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A b s t r a c t .  This paper presents some compilation techniques to com- 
press holes. Holes are the memory locations mapped by useless template 
cells and are caused by the non-unit alignment stride in a two-level data- 
processor mapping. In a two-level data-processor mapping, there is a re- 
peated pattern for array elements mapped onto processors. We classify 
blocks into classes and use a class table to record the attributes of classes 
for the data distribution. Similarly, data distribution on a processor also 
has a repeated pattern. We use compression table to record the attributes 
of the first data distribution pattern on that processor. By using class ta- 
ble and compression table, hole compression can be easily and efficiently 
achieved. Compressing holes can save memory usage, improve spatial lo- 
cality and further increase system performance. The proposed method is 
efficient, stable and easy implement. The experimental results do confirm 
the advantages of our proposed method over existing methods. 

1 I n t r o d u c t i o n  

Generally speaking, da ta  parallel languages such as Fortran D[4], HPF  (High 
Performance Fortran)[6], and Vienna Fortran[2] support  two-level data-processor 
mapping.  A two-level data-processor mapping  provides user to specify data-  
processor mapping  by aligning related array objects with a template ,  an abst ract  
index space~ and then distributing the templa te  onto the user-declared abstract  
processors. In distribution phase, three regular da ta  distributions, block, cyclic, 
and block-cyclic da ta  distributions, are provided by these languages. However, 
the block-cyclic distribution is known to be the most  general da ta  distribution 
since both  the block and the cyclic distributions can be represented by the block- 
cyclic distribution. The  program model considered in this paper  is demonstra ted 
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!HPF$ PROCESSORS PROC(P) 
!HPF$ ALIGN A(i) WITH T(s • i + o) 
!HPF$ DISTRIBUTE T(eyclic(x)) ONTO PROC 

Fig.1. HPF-like program model. 

in Fig. 1, where P is the number of processors, s is the alignment stride, o 
is the alignment offset and cyclic(x) is the representation of a block - cyclic 
distribution and x is the distribution block size. Fig. 2(a) illustrates an example 
in this model, where P -- 4, s = 3, o = 1, and x -- 5. The white squares represent 
the array elements of A and the number in the square is the global index of tha t  
array element. The gradations of gray squares represent different template cells 
mapped to different processors and the number in the square is the global index 
of that  template cell. 

In a two-level data-processor mapping, if the alignment stride is non-unit, the 
mapping will cause lots of holes. Memory holes caused by the non-unit alignment 
stride will result in a large amount of memory wastage, even for a small alignment 
stride. Therefore, only the template cells aligned by array elements need to be 
mapped to memory locations and all the holes should be removed. Suppose the 
number of template cells is NT and s is the alignment stride. Thus, only NTIs  
template cells are aligned by array elements. The percentage of memory usage 

1 is Nr_V_/A X 100% and equals ; x 100%. In other words, the percentage of memory 
N T  

8--1 wastage is T x 100%. The larger the alignment stride is, the more the memory 
usage wastes. Even for the least positive non-unit alignment stride 2, it still has 
50% waste of memory space. Fig. 2(b) shows the distributions of array elements 
onto processors with hole compression. Obviously, there are 30 memory spaces 
that  should be allocated by each processor if hole compression is not performed. 
However, only a few template cells are aligned by array elements. The rest of 
template cells, which have no array elements aligned with, are never used and 
are holes. As a result, only 10 memory spaces are needed by each processor after 
hole compression is performed. Therefore, compressing holes is quite necessary 
and important .  The  processes that  map the useful template cells to processors 
and eliminate useless holes are called hole compression. In addition to increase 
memory usage, removing holes can also improve spatial locality and, furthermore,  
achieve higher performance. 

