Table-Lookup Approach for Compiling
Two-Level Data-Processor Mappings in HPF*

Kuei-Ping Shih!, Jang-Ping Sheu', and Chua-Huang Huang?
! Department of Computer Science and Information Engineering
National Central University
Chung-Li 32054, Taiwan
Email: steven@axpl.csie.ncu.edu.tw

sheujp@csie.ncu.edu.tw

% Department of Computer and Information Science
The Ohio State University
Columbus, OH 43210-1277
E-mail: chh@cis.ohio-state.edu

Abstract. This paper presents some compilation techniques to com-
press holes. Holes are the memory locations mapped by useless template
cells and are caused by the non-unit alignment stride in a two-level data-
processor mapping. In a two-level data-processor mapping, there is a re-
peated pattern for array elements mapped onto processors. We classify
blocks into classes and use a class table to record the attributes of classes
for the data distribution. Similarly, data distribution on a processor also
has a repeated pattern. We use compression table to record the attributes
of the first data distribution pattern on that processor. By using class ta-
ble and compression table, hole compression can be easily and efficiently
achieved. Compressing holes can save memory usage, improve spatial lo-
cality and further increase system performance. The proposed method is
efficient, stable and easy implement. The experimental results do confirm
the advantages of our proposed method over existing methods.

1 Introduction

Generally speaking, data parallel languages such as Fortran D[4], HPF (High
Performance Fortran)[6], and Vienna Fortran[2] support two-level data-processor
mapping. A two-level data-processor mapping provides user to specify data-
processor mapping by aligning related array objects with a template, an abstract
index space, and then distributing the template onto the user-declared abstract
processors. In distribution phase, three regular data distributions, block, cyclic,
and block-cyclic data distributions, are provided by these languages. However,
the block-cyclic distribution is known to be the most general data distribution
since both the block and the cyclic distributions can be represented by the block-
cyclic distribution. The program model considered in this paper is demonstrated

* This work was supported in part by the National Science Council of the Republic of
China under Grant #NSC86-2213-E-008-020.



35

IHPF$ PROCESSORS PROC(P)
IHPF$ ALIGN A(i) WITH T(s x i + o)
'HPF$ DISTRIBUTE T (cyclic(z)) ONTO PROC

Fig.1. HPF-like program model.

in Fig. 1, where P is the number of processors, s is the alignment stride, o
is the alignment offset and cyclic(z) is the representation of a block — cyclic
distribution and z is the distribution block size. Fig. 2(a) illustrates an example
in this model, where P = 4, s = 3, 0 = 1, and = = 5. The white squares represent
the array elements of A and the number in the square is the global index of that
array element. The gradations of gray squares represent different template cells
mapped to different processors and the number in the square is the global index
of that template cell.

In a two-level data-processor mapping, if the alignment stride is non-unit, the
mapping will cause lots of holes. Memory holes caused by the non-unit alignment
stride will result in a large amount of memory wastage, even for a small alignment
stride. Therefore, only the template cells aligned by array elements need to be
mapped to memory locations and all the holes should be removed. Suppose the
number of template cells is Ny and s is the alignment stride. Thus, only Nz/s
template cells are aligned by array elements. The percentage of memory usage

is N—AT,TE x 100% and equals % x 100%. In other words, the percentage of memory
8

wastage is ;1 x 100%. The larger the alignment stride is, the more the memory
usage wastes. Even for the least positive non-unit alignment stride 2, it still has
50% waste of memory space. Fig. 2(b) shows the distributions of array elements
onto processors with hole compression. Obviously, there are 30 memory spaces
that should be allocated by each processor if hole compression is not performed.
However, only a few template cells are aligned by array elements. The rest of
template cells, which have no array elements aligned with, are never used and
are holes. As a result, only 10 memory spaces are needed by each processor after
hole compression is performed. Therefore, compressing holes is quite necessary
and important. The processes that map the useful template cells to processors
and eliminate useless holes are called hole compression. In addition to increase
memory usage, removing holes can also improve spatial locality and, furthermore,
achieve higher performance.

