride is larger than
the block size. Thus, we name a block which has an
accessed element to map to as an active block; oth-
erwise, it is termed an empty block. On a processor,
the tables AcT and Jump that we would like to intro-
duce below are used for skipping over the empty blocks
to an active block. One important observation here is
that, from processor’s viewpoint, blocks on a processor
have a repetitive pattern in terms of classes. It is im-
portant to have such a discovery since we can obtain
the class number of the next block on a processor from
current block if the class number of the current block
is known. Based on the discovery, we can use one ta-
ble to record the class number of the next active block
from the current block on a processor and another to
record the number of empty blocks which we have to
skip over to get the next active block if the current
block is an empty block. The two tables are named
AcT and JumP, respectively. The rules to construct
the two tables are as follows. If the current block is
not an empty block, we do not need to skip any block.
Thus, the value in ACT table for that block is recorded
by its class number and that in JUMP table is recorded
by 0. Otherwise, it implies that the current block is
an empty block. Then the value in ACT table for that
block is recorded by the class number of the next ac-
tive block on the processor and that in Jump table is
recorded by the number of blocks that we have to skip
over. If we can not find any active block, both the val-
ues in ACT and JUMP tables are recorded by “-”. It
is worth mentioning that the repetitive pattern of the
blocks on processors will be the same except the initial
block for all processors. Therefore, although AcT and
JuMP tables are constructed from viewpoint of pro-
cessors, these two tables do not change with different
processors.

For the example shown in Fig. 3, take processor py
for illustration. Since the blocks of classes 0, 1, 2, and
3 are active blocks, the values of these entries in ACT
table are the class numbers of their own and those en-
tries in Jump table records 0. On the other hand, the
block of class 4 is an empty block. It needs to skip one
block to the next active block, i.e., the block of class

3. Thus the fourth entry in AcCT table is 3, the class
number of the next active block and that in JUMP ta-
ble is 1 as we need to skip one block to the next active
block. As a result, for this example, AcT=(0, 1, 2, 3,
3) and Jump=(0, 0, 0, 0, 1), which have been shown in
Fig. 4(c) and (d), respectively.

3.3 The Algorithm

With these tables we can evaluate the starting element
S, from a given global start G in O(1) time complexity.
Fig. 5 illustrates the algorithm to evaluate the starting
element from a given global start. We term the algo-
rithm Start_Computation algorithm.

Algorithm: Start_Computation algorithm for
the case of s > k.
Input: G, a global start,
p, the processor where the global start
is allocated,
q, the processor that we would like to
find its starting element, where q # p
k, the distribution block size,
P, the number of processors,
s, the access stride,
C, the number of classes, where
C= satmn
C2P, P2C, Acr, and JUMP tables.
Output: S,, the starting element on processor q.
Assumption: ged(s, k) = 1.
Steps:
. posg =G mod k
. pdist = (¢ —p) mod P
¢ = (P2C(posg) + pdist) mod C
. poss = C2P(c)
if poss; = “~” then
if AcT(c) = “-” then
return no starting element on
processor ¢
8. else
9. poss = C2P(Act(c))
10. endif
11. endif
12. dist = poss - posg + JUMP(c)*k
13. if ¢ < p then
14. dist =dist + k
15. endif
16. S = G + dist

17. return S,

N oW

Fig. 5: Start_Computation algorithm for the case of
s> k.

The basic concept of the Start_Computation algo-
rithm is as follows. The continuous blocks from pro-
cessor 0 to P — 1 are said to be on the same course [2].

The fact that the corresponding entries on the blocks
at the same course have the same local index is very
important in Start_Computation algorithm. From the
viewpoint of the global start G, we try to figure out the
distance between the starting element S, and G. With
the distance we can, therefore, get the local address of
the starting element by adding the distance to G.

Start_Computation algorithm is based on the con-
cept described above. Let’s go back to the algorithm.
The details of the algorithm is explained as follows.
Given G, the local address of a global start, and p where
G is allocated, Step 1 is to calculate the position of G
on a block, that is, pos,. Step 2 is to measure the dis-
tance between processors p and ¢, which is then stored
in pdist. In Step 3, P2C(pos,) can get the class num-
ber of the block which the global start G is on. Since
the blocks mapped onto processors are in a round-robin
fashion in terms of classes, thus, Step 3 can get the class
number of the block on processor ¢, which is denoted
as ¢. According to C2P table, C2P(c) can get the po-
sition of the accessed element on the block of class ¢, if
ever. Therefore, Step 4 can obtain the position of the
starting element S, on a block if it exists, i.e., poss.
If poss does not equal “—”, it means that the current
block is an active block and pos,; denotes the position
of the starting element. We can go direct to Step 12
to evaluate the distance between the starting element
S, and the global start G. The distance between S,
and G is denoted as dist. If ¢ > p, the local address
of the starting element on processor ¢, S;, is equal to
G plus dist, just as Step 16 shows. Otherwise, it im-
plies that ¢ < p and we still need to add one block
size to the distance since the starting element must be
at one more course than the course where the global
start is located. Those are what Steps 13—-15 do. As a
result, the local address of the starting element can be
obtained, just as Step 16 shows.