This paper presents compilation techniques to efficiently remove holes for 
two-level data-processor mappings. Observing the two-level mapping shown in 
Fig. 2(a), one can find out that  the distribution patterns for every three blocks 
are identical. By the observation, we can classify all blocks into classes and de- 
sign a table, named class table, to record the at tr ibutes of the first repeated 
pattern.  On the other hand, from processor viewpoint, the above observation is 
true as well. Therefore, another table named compression table are established to 
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Fig.2. A Two-level data-processor mapping. (a) Array A(i) is aligned with template 
T(3, i-}-1) and the template is then distributed onto 4 processors with cyclic(5) distri- 
bution. (b) The distribution of array elements onto processors with hole compression. 

record the attributes of the first repeated data distribution pattern on that pro- 
cessor, Compression table is established according to the class table. We design 
systematic methods to construct these tables and the time complexity of each 
construction is O(s) in worst case, where s is the alignment stride. Hole compres- 
sion can be easily achieved by using compression table accordingly. Table-based 
approach can save a lot of redundant computations since the computations of 
repetition of fixed patterns can be obtained by table lookup instead of recom- 
putations. Experimental results verify the advantages of the proposed approach. 
Moreover, the proposed approach has high stability against existing methods. 
The execution time varies a little with the alignment stride and the distribution 
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block size. In addition, from implementation viewpoint, the proposed approach 
can be easily implemented as well. 

This paper is organized as follows. On compiling two-level data-processor 
mapping, class table is useful for summarizing the two-level mapping. There- 
fore, the structure and characteristics of class table are presented in Section 2. 
Section 3 introduces how to utilize class table to construct compression table. 
By using compression table, compressing holes and generating compressed local 
array are also described. Experimental results to show the advantages of our 
method over existing methods are provided in Section 4. Section 5 discusses the 
related work. Section 6 concludes the paper and points out the possible direction 
of future research as well. 

2 C h a r a c t e r i s t i c s  o f  C l a s s  T a b l e  

As compiling array statements, we have designed a useful s t ructure to summarize 
the characteristics of access pat terns for an array statement,  while the da ta  
distribution is block-cyclic distribution [15]. Based on the similar concept, a 
structure named class table is designed in this paper to record the at tr ibutes of 
a two-level data-processor mapping. In this section we briefly describe the basic 
components of class table. Without  loss of generality, we assume every numbering 
system is starting from zero, such as numbering array elements, template cells, 
and processors, etc. 

Suppose array element A(i) is aligned with template T at (s • i + o), where 
s is the alignment stride and o is the alignment offset. Two different alignment 
offsets Ol and 02 lead to isomorphic data-processor mapping if and only if oz - 02 
(mod s). In order to reuse the same class table for isomorphic data-processor 
mappings, the alignment offset o is reduced to r as we are generating class 
table, where r = (o mod s). For example, suppose array A(i) is aligned with 
a template T at (3i + 10). The alignment phase is illustrated in Fig. 3. In this 
example, s = 3 and o -- 10. Since 10 > 3, the alignment offset is reduced to 1, 
which is equal to (10 mod 3). For the reduced alignment, a template cell t has 
an array element aligned with if and only if t - r (mod s), such as the template  
cells 1,4, 7, 10, 13, 16,--- ,  in this example. For these template cells with which 
have array elements aligned, a template cell t is active if o < t < (s * (NA -- 
1) + o); otherwise, it is termed pseudo active, where NA is the number of array 
elements. For this example, the active template cells are start ing from 10 and 
then each strides 3 and the template cells 1, 4, 7 are pseudo active elements. 
Fig. 3 also illustrates the active elements and pseudo active elements for this 
example. The boldfaced numbers are active elements and the italic numbers are 
pseudo active elements. Note that  the pseudo active elements are viewed as the 
same with active elements when we are generating class table and compression 
table. However, the pseudo active elements will not be counted when we are 
generating the compressed local array. 