This paper presents compilation techniques to efficiently remove holes for
two-level data-processor mappings. Observing the two-level mapping shown in
Fig. 2(a), one can find out that the distribution patterns for every three blocks
are identical. By the observation, we can classify all blocks into classes and de-
sign a table, named class table, to record the attributes of the first repeated
pattern. On the other hand, from processor viewpoint, the above observation is
true as well. Therefore, another table named compression table are established to



36

F.
o
“

£

blof1]2]3

-
b,[20]21|22|23[24| b,

13 14 15 16
b, 40| 41]a2]43|aa| b,[as|a6|a7] 48]0

(20 [21] [22]
b,[e0|61|62[63[64| b,,[65]66]67|68]69]

27 2 [29
b, s0]81[82|83|84| b,,[85|86|87]88|s9]

B[] 5] [
bo|100]101 102[103]104 b, [105]106}107]108)2

Po P P 2

7]13[14]20 21'27L33 34
9115|1622 28 -2_9-:5-35-
10| 11]17] 23] 24] 30| 31[37
12] 18] 19] 25| 26 32 38] 39

Fig.2. A Two-level data-processor mapping. (a) Array A(i) is aligned with template
T(3*i+1) and the template is then distributed onto 4 processors with cyclic(5) distri-
bution. (b) The distribution of array elements onto processors with hole compression.

record the attributes of the first repeated data distribution pattern on that pro-
cessor. Compression table is established according to the class table. We design
systematic methods to construct these tables and the time complexity of each
construction is O(s) in worst case, where s is the alignment stride. Hole compres-
sion can be easily achieved by using compression table accordingly. Table-based
approach can save a lot of redundant computations since the computations of
repetition of fixed patterns can be obtained by table lookup instead of recom-
putations. Experimental results verify the advantages of the proposed approach.
Moreover, the proposed approach has high stability against existing methods.
The execution time varies a little with the alignment stride and the distribution



37

block size. In addition, from implementation viewpoint, the proposed approach
can be easily implemented as well.

This paper is organized as follows. On compiling two-level data-processor
mapping, class table is useful for summarizing the two-level mapping. There-
fore, the structure and characteristics of class table are presented in Section 2.
Section 3 introduces how to utilize class table to construct compression table.
By using compression table, compressing holes and generating compressed local
array are also described. Experimental results to show the advantages of our
method over existing methods are provided in Section 4. Section 5 discusses the
related work. Section 6 concludes the paper and points out the possible direction
of future research as well.

2 Characteristics of Class Table

As compiling array statements, we have designed a useful structure to summarize
the characteristics of access patterns for an array statement, while the data
distribution is block-cyclic distribution [15]. Based on the similar concept, a
structure named class table is designed in this paper to record the attributes of
a two-level data-processor mapping. In this section we briefly deseribe the basic
components of class table. Without loss of generality, we assume every numbering
system is starting from zero, such as numbering array elements, template cells,
and processors, etc.

Suppose array element A(z) is aligned with template T at (s ¢ + 0), where
s is the alignment stride and o is the alignment offset. Two different alignment
offsets 0; and 0q lead to isomorphic data-processor mapping if and only if 01 = 02
(mod s). In order to reuse the same class table for isomorphic data-processor
mappings, the alignment offset o is reduced to r as we are generating class
table, where r = (0 mod s). For example, suppose array A(i) is aligned with
a template T at (3i + 10). The alignment phase is illustrated in Fig. 3. In this
example, s = 3 and o = 10. Since 10 > 3, the alignment offset is reduced to 1,
which is equal to (10 mod 3). For the reduced alignment, a template cell ¢ has
an array element aligned with if and only if ¢ = r (mod s), such as the template
cells 1,4,7,10,13,16,- - -, in this example. For these template cells with which
have array elements aligned, a template cell ¢ is active if 0 < t < (s % (N4 —
1) + 0); otherwise, it is termed pseudo active, where N4 is the number of array
elements. For this example, the active template cells are starting from 10 and
then each strides 3 and the template cells 1, 4, 7 are pseudo active elements.
Fig. 3 also illustrates the active elements and pseudo active elements for this
example. The boldfaced numbers are active elements and the italic numbers are
pseudo active elements. Note that the pseudo active elements are viewed as the
same with active elements when we are generating class table and compression
table. However, the pseudo active elements will not be counted when we are
generating the compressed local array.

For a cyclic(z) distribution, every z template cells forms a block. A block is
numbered according to the occurrence of the block in the data-processor map-



38

ATV
4

110 1 2
T|jof 1]2]3 7

8/9110]11[12|13]|14{15|16|17|. ..