On the other hand, if pos; = “-”, it means that the
current block is an empty block, we can use ACT table
to obtain the class number of the next active block.
If Act(c) = “~”, it implies that there exists no active
block on the processor. Certainly, there is no starting
element on the processor. Otherwise, we can find an
active block on the processor. We can get the number
of blocks needed to skip over the current block to the
next active block and the position of the accessed ele-
ment on that active block from JuMP and ACT tables,
respectively. Thus, we have Steps 5-11. For simplicity,
in Step 12 the operation JumMmPpxk is executed for all
cases.

Let us take Fig. 6 as an example, where it assumes
that P = 4, k = 4, s; = 37, s2 = 5, o = 0, and
ne = 7. Given an global start 37, whose local address

Processor p, Processor p, Processor p, Processor p,

F123 45067 s[ol10f 1] [12]13][1415
1617|18|19] |20]21(22]23| |24]25/26(27| |28/29(30|31
32133(34(35] [36/3%0 38]39| [40[4142[[43] [44]a5]4647
48/49/50]51| |52|53]54|55| |56|57|58)59 |60|61 62|63
64|65/6667] [68]69(70(71| |72| 73|88 75| |76]77|7879
80(81(82/83| |[84)85/86(87| |88(89(90|91| [92]93|94|95
96/97|9899] 11001011102]103 |104105/106/107, 108]109/11 (1L
1120113114115 (16117118119 12121122123 |124]125126/127
12812913(131) 1321331341135 136/137138[139) [140[141]142143
144145146147, 148149150151 [154153 154155 [156157158]159)
160[161/162163] 164165166167 168169170171 172173174175
1761771780179 (180181182183 [184183186[187 [188]18¢190] 191
192193194195) 1961971981199 2002012021203 204205206207
208209210\211 2122132142150 216217218219 2202211222223

Table 1: Time and space complexities analyses for ta-
bles constructions.

Complexity
TABLE TIME SPACE
c2p o(C) C
P2C O(C + k) k
Act C
JumP 0(C) C

Table 2: Performance comparisons of our method
against the existing methods.

Fig. 6: Layout of array elements on processors for the
case of sy > k, another MIV example, where P = 4,
k=4,s=37,5o=5,0=0,and ny = 7.

is 9 on processor p;, we first find the starting element
for processor p;. The input of the Start_Computation
algorithmis G =9, p=1,¢q=2, k=4, P =4, s =
5(= s2), and C = 5(= Wssk)) The tables used for
the example are the same as shown in Fig. 4. Following
the Steps from 1 to 4 in the algorithm we can obtain
that pos, = 1, pdist = 1, ¢ = 2, and poss; = 2. Since
poss does not equal “—”, we go direct to Step 12 and
we obtain that dist = 1. Due to the invalidation of the
condition in Step 13, we go direct to Step 16 and we
have S; = 10, which corresponds to the array element
42 in terms of global address.

On the same input except ¢ = 0, we take the finding
of the starting element on processor py as another ex-
ample. After executing the Step 4, we have pos, = 1,
pdist = 3, ¢ = 4, and poss; =“-". Since poss; equals
“~” which means that the block contains no accessed
element, we go to Step 6. According to ACT and JUMP
tables, there is an active block at one block after the
current empty block on processor pg. By Step 9, we
have poss = 3. After Step 12, we have dist = 6. As
q < p, dist still needs to add 4, a block size. It turns
out that dist = 10. Thus, Sg = 19, which corresponds
to the array element 67 in terms of global address.

Clearly, the time complexity of Start_Computation
algorithm is O(1). The complexity analyses of the ta-
bles used in the algorithm and the performance com-
parisons against the existing methods will be discussed
in Section 3.4.

Ken.’s Ram.’s Ours
Compr |_ O _|_O() o)
Prep. o(1) o(1) O(s2 + k)
Compesi | O(PK)_|_O(k) o)
Tters. Pk Pk #’Zn
Toral | O(P’k*) | O(PK?) | O(gaipiay 52 +5)

3.4 Performance Analyses and Com-
parisons

Since the space is limited, we only give the time com-
plexity for each table construction. Table 1 summa-
rizes the complexities in time and space for construct-
ing these tables. To compare with the existing meth-
ods, we denote the method proposed by Kennedy et
al. as Ken.’s, the one proposed by Ramanujam et
al. as Ram.’s, and our proposed one as ours. All the
three methods (Kennedy’s, Ramanujam’s, and ours)
are to generate the local memory access sequence for
an array reference in one-level mapping with affin sub-
scripts within a two-nested loop. Table 2 summarizes
the performance comparisons of our method against
the existing methods. The comparisons are made in
four different time costs: the start computation time
in case of s < k, the preprocessing, the start computa-
tion time in case of s > k, and the number of iterations
needed for outer loop, which are denoted respectively
by Comp,<y, prep., Comps>k, and Iters. Clearly, our
proposed approach is better than the existing methods
when s, < Pk?. However, the inner loop access stride
so 18, in general, much smaller than the value of Pk.
Hence, the dominated term would be the value of Pk.
Thus, we can say that the proposed algorithm is an
O(Pk) algorithm. As a result, the proposed approach
is much efficient against the existing methods.