For a cyclic(x) distribution, every x template cells forms a block. A block is 
numbered according to the occurrence of the block in the data-processor map- 
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Fig.3. The illustration of active elements and pseudo active elements. The boldfaced 
numbers are active elements and the italic numbers are pseudo active elements. 

ping. Suppose the numbers of array elements and template cells are NA and NT, 
respectively. Let Nb be the number of blocks. Thus Nb = [NT/X 1 • According 
to the alignment stride and offset, blocks of the same format can be classified 
into the same class. In other words, those blocks within which have the same 
positions of active elements are classified into the same class. For example, con- 
sider the two-level data-processor mapping shown in Fig. 2(a). Blocks 0, 3, 6, 9, 
--- have the same positions of active elements. These blocks are classified into 
the same class. Similarly, blocks 1, 4, 7, 10, . . .  can be classified into a class 
and blocks 2, 5, 8, 11, -.- is another class. The following theorem demonstrates 
that ,  for a two-level data-processor mapping, according to the positions of ac- 
tive elements within the blocks, all blocks can be classified into different classes 
and the number of classes is equal to s~ gcd(s, x), where gcd(a, b) is the greatest 
common divisor of a and b. Due to the space limitation, all proofs in the paper 
are omitted. Whoever is interested in details can refer to [1t3]. 

T h e o r e m  1. For any two-level data-processor mapping that array A is aligned 
with T at a stride s and an offset o and template T is distributed onto processors 
using cyclic(x) distribution, all template blocks can be classified into s~ gcd(s, x) 
classes. U 

Let Nc be the number of classes. By Theorem 1, Nc = s~ gcd(s, x). Since 
all blocks are classified into s /gcd(s ,  x) classes, we number the class number of 
each block in lexicographical order and every s~ gcd(s, x) blocks repeats again. 
Formally, block b belongs to class (b mod No). Blocks bx and b2 belong to the 
same class if and only if bl -~ b2 (mod No). Accordingly, blocks {b, (b + 1), (b + 
2 ) , . . .  , (b+Ne-1)  I b ~ 0 (mod No)} are a period in terms of classes and we term 
such a period a class cycle. For a class cycle, a class table is used for recording the 
first, the last and the number of active elements on a class. For a class c, A l ( c  ) 
represents the order of occurrence in a class cycle for the first active dement  in 
c, .At (c) the order of occurrence in a class cycle for the last active element in c, 
and An(C) the number of active dements  within c. In addition to the original 
meanings described above, class table also contains a lot of additional information 
implicitly. For a class c, Af  (c) implies total  number of active elements contained 
from class 0 to class ( c -  1) and (.At(c) + 1) implies total number of active 
elements contained from 0 up to class c. Therefore, the number of active elements 
contained in a class cycle is equal to .At(Nc - 1) + 1. Let Ac be the number of 
active elements contained in a class cycle. Thus, Ac = At(N~ - 1) + 1. 

For the example shown in Fig. 2(a), the class table is shown in Fig. 4. In this 
example, blocks can be classified into 3 classes. The blocks 0, 3, 6, 9, - . . ,  are 
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Fig.4. Class table for the example shown in Fig. 2(a). 

Nc = s~ gcd(s, x) /* the number of classes */ 
r = o rood s /* reduced alignment offset */ 
D O c - - - - 0 T O  ( N o - l )  

A : ( c )  = r m a x ( c  * x - r ,  0 ) / s ]  

, A t ( c )  = L ( ( c +  1 )  • x - ,. - 1 ) / 8 J  

A,~(c) = .At(c) - AI(c) + 1 
E N D D O  

Fig.5. Class_Table_Generation algorithm. 

class 0, the blocks 1, 4, 7, 10, . . . ,  are class 1, and the blocks 2, 5, 8, 11, - - . ,  are 
class 2. Blocks 0, 1, 2 form a class cycle and blocks 3, 4, 5 form another  class 
cycle, and so on. For the first class in a class cycle, the occurrences of the first 
and the last active elements are 0 and 1 respectively, and the number of active 
elements in this class is 2. Thus, AI(0)  = 0, Al(0) = 1, and An(0) = 2. Likewise, 
.4/(1) = 2, Al(1) = 2, and An(l )  -- 1 for class 1 and .4/(2) = 3, Al(2) = 4, 
and An(2) = 2 for class 2. Hence, the number of active elements within a class 
cycle, Ac, is 5(-- ~41(2) + 1). Fig. 5 shows the algorithm to generate a class table, 
which is termed Class_Table_Generation algorithm. The major factors affecting 
the construction of a class table are the alignment stride s, alignment offset o, 
and the distribution block size x. The time complexity of Class_Table_Generation 
algorithm is O(s /gcd(s ,  x)). 