Fig.3. The illustration of active elements and pseudo active elements. The boldfaced
numbers are active elements and the italic numbers are pseudo active elements.

ping. Suppose the numbers of array elements and template cells are N4 and N,
respectively. Let N be the number of blocks. Thus Ny = [Np/z]. According
to the alignment stride and offset, blocks of the same format can be classified
into the same class. In other words, those blocks within which have the same
positions of active elements are classified into the same class. For example, con-
sider the two-level data~processor mapping shown in Fig. 2(a). Blocks 0, 3, 6, 9,
--+ have the same positions of active elements. These blocks are classified into
the same class. Similarly, blocks 1, 4, 7, 10, --- can be classified into a class
and blocks 2, 5, 8, 11, - - - is another class. The following theorem demonstrates
that, for a two-level data-processor mapping, according to the positions of ac-
tive elements within the blocks, all blocks can be classified into different classes
and the number of classes is equal to s/ gcd(s, =), where ged(a, b) is the greatest
common divisor of a and . Due to the space limitation, all proofs in the paper
are omitted. Whoever is interested in details can refer to [10].

Theorem 1. For any two-level data-processor mapping that array A is aligned
with T at o stride s and an offset o and template T is distributed onto processors
using cyclic(x) distribution, all template blocks can be classified into s/ gcd(s, z)
classes. o

Let N, be the number of classes. By Theorem 1, N, = s/ ged(s, z). Since
all blocks are classified into s/ ged(s, z) classes, we number the class number of
each block in lexicographical order and every s/ ged(s, z) blocks repeats again.
Formally, block b belongs to class (b mod N,). Blocks b; and by belong to the
same class if and only if b = b, (mod N,). Accordingly, blocks {b, (b + 1), (b +
2),... ,{(b+N.—1)| b= 0 (mod N.)} are a period in terms of classes and we term
such a period a class cycle. For a class cycle, a class table is used for recording the
first, the last and the number of active elements on a class. For a class ¢, Af(c)
represents the order of occurrence in a class cycle for the first active element in
¢, Ai(c) the order of occurrence in a class cycle for the last active element in ¢,
and Ay,(c) the number of active elements within ¢. In addition to the original
meanings described above, class table also contains a lot of additional information
implicitly. For a class ¢, A(c) implies total number of active elements contained
from class 0 to class (¢ — 1) and (A;(c) + 1) implies total number of active
elements contained from 0 up to class ¢. Therefore, the number of active elements
contained in a class cycle is equal to A4;(N, — 1) + 1. Let A, be the number of
active elements contained in a class cycle. Thus, 4, = A/(N, - 1)+ 1.

For the example shown in Fig. 2(a}, the class table is shown in Fig. 4. In this
example, blocks can be classified into 3 classes. The blocks 0, 3, 6, 9, ---, are



39

A AT

SRR

Wi o
(V]
DI =) N

Fig.4. Class table for the example shown in Fig. 2(a).

N, = s/ged(s,z) /* the number of classes */
r=0 mods /* reduced alignment offset */
DO ¢ =0TO (N, — 1)

Ag(c) = [max(c*z —r,0)/s]

Ai(e) = [({c+ 1) *z—r—1)/s]

An(c) = Ai{c) — As(a) +1
ENDDO

Fig.5. Class_Table_Generation algorithm.

class 0, the blocks 1, 4, 7, 10, - - -, are class 1, and the blocks 2, 5, 8, 11, - - -, are
class 2. Blocks 0, 1, 2 form a class cycle and blocks 3, 4, 5 form another class
cycle, and so on. For the first class in a class cycle, the occurrences of the first
and the last active elements are 0 and 1 respectively, and the number of active
elements in this class is 2. Thus, Af(0) = 0, 4;(0) = 1, and A,(0) = 2. Likewise,
Af(1) = 2, 4(1) = 2, and An(1) = 1 for class 1 and Af(2) = 3, A(2) = 4,
and A,(2) = 2 for class 2. Hence, the number of active elements within a class
cycle, A, is 5(= A;(2) + 1). Fig. 5 shows the algorithm to generate a class table,
which is termed Class_Table_Generation algorithm. The major factors affecting
the construction of a class table are the alignment stride s, alignment offset o,
and the distribution block size x. The time complexity of Class_Table_Generation
algorithm is O{s/ ged(s, z)).

3 Hole Compression

In the section, how to use the elass table to construct a compression table to
extract information from a repeated data distribution pattern on a processor
will be proposed. The generation of the compressed local array for a processor
by using the compression table will be described as well.