4 Conclusions

In this paper, we have presented an efficient approach
to the evaluation of the starting element for some pro-
cessor from a given global start, which is a key step
to solve the MIV address generation problem in data-
parallel programs, assuming array is block-cyclically
distributed and its access subscript is affine. The ap-
proach is a table-based approach. The constructions
of these tables require O(s2 + k) in time complexity,
where k is the distribution block size and ss is the
access stride of the inner loop. With these tables, the
Start_Computation algorithm can run in O(1) time. In
addition, we have shown that there exists a repetitive
pattern for every Pk/ ged(Pk, s1) outer loop iterations.
Therefore, the MIV address generation problem can be
solved in O(Pk/ gcd(Pk,s1) + k + s2) time, where P
is the number of processors and s; is the access stride
of the outer loop. Currently, the best approach we
ever know for this problem is O(Pk?) [7] in the litera-
ture. Hence, the proposed approach is better than the
known methods if s < Pk?. In general, s, is much
smaller than Pk in real applications. Thus, the dom-
inated term would be Pk. As a result, our proposed
approach is much better than the existing methods.

Since the problem model considered in the paper is
focused on one-level mapping, in the near future, we
would like to extend the approach to two-level map-
ping. Moreover, we also hope to apply the address
generation approach to evaluate communication sets.
It is a challenge problem since it would incur data de-
pendences. The preservation of execution order needs
the utmost care and attention. The address generation
and communication sets evaluation for general affine
subscripts are also under investigation.

References

[1] C. Ancourt, F. Coelho, F. Irigoin, and R. Keryell.
A linear algebra framework for static HPF code
distribution. In the Fourth International Work-
shop on Compilers for Parallel Computers, pages
117-132, Delft, The Netherlands, December 1993.

[2] S. Chatterjee, J. R. Gilbert, F. J. E. Long,
R. Schreiber, and S.-H. Teng. Generating local
addresses and communication sets for data paral-

lel programs. Journal of Parallel and Distributed
Computing, 26(1):72-84, April 1995.

[3] K. Kennedy, N. Nedeljkovié¢, and A. Sethi. Effi-
cient address generation for block-cyclic distribu-
tions. In Proceedings of ACM International Con-

[10]

[11]

ference on Supercomputing, pages 180-184, July
1995.

K. Kennedy, N. Nedeljkovi¢, and A. Sethi. A
linear-time algorithm for computing the memory
access sequence in data-parallel programs. In Pro-
ceedings of the Fifth ACM SIGPLAN Symposium
on Principles and Practice of Parallel Program-
ming, pages 102-111, July 1995.

C. Koelbel. Compile-time generation of regular
communication patterns. In Proceedings of Super-
computing’91, pages 101-110, Albuquerque, NM,
November 1991.

S. P. Midkiff. Optimizing the representation of
local iteration sets and access sequences for block-
cyclic distributions. In Proceedings of Languages
and Compilers for Parallel Computing, San Jose,
CA, August 1996. Also available in D. Sehr, et al.
(Eds.), Lecture Notes in Computer Science, Vol.
1239, pp. 420434, Springer-Verlag, 1997.

J. Ramanujam, S. Dutta, and A. Venkatachar.
Code generation for complex subscripts in data-
parallel programs. In Proceedings of Languages
and Compilers for Parallel Computing, Minneapo-
lis, MN, August 1997.

Z. Shen, Z. Li, and P.-C. Yew. An empirical
study of Fortran programs for parallelizing com-
pilers. IEEE Transactions on Parallel and Dis-
tributed Systems, 1(3):356-364, July 1992.

K.-P. Shih, J.-P. Sheu, and C.-Y. Chang. Efficient
address generation for affine subscripts in data-
parallel programs. Technical report, Department
of Computer Science and Information Engineer-
ing, National Central University, 1998.

J. M. Stichnoth, D. O’Hallaron, and T. Gross.
Generating communication for array statements:
Design, implementation, and evaluation. Journal
of Parallel and Distributed Computing, 21:150-
159, 1994.

W.-H. Wei, K.-P. Shih; and J.-P. Sheu. Compil-
ing array references with affine functions for data-
parallel programs. To be appeared in Journal of
Infromation Science and Engineering, December
1998.