3 Hole Compression 

In the section, how to use the class table to construct  a compression table to 
extract  information from a repeated da ta  distribution pat tern on a processor 
will be proposed. The generation of the compressed local array for a processor 
by using the compression table will be described as well. 

3.1 C o n s t r u c t i o n  o f  C o m p r e s s i o n  T a b l e  

Suppose a two-level data-processor mapping is of the form shown in Fig. 1. 
By Theorem 1, for arbi t rary two-level data-processor mapping, all blocks can 
be classified into Nc classes, where Nc = s /gc d ( s , x ) .  Therefore, for every 
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lcm(Nc, P )  blocks, the same data  distribution pat tern  will repeat  again. In other 
words, blocks within a data  distribution pat tern can be viewed as different, but  
are identical for every different data  distribution pattern.  Hence, we only have 
to consider the first data  distribution pat tern and the rest of data  distribution 
patterns can be done likewise. As a result, a compression table to record the 
information of the generation of compressed local array for a processor on the 
first da ta  distribution pat tern  is proposed. Similar to the class table, compres- 
sion table also regards an alignment offset o as the reduced alignment offset r if 
o > s, where r = (o rood s). 

Let the number of blocks in a data  distribution pat tern  be Nvb. Thus Npb = 
lcm(Nc, P) .  The number of blocks on each processor within a da ta  distribution 
pat tern is, thus, equal to Npb/P, which can also be writ ten as Nc/gcd(N~, P) .  
Let  the number of blocks on a processor within a data  distribution pat tern  be 
N ~ ,  then N~Vb = No~ gcd(N~, P) .  Tha t  is, on each processor, each data  distribu- 
tion pat tern  contains NWb blocks. We number a block according to the order of 
occurrence of the block on a processor within a data  distribution pattern.  For 
the example shown in Fig. 2(a), a data  distribution pat tern contains 12(= Nvb ) 
blocks. Blocks 0 to 11 form the first da ta  distribution pat tern and blocks 12 to 23 
are within the second data  distribution pattern.  Blocks 0 and 4 are the first and 
the second blocks occurred on processors 0, blocks 1 and 5 are the first and the 
second blocks occurred on processor 1 within the first da ta  distribution pattern,  
and blocks 12 and 13 are the first blocks occurred respectively on processor 0 
and 1 within the second da ta  distribution pat tern,  and so on. 

From processor's viewpoint, da ta  distributions among different da ta  distribu- 
tion patterns are identical. The  only difference between the first da ta  distribution 
pat tern  and other da ta  distribution patterns is the indices of every pair of corre- 
sponding cells. However, for every corresponding cells, their indices are different 
in only a fixed offset. Hence, for a processor, only how to compress holes for the 
first data  distribution pat tern needs to be considered and, for the rest of data  
distribution patterns,  only the fixed offset needs to  be evaluated. To facilitate 
hole compression, we design a structure, termed compression table, to charac- 
terize blocks in the first da ta  distribution pat tern on a processor. For a block in 
processor p, the compression table records the following three items: C~, Ca p, and 
Cf. 

- C$, the global index of the first array element in a block on processor p, 
- Cn v, the number of array elements in a block on processor p, 
- C~, the local index in the compressed local array for the first array element 

in a block on processor p. 

Take the compression table of processor P0 as an example. Block b0 is the 
first block within the first da ta  distribution pat tern  occurred on processor P0. 
The global index of the first array element in block b0 is 0, the number of array 
elements in the block is 2, and the local index of array element A(0) in the 
compressed local array is 0. Thus, C°(0) = 0, C°(0) = 2, and C°(0) = 0. The 
second block within the first data  distribution pat tern  occurred on processor 
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(a) (b) 

Fig.6. Compression tables for processor p0 and pl in the example shown in Fig. 2(a). 
(a) The compression table of processor po. (b) The compression table of processor pl. 