3.1 Construction of Compression Table

Suppose a two-level data-processor mapping is of the form shown in Fig. 1.
By Theorem 1, for arbitrary two-level data-processor mapping, all blocks can
be classified into N, classes, where N, = s/gcd(s,z). Therefore, for every



40

lem{N,, P) blocks, the same data distribution pattern will repeat again. In other
words, blocks within a data distribution pattern can be viewed as different, but
are identical for every different data distribution pattern. Hence, we only have
to consider the first data distribution pattern and the rest of data distribution
patterns can be done likewise. As a result, a compression table to record the
information of the generation of compressed local array for a processor on the
first data distribution pattern is proposed. Similar to the class table, compres-
sion table also regards an alignment offset o as the reduced alignment offset r if
0 > s, where r = {0 mod s).

Let the number of blocks in a data distribution pattern be Np;. Thus Npp =
lem(N,, P). The number of blocks on each processor within a data distribution
pattern is, thus, equal to Npy/P, which can also be written as N/ ged(N,, P).
Let the number of blocks on a processor within a data distribution pattern be
N;’b, then N;’b = N,/ ged(N,, P). That is, on each processor, each data distribu-
tion pattern contains N;’b blocks. We number a block according to the order of
occurrence of the block on a processor within a data distribution pattern. For
the example shown in Fig. 2(a), a data distribution pattern contains 12(= Np)
blocks. Blocks 0 to 11 form the first data distribution pattern and blocks 12 to 23
are within the second data distribution pattern. Blocks 0 and 4 are the first and
the second blocks occurred on processors 0, blocks 1 and 5 are the first and the
second blocks occurred on processor 1 within the first data distribution pattern,
and blocks 12 and 13 are the first blocks occurred respectively on processor 0
and 1 within the second data distribution pattern, and so on.

From processor’s viewpoint, data distributions among different data distribu-
tion patterns are identical. The only difference between the first data distribution
pattern and other data distribution patterns is the indices of every pair of corre-
sponding cells. However, for every corresponding cells, their indices are different
in only a fixed offset. Hence, for a processor, only how to compress holes for the
first data distribution pattern needs to be considered and, for the rest of data
distribution patterns, only the fixed offset needs to be evaluated. To facilitate
hole compression, we design a structure, termed compression table, to charac-
terize blocks in the first data distribution pattern on a processor. For a block in
processor p, the compression table records the following three items: C¥, CF, and
Ccr.

— (%, the global index of the first array element in a block on processor p,

— CP, the number of array elements in a block on processor p,

— (7, the local index in the compressed local array for the first array element
in a block on processor p.

Take the compression table of processor pp as an example. Block by is the
first block within the first data distribution pattern occurred on processor pg.
The global index of the first array element in block by is 0, the number of array
elements in the block is 2, and the local index of array element A(0) in the
compressed local array is 0. Thus, CJ(0) = 0, C3(0) = 2, and CP(0) = 0. The
second block within the first data distribution pattern occurred on processor



41

”occurrenceucg IC,,U IC,U ” occurrence] CﬁC}L ICH]
110

0 0[2]0 0 2

1 7112 1 8|21

2 1323 2 15[ 2]3
(a) (b)

Fig.6. Compression tables for processor po and p; in the example shown in Fig. 2(a).
{a) The compression table of processor po. (b) The compression teble of processor p;.

po is block by. The global index of the first array element in block b4 is 7, the
number of array elements in the block is 1, and the local index of A(7) in the
compressed local array is 2. Therefore, C9(1) = 7, C2(1) = 1, and CP(1) = 2.
Similarly, 9(2) = 13, C3(2) = 2, and C‘l,()(2) = 3. The compression tables of
processor pp and p; for the example shown in Fig. 2(a) are illustrated in Fig. 6
(a) and (b), respectively.

The construction of compression table for processor p is described as follows.
Since all blocks are clasgified into N, classes, every N, blocks forms a class cycle.
For any block b, there are L-ﬁ:_} class cycles appeared before b. Furthermore,

each class cycle contains A, active elements. Hence, there are (L—AQ,C-J *x A.) active
elements in these class cycles. From Section 2, A (c) implicitly implies the num-
ber of active elements from class 0 to class (¢ — 1) in a class cycle. As a result,
for any block b, the global index of the first array element in the block can be
obtained by [1—3:] * A, + Ag(c), where ¢ is the class number of b. Therefore,
P = [NLCJ * Ac + Ag(c). On the other hand, C® can be obtained by A,(c) and
C} can be evaluated by the local index of the first array element in the previ-
ous block plus the number of active elements contained by the previous block.
Of course, the local index of the first array element in the first block on the
first data distribution pattern is 0. Note that CI' can also represent the number
of active elements occurred before the block in a data distribution pattern. The
algorithm to generate compression table is demonstrated in Fig. 7. The time com-
plexity of Compression_Table.Generation algorithm is O(N,/ gcd(N,, P)), where
N, is the number of classes and P is the number of processors. By Section 2,
N, = s/ gcd(s, z). Hence, the worst case of Compression_Table_Generation algo-
rithm is O(s), as much as that of Class_Table_Generation algorithm.

Note that if the alignment stride is smaller than or equal to the distribution
block size, (s < z), each block contains at least one active element. In such a
condition, the first array element in a block obtained by the above calculation is
exactly the first array element of that block. On the contrary, if the alignment
stride is larger than the distribution block size, (s > z), a block may contain
no active element. The first array element of the empty block, a block contains
no active element, obtained by the above calculation is a pseudo array element.
However, the pseudo array element does not affect the correctness of our pro-
posed approach. We shall show the fact in the following section.



42

b=p; nelem =0; addr =0; /* initialization */
NP = e
pb T ged(Ne,P)
DO occurrence = 0 TO (N}, - 1)
¢=0b mod N: /* the class number of block b */
Ch(occurrence) = | -] * Ac + As(c)
C2(occurrence) = An(c)
C7 (occurrence) = addr + nelem
b=>b-+ P /[*the next block on processor p */
nelem = Ch{occurrence) [* keep the current value for the next €7 */
addr = CT (occurrence) /* keep the current value for the next CF */
ENDDO

Fig.7. Compression_Table_Generation algorithm.

3.2 Generation of Compressed Local Arrays

Using the compression table to generate the compressed local array on a processor
is proposed in this subsection. Since the isomorphic data-processor mappings
differ only in the alignment offset, to simplify discussion, we first consider a two-
level data-processor mapping without considering the pseudo active elements.
That is, we assume o < s. General case is discussed next.

Special Case of Two-Level Data-Processor Mapping. As previously stated,
the data distribution among different data distribution patterns are identical ex-
cept the indices of the corresponding elements. Let the difference of the global
indices of two corresponding array elements on two contiguous data distribution
patterns be global indezing offset. Therefore, if one array element is known, the
corresponding array element on the previous(next) data distribution pattern can
be obtained by subtracting(adding) the global indexing offset from(to) the global
index of that array element. Hence, the most efficient approach to generating
the compressed local array for processor p is to first generate the compressed
local array for the first data distribution pattern according to the compression
table, and then, for the following data distribution patterns, the compressed
local array can be generated according to previously generated compressed lo-
cal array and the global indexing offset. Consider the two-level data-processor
mapping shown in Fig. 2(a) and take the generation of the compressed local
array for processor py as an example. The compressed local array for the first
data distribution pattern is A{0,1,7,13,14). Accordingly, the compressed local
array for the second data distribution pattern is A(20, 21,27, 33, 34) since the
global indexing offset is 20. Thus, the compressed local array of processor py is
APe(0,1,7,13,14,20,21,27,33, 34).



43

Fig.8. A general two-level data-processor mapping. Array A(%) is aligned with template
T(3 * i + 28) and the template is then distributed onto 4 processors with cyclic(5)
distribution, assuming N4 = 30.

General Case of Two-Level Data-Processor Mapping. The concept used
by the special case of two-level data-processor mapping is the same for the general
case of two-level data-processor mapping. However, the pseudo active elements
are taken into consideration for the general case of two-level data-processor map-
ping. For example, Fig. 8 is a general two-level data-processor mapping. In this
data-processor mapping, array A has 30 elements indexed from 0 to 29. Array el-
ement A(7) is aligned with a template T at a stride 3 and an offset 28. Template
T is distributed onto 4 processors using cyclic(5) distribution. The two data-
processor mappings shown in Figs. 2(a) and 8 are isomorphic since the alignment
strides, distribution block sizes and the numbers of processors of two mappings
are identical, and the alignment offsets 1 = 28 (mod 3). The class table and
compression table used by the data-processor mapping shown in Fig. 2(a) are the
same for that in Fig. 8. The compressed local array of processor pp in Fig. 2(a) is
AP = A(0,1,7,13,14,20,21,27, 33, 34), which has been introduced in previous
section. However, in Fig. 8, taking the pseudo active elements into consideration,
the compressed local array is turned to 4% = A(4,5,11,12,18,24,25).