P0 is block b4. The global index of the first array element in block b4 is 7, the 
number of array elements in the block is 1, and the local index of A(7) in the 
compressed local array is 2. Therefore, C°(1) = 7, C°(1) = 1, and C°(1) -- 2. 
Similarly, C°(2) -- 13, C°(2) = 2, and C~(2) = 3. The compression tables of 
processor Po and Pl for the example shown in Fig. 2(a) are illustrated in Fig. 6 
(a) and (b), respectively. 

The construction of compression table for processor p is described as follows. 
Since all blocks are classified into Nc classes, every Nc blocks forms a class cycle. 
For any block b, there are [~-:J class cycles appeared before b. Furthermore, 

each class cycle contains .Ac active elements. Hence, there are ([~-~:J * .Ac) active 
elements in these class cycles. From Section 2, .Af (c) implicitly implies the num- 
ber of active elements from class 0 to class (c - 1) in a class cycle. As a result, 
for any block b, the global index of the first array element in the block can be 
obtained by [ ~ J  * Ac + Af(c), where c is the class number of b. Therefore, 

C~ = [~-:j * Ac + .Af(c). On the other hand, C~ can be obtained by .An(c) and 
C~ can be evaluated by the local index of the first array element in the previ- 
ous block plus the number of active elements contained by the previous block. 
Of course, the local index of the first array element in the first block on the 
first data  distribution pattern is 0. Note that  C~ can also represent the number 
of active elements occurred before the block in a da ta  distribution pattern. The 
algorithm to generate compression table is demonstrated in Fig. 7. The time com- 
plexity of Compression_Table_Generation algorithm is O(Nc/gcd(Nc, P)) ,  where 
Nc is the number of classes and P is the number of processors. By Section 2, 
N~ = s/gcd(s, x). Hence, the worst case of Compression_Table_Generation algo- 
ri thm is O(s), as much as that  of Class_Table_Generation algorithm. 

Note that  if the alignment stride is smaller than or equal to the distribution 
block size, (s _< x), each block contains at least one active element. In such a 
condition, the first array element in a block obtained by the above calculation is 
exactly the first array element of tha t  block. On the contrary, if the alignment 
stride is larger than the distribution block size, (s > x), a block may contain 
no active element. The first array element of the empty block, a block contains 
no active element, obtained by the above calculation is a pseudo array element. 
However, the pseudo array element does not affect the correctness of our pro- 
posed approach. We shall show the fact in the following section. 
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b = p; nelem = 0; addr = 0; /* initialization */ 
Y ~ =  N~, 

gcd(Ne,P) 
DO occurrence = 0 TO (N~b -- 1) 

c = b rood Nc /* the class number of block b */ 
C;(occurrence) = L~J * A~ + Al(c) 
C~ (occurrence) = .An (c) 
C~ (occurrence) = addr + nelem 
b = b + P /*the next block on processor p */ 
nelem = CPn(oceurrence)/* keep the current value for the next C~ */ 
addr = CP(occurrence) /* keep the current value for the next C~ */ 

ENDDO 

Fig.7. Compression_Table_Generation algorithm. 

3.2 Genera t ion  of  Compres sed  Local  Arrays  

Using the. compression table to generate the compressed local array on a processor 
is proposed in this subsection. Since the isomorphic data-processor mappings 
differ only in the alignment offset, to simplify discussion, we first consider a two- 
level data~processor mapping without considering the pseudo active elements. 
That is, we assume o < s. General case is discussed next. 

Special  Case of  Two-Level  Data-Processor  Mapping.  As previously stated, 
the data distribution among different data distribution patterns are identical ex- 
cept the indices of the corresponding elements. Let the difference of the global 
indices of two corresponding array elements on two contiguous data distribution 
patterns be global indexing offset. Therefore, if one array element is known, the 
corresponding array element on the previous(next) data distribution pattern can 
be obtained by subtracting(adding) the global indexing offset from(to) the global 
index of that array element. Hence, the most efficient approach to generating 
the compressed local array for processor p is to first generate the compressed 
local array for the first data distribution pattern according to the compression 
table, and then, for the following data distribution patterns, the compressed 
local array can be generated according to previously generated compressed lo- 
cal array and the global indexing offset. Consider the two-level data-processor 
mapping shown in Fig. 2(a) and take the generation of the compressed local 
array for processor P0 as an example. The compressed local array for the first 
data distribution pattern is A(0, 1, 7, 13,14). Accordingly, the  compressed local 
array for the second data distribution pattern is A(20, 21, 27,33, 34) since the 
global indexing offset is 20. Thus, the compressed local array of processor Po is 
A p° (0, 1, 7, 13, 14, 20, 21, 27, 33, 34). 



,13 

i-gi 

-2 i 

b. 

b ,[,0 

Po 

i_71 

bl3 

b ~ 7 ~  

b21 

P~ 

-~" i i~-~-5 i 

b~o~ 

P, 

b, l m i l m a l i  

b n ~  

b . ~  

b , , i  

P3 
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distribution, assuming NA = 30. 

Genera l  Case  of  Two-Leve l  D a t a - P r o c e s s o r  Mapp ing .  The concept used 
by the special case of two-level data-processor mapping is the same for the general 
case of two-level data-processor mapping. However, the pseudo active elements 
are taken into consideration for the general case of two-level data-processor map- 
ping. For example, Fig. 8 is a general two-level data-processor mapping. In this 
data-processor mapping, array A has 30 elements indexed from 0 to 29. Array el- 
ement A(i)  is aligned with a template T at a stride 3 and an offset 28. Template 
T is distributed onto 4 processors using cyclic(5) distribution. The two data- 
processor mappings shown in Figs. 2(a) and 8 are isomorphic since the alignment 
strides, distribution block sizes and the numbers of processors of two mappings 
are identical, and the alignment offsets 1 - 28 (mod 3). The class table and 
compression table used by the data-processor mapping shown in Fig. 2(a) are the 
same for that in Fig. 8. The compressed local array of processor po in Fig. 2(a) is 
A p° = A(O, 1, 7, 13, 14, 20, 21, 27, 33, 34), which has been introduced in previous 
section. However, in Fig. 8, taking the pseudo active elements into consideration, 
the compressed local array is turned to A p° = A(4, 5, 11, 12, 18, 24, 25). 

In general case, we first evaluate the number of array elements allocated on 
processor p. Let the number of compressed local array elements on processor 
p be N+~. To evaluate N+~, the number of pseudo active elements allocated on 
processor p is calculated. The evaluations of the global and local indexing offsets 
are also important for general two-level data-processor mapping, where the global 
and local indexing offsets are respectively the differences of the global indices 
and the local indices in compressed local array for two corresponding array 
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elements on two contiguous data distribution patterns. Let Aptn be the number 
of active elements in a data distribution pattern and A~t n be the number of active 
elements allocated onto processor p in a data distribution pattern. Obviously, 
¢4p~,~ and .A~t,~ are the global and the local indexing offsets, respectively. For 
example, in the two-level data-processor mapping shown in Fig. 8, the global 
and the local indexing offsets are 20 and 5, respectively. The global and local 
indexing offsets can be used for generating the compressed local array elements 
for the repeated patterns as follows. If an array element gl is mapped to the 
compressed local array at loc, the array element gl + .Aptn will be mapped to 
the compressed local array at loc + .A~ n. Thus we can generate the compressed 
local array for the first .A~t n elements by using the compression table and the 
number of pseudo active elements. After that, we can generate the next .A~t n 
elements according to the previous J4~t n elements and the global indexing offset, 
.Aptn, until the last (N~ mod .A~tn) elements. Finally, we can generate the last 
(N~ mod A~tn) elements accordingly. Detailed algorithms and implementation 
issues for the special and the general cases please refer to [10]. 