In general case, we first evaluate the number of array elements allocated on
processor p. Let the number of compressed local array elements on processor
p be N§. To evaluate N3, the number of pseudo active elements allocated on
processor p is calculated. The evaluations of the global and local indexing offsets
are also important for general two-level data-processor mapping, where the global
and local indezing offsets are respectively the differences of the global indices
and the local indices in compressed local array for two corresponding array



44

elements on two contiguous data distribution patterns. Let Ay, be the number
of active elements in a data distribution pattern and A},,, be the number of active
elements allocated onto processor p in a data distribution pattern. Obviously,
Apin and AP, are the global and the local indexing offsets, respectively. For
example, in the two-level data-processor mapping shown in Fig. 8, the global
and the local indexing offsets are 20 and 5, respectively. The global and local
indexing offsets can be used for generating the compressed local array elements
for the repeated patterns as follows. If an array element gl is mapped to the
compressed local array at loc, the array element gl + A, will be mapped to
the compressed local array at loc + A}, Thus we can generate the compressed
local array for the first A}, elements by using the compression table and the
number of pseudo active elements. After that, we can generate the next Ap,,
elements according to the previous A:m elements and the global indezing offset,
Apin, until the last (N} mod A%;,) elements. Finally, we can generate the last
(N% mod A,,) elements accordingly. Detailed algorithms and implementation
issues for the special and the general cases please refer to [10].

4 Experimental Results

In this section, experimental results to evaluate the performance of our proposed
scheme and the work proposed in [8] are presented. Performing hole compression
for two-level data-processor mapping is experimented. In the experiment, three
methods are compared. Two are virtual processor schemes proposed in [8] and
the last is the scheme proposed in this paper. The virtual processor scheme
includes virtual block and virtual cyclic approaches. The former is termed virtual
block scheme and is denoted as v-block in the experiment. The latter is termed
virtual cyclic scheme and is denoted as v-cyclic in the experiment. As for our
proposed scheme, we denote it as ours in the experiment.

The experiments are performed on a DEC Alpha 3000/400 workstation. Since
the major factors affecting hole compression are the block size and the alignment
stride, we fix all parameters except the alignment stride and the block size while
we measure the execution times for each methods. In this experiment, the number
of array elements N4, the number of processors P, and the alignment offset
o are fixed on 50000, 16, and 0, respectively. The experiments estimate the
execution time of generating the compressed local array for some processor. The
tested processor number is randomly generated by a random number generator.
In the experiment, times are measured by CPU time and the time unit used
is microsecond. The execution time is the accumulated execution time of 100
iterations.

Fig. 9(a) illustrates the performance comparisons of the three methods when
the alignment stride is fixed on 12 and the block size varies from 1 to 24. In
Fig. 9(a), z-axis is the block size and y-axis is the accumulated execution time.
The proposed method outperforms the two virtual processor approaches, espe-
cially over the virtual block approach. In Fig. 9(a), the execution time of the
virtual block approach is decreasing as the block size is increasing. It is be-



45

LE+08 LE+07

v-block
LE+07
v-block LE+06

v-gyclic
v-cychc

| AN AAAN
N N Sl ey

LE+04 ———imtes Ll 1EA04

1 3 5 7 9 1u 13 15 17 19 21 23 2 4 6 8 10 12 14 16 18 20 22 24
block size swride

execution time (us)
g
execution time (us)

3

(100 nerations) {100 nerauions)

(a) (b)

Fig.9. Performance comparisons of the three methods. (a) Performance comparisons
of the three methods when the alignment stride s = 12 and the block size varies from
1 to 24. (b) Performance comparisons of the three methods when the block size z = 12
and the alignment stride varies from 2 to 24.

cause the execution time of the virtual block approach is proportional to the
number of virtual processors. Therefore, as the block size increases, the num-
ber of virtual processors contained by a processor decreases. Thus the execution
time of the virtual block approach decreases accordingly. Similarly, the execu-
tion time of the virtual cyclic approach is also proportional to the number of
active virtual processors. The number of active virtual processors is inversely
proportional to gcd(P * z,s) [8]. As a result, the execution time of the virtual
cyclic approach is inversely proportional to gcd(P * x,s). The experiments also
verifies the phenomenon. This fact revealed in Fig. 9(a) is that the execution
time vibrates according to the value of gcd(P %z, s). There is no regular pattern
with either the block size or the alignment stride. For our proposed method,
the execution time is closely related to the number of occurrences, N, ;’b, which
is obtained by N}, = N./gcd(Nc, P), where N, = s/ gcd(s,z). The larger the
number of occurrences is, the more time it takes. Hence, the execution time of
ours is proportional to the number of occurrences, just as Fig. 9(a) shows.