4 E x p e r i m e n t a l  R e s u l t s  

In this section, experimental results to evaluate the performance of our proposed 
scheme and the work proposed in [8] are presented. Performing hole compression 
for two-level data-processor mapping is experimented. In the experiment, three 
methods are compared. Two are virtual processor schemes proposed in [8] and 
the last is the scheme proposed in this paper. The virtual processor scheme 
includes virtual block and virtual cyclic approaches. The former is termed virtual 
block scheme and is denoted as v-block in the experiment. The latter is termed 
virtual cyclic scheme and is denoted as v-cyclic in the experiment. As for our 
proposed scheme, we denote it as ours in the experiment. 

The experiments are performed on a DEC Alpha 3000/400 workstation. Since 
the major factors affecting hole compression are the block size and the alignment 
stride, we fix all parameters except the alignment stride and the block size while 
we measure the execution times for each methods. In this experiment, the number 
of array elements NA, the number of processors P, and the alignment offset 
o are fixed on 50000, 16, and 0, respectively. The experiments estimate the 
execution time of generating the compressed local array for some processor. The 
tested processor number is randomly generated by a random number generator. 
In the experiment, times are measured by CPU time and the time unit used 
is microsecond. The execution time is the accumulated execution time of 100 
iterations. 

Fig. 9(a) illustrates the performance comparisons of the three methods when 
the alignment stride is fixed on 12 and the block size varies from 1 to 24. In 
Fig. 9(a), x-axis is the block size and y-axis is the accumulated execution time. 
The proposed method outperforms the two virtual processor approaches, espe- 
cially over the virtual block approach. In Fig. 9(a), the execution time of the 
virtual block approach is decreasing as the block size is increasing. It is be- 
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Fig.9. Performance comparisons of the three methods. (a) Performance comparisons 
of the three methods when the alignment stride s = 12 and the block size varies from 
1 to 24. (b) Performance comparisons of the three methods when the block size x = 12 
and the alignment stride varies from 2 to 24. 

cause the execution t ime of the virtual block approach is proportional to the 
number of virtual processors. Therefore, as the block size increases, the num- 
ber of virtual processors contained by a processor decreases. Thus the execution 
time of the virtual block approach decreases accordingly. Similarly, the execu- 
tion time of the virtual cyclic approach is also proportional  to the number of 
active virtual processors. The number of active virtual processors is inversely 
proportional to gcd(P * x, s) [8]. As a result, the execution time of the virtual 
cyclic approach is inversely proportional to gcd(P * x, s). The  experiments also 
verifies the phenomenon. This fact revealed in Fig. 9(a) is that  the execution 
time vibrates according to the value of gcd(P * x, s). There  is no regular pat tern 
with either the block size or the alignment stride. For our proposed method, 
the execution t ime is closely related to the number of occurrences, N~b, which 
is obtained by NPpb = No~ gcd(Nc, P) ,  where N~ = s /gcd ( s ,  x). The  larger the 
number of occurrences is, the more time it takes. Hence, the execution time of 
ours is proportional to the number of occurrences, just  as Fig. 9(a) shows. 

On the other hand, Fig. 9(b) shows the performance comparisons of the three 
methods when the block size is fixed on 12 and the alignment stride varies from 
2 to 24. In such a situation, since the number of array elements is fixed on 
50000 and the template cells will cover all of array elements, thus the template 
cells will increase as the alignment stride increases. Hence, for virtual block 
approach, the number of virtual processors will increase when the alignment 
stride increases. As a result, the execution t ime of the virtual  block approach 
increases if the alignment stride increases. Similar to  Fig. 9(a), the execution 
time of the virtual cyclic approach is inversely proport ional  to gcd(P  * x, s) 
and that  of ours is directly proportional to the number of occurrences, N~b. 
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Obviously, our proposed scheme also outperforms over the two virtual processor 
approaches when the block size is fixed and the alignment stride varies. 