On the other hand, Fig. 9(b) shows the performance comparisons of the three
methods when the block size is fixed on 12 and the alignment stride varies from
2 to 24. In such a situation, since the number of array elements is fixed on
50000 and the template cells will cover all of array elements, thus the template
cells will increase as the alignment stride increases. Hence, for virtual block
approach, the number of virtual processors will increase when the alignment
stride increases. As a result, the execution time of the virtual block approach
increases if the alignment stride increases. Similar to Fig. 9(a), the execution
time of the virtual cyclic approach is inversely proportional to gcd(P * z,s)
and that of ours is directly proportional to the number of occurrences, N:;b'



46

Obviously, our proposed scheme also outperforms over the two virtual processor
approaches when the block size is fixed and the alignment stride varies.

One more significant result of ours over the two virtual processor approaches,
in addition to the better performance, is the stability of the execution time.
Obviously, there is a tradeoff between the virtual block approach and the virtual
cyclic approach. We have to decide which approach is appropriate, the virtual
block approach or the virtual cyclic approach, when either the block size or the
alignment stride is changed. Nevertheless, the execution time of ours is very
stable even though the alignment stride or the block size is changed from small
value to large value. More experimental results please refer to [10].

5 Related Works

In recent years, numbers of researchers paying their attention on compiling array
statements or array redistribution take only one-level mapping into considera-
tion [5, 7, 11, 12, 13, 15]. However, a complete parallelizing compiler should take
affine alignment into consideration as well. Nevertheless, affine alignment wastes
a lot of memory space if the alignment stride is non-unit. Such a wastage of mem-
ory usage is unacceptable for limited local spaces of processors on distributed-
memory multicomputers. Allocating spaces only for useful template cells is,
therefore, of critical importance for distributed-memory multicomputers.

Gradually, a number of researchers have been aware of this fact and propose
methods to compress holes for compiling two-level data-processor mapping with
non-unit alignment stride. For a two-level data-processor mapping with affine
alignment and block-cyclic distribution, the enumeration of local memory access
sequences for compiling array statements are considered in [3]. Both identical
alignment and affine alignment with hole compression are addressed. A finite
state machine(FSM) approach is adopted to traverse the local index space of each
processor. The construction of state table involves solving & linear Diophantine
equations and a sorting operation. Moreover, the FSM approach is a runtime
technique. High runtime overhead to enumerate local memory access sequences
will be involved.

The work improving the FSM approach [3] is proposed in [9]. Efficient FSM
table generations are proposed. The improved work enumerates the local memory
access sequences by viewing the accessed elements an integer lattice. The sorting
step in [3] is avoidable in the improved work. However, runtime resolution of
Diophantine equations is also required.

In [8], the authors proposed the virtual processor approaches. They proposed
hole compressions for block and cyclic distributions. Accordingly, hole compres-
sion for block-cyclic distribution can also be derived. However, in addition to
the disadvantages mentioned in Section 4, holes can not be totally eliminated by
the two virtual processor approaches. Moreover, the virtual cyclic approach can
not preserve the order of compressed local array elements.

The work similar to the virtual processor approach is presented in [14]. In
[14], row-wise and column-wise scanning the index space are proposed. One



47

corresponds to the virtual block approach and the other to the virtual cyclic
approach. They can also apply to affine alignment with hole compression. Based
on scanning polyhedra, an approach for enumerating local memory access se-
quences and generating communication sets is proposed in {1]. The method will
cause a significant overhead.

In this paper, a new approach is proposed to compress holes for compiling
two-level data processor mappings. The proposed approach is also a table-based
approach. However, the approach need not solve k linear Diophantine equa-
tions and has no sorting operation. Furthermore, the proposed approach has less
runtime overhead. In Section 4, we have compared our method with the method
proposed in [8] extensively. Experimental results also verify the advantages of our
proposed approach. Moreover, the proposed approach has high stability against
existing methods. The execution time varies a little with the alignment stride and
the distribution block size. In addition, from implement viewpoint, the proposed
approach can be easily implemented as well.

6 Conclusions

Data-parallel languages support two-level data-processor mapping for user to
specify data distribution. However, non-unit alignment stride always causes a lot
of memory holes, even for a small alignment stride. Holes result in not only mem-
ory wastage but also performance degradation. Therefore, this paper presents
compilation techniques to do with the problem. The paper uses class table and
compression table to facilitate the generation of compressed local array for each
processor. Class table is used for recording the attributes of blocks in a class cy-
cle and compression table is used for recording the attributes of blocks in a data
distribution pattern on a processor. The time complexities of the constructions
of these two tables are O(s) in worst case, where s is the alignment stride. The
approach proposed in this paper is straightforward but efficient. Moreover, one
significant advantage of our approach is its stability. The execution time of our
approach varies a little when the alignment stride or the distribution block size
are increasing. As for the implementation issue, the proposed method is easy-
implement. Experimental results do confirm the advantages of our methods over
the existing methods.

On the other hand, the compilations of array statements and data redis-
tribution are very important for parallelizing compilers on distributed-memory
multicomputers. However, performing array statements or data redistribution in-
curs indexing overhead and cornmunication overhead. How to alleviate the over-
heads resulted from performing array statements or data redistribution becomes
critical important for distributed-memory multicomputers. Hence, the future fo-
cuses are on how to efficiently generate communication sets for performing array
statements and data redistribution in order to reduce the indexing and commu-
nication overheads.



48

References

1.

10.

11.

12.

13.

14.

15.

C. Ancourt, F. Coelho, F. Irigoin, and R. Keryell. A linear algebra framework for
static HPF code distribution. In the Fourth International Workshop on Compilers
for Parallel Computers, pages 117-132, Delft, The Netherlands, December 1993.

. B. M. Chapman, P. Mehrotra, and H. P. Zima. Programming in Vienna Fortran.

Scientific Programming, 1(1), August 1992.

. S. Chatterjee, J. R. Gilbert, F. J. E. Long, R. Schreiber, and S.-H. Teng. Gener-

ating local addresses and communication sets for data parallel programs. Journal
of Parallel and Distributed Computing, 26(1):72-84, April 1995.

. G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C. W. Tseng, and

M. Wu. Fortran D language specification. Technical Report TR-91-170, Depart-
ment of Computer Science, Rice University, December 1991.

. 8. K. S. Gupta, S5.D. Kaushik, C.-H. Huang, and P. Sadayappan. On compiling

array expressions for efficient execution on distributed-memory machines. Journal
of Parallel and Distributed Computing, 32(2):155-172, February 1996.

. High Performance Fortran Forum. High Performance Foriran Language Specifica-

tion, November 1994. (Version 1.1).

. S. D. Kaushik, C.-H. Huang, J. Ramanujam, and P. Sadayappan. Multi-phase re-

distribution: A communication-efficient approach to array redistribution. Technical
Report OSU-CISRC-9/94-52, Department of Computer and Information Science,
The Ohio State University, 1994.

. S. D. Kaushik, C.-H. Huang, and P. Sadayappan. Efficient index set generation

for compiling HPF array statements on distributed-memory machines. Journal of
Parallel and Distributed Computing, 38(2):237-247, November 1996.

. K. Kennedy, N. Nedeljkovié, and A. Sethi. Efficient address generation for block-

cyclic distributions. In Proceedings of ACM International Conference on Super-
computing, pages 180-184, July 1995.

K.-P. Shih, J.-P. Sheu, and C.-H. Huang. Table-lookup approach for compiling two-
level data-processor mappings in HPF. Technical Report NCU-PPCTL-1997-05,
Department of Computer Science and Information Engineering, National Central
University, Taiwan, 1997.

J. M. Stichnoth, D. O’Hallaron, and T. Gross. Generating communication for ar-
ray statements: Design, implementation, and evaluation. Journal of Parallel and
Distributed Computing, 21:150-159, 1994,

R. Thakur, A. Choudhary, and J. Ramanujam. Efficient algorithms for array redis-
tribution. IEEE Transactions on Parallel and Distributed Systems, 7(6):587-5%4,
June 1996.

A. Thirumalai and J. Ramanujam. Efficient computation of address sequences in
data parallel programs using closed forms for basis vectors. Journal of Parallel
and Distributed Computing, 38(2):188-203, November 1996.

C. van Reeuwijk, W. Denissen, H.J. Sips, and E. M. Paalvast. An implementa-
tion framework for HPF distributed arrays on message-passing parallel computer
systems. Technical Report CP-96-001, Computational Physics Section, Faculty of
Applied Physics, Delft University of Technology, 1996.

W.-H. Wei, K.-P. Shih, and J.-P. Sheu. Compiling array references with affine
functions for data-parallel programs. To be appeared in Journal of Infromation
Science and Engineering, 1997.