One more significant result of ours over the two virtual processor approaches, 
in addition to the better performance, is the stability of the execution time. 
Obviously, there is a tradeoff between the virtual block approach and the virtual 
cyclic approach. We have to decide which approach is appropriate, the virtual 
block approach or the virtual cyclic approach, when either the block size or the 
alignment stride is changed. Nevertheless, the execution time of ours is very 
stable even though the alignment stride or the block size is changed from small 
value to large value. More experimental results please refer to [10]. 

5 R e l a t e d  W o r k s  

In recent years, numbers of researchers paying their attention on compiling array 
statements or array redistribution take only one-level mapping into considera- 
tion [5, 7, 11, 12, 13, 15]. However, a complete parallelizing compiler should take 
affine alignment into consideration as well. Nevertheless, affine alignment wastes 
a lot of memory space if the alignment stride is non-unit. Such a wastage of mem- 
ory usage is unacceptable for limited local spaces of processors on distributed- 
memory multicomputers. Allocating spaces only for useful template cells is, 
therefore, of critical importance for distributed-memory multicomputers. 

Gradually, a number of researchers have been aware of this fact and propose 
methods to compress holes for compiling two-level data-processor mapping with 
non-unit alignment stride. For a two-level data-processor mapping with affine 
alignment and block-cyclic distribution, the enumeration of local memory access 
sequences for compiling array statements are considered in [3]. Both identical 
alignment and affine alignment with hole compression are addressed. A finite 
state machine(FSM) approach is adopted to traverse the local index space of each 
processor. The construction of state table involves solving k linear Diophantine 
equations and a sorting operation. Moreover, the FSM approach is a runtime 
technique. High runtime overhead to enumerate local memory access sequences 
will be involved. 

The work improving the FSM approach [3] is proposed in [9]. Efficient FSM 
table generations are proposed. The improved work enumerates the local memory 
access sequences by viewing the accessed elements an integer lattice. The sorting 
step in [3] is avoidable in the improved work. However, runtime resolution of 
Diophantine equations is also required. 

In [8], the authors proposed the virtual processor approaches. They proposed 
hole compressions for block and cyclic distributions. Accordingly, hole compres- 
sion for block-cyclic distribution can also be derived. However, in addition to 
the disadvantages mentioned in Section 4, holes can not be totally eliminated by 
the two virtual processor approaches. Moreover, the virtual cyclic approach can 
not preserve the order of compressed local array elements. 

The work similar to the virtual processor approach is presented in [14]. In 
[14], row-wise and column-wise scanning the index space are proposed. One 
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corresponds to the virtual block approach and the other to the virtual cyclic 
approach. They can also apply to affine alignment with hole compression. Based 
on scanning polyhedra, an approach for enumerating local memory access se- 
quences and generating communication sets is proposed in [1]. The method will 
cause a significant overhead. 

In this paper, a new approach is proposed to compress holes for compiling 
two-level data processor mappings. The proposed approach is also a table-based 
approach. However, the approach need not solve k linear Diophantine equa- 
tions and has no sorting operation. Furthermore, the proposed approach has less 
runtime overhead. In Section 4, we have compared our method with the method 
proposed in [8] extensively. Experimental results also verify the advantages of our 
proposed approach. Moreover, the proposed approach has high stability against 
existing methods. The execution time varies a little with the alignment stride and 
the distribution block size. In addition, from implement viewpoint, the proposed 
approach can be easily implemented as well. 

6 C o n c l u s i o n s  

Data-parallel languages support two-level data-processor mapping for user to 
specify data distribution. However, non-unit alignment stride always causes a lot 
of memory holes, even for a small alignment stride. Holes result in not only mem- 
ory wastage but also performance degradation. Therefore, this paper presents 
compilation techniques to do with the problem. The paper uses class table and 
compression table to facilitate the generation of compressed local array for each 
processor. Class table is used for recording the attributes of blocks in a class cy- 
cle and compression table is used for recording the attributes of blocks in a data 
distribution pattern on a processor. The time complexities of the constructions 
of these two tables are O(s) in worst case, where s is the alignment stride. The 
approach proposed in this paper is straightforward but efficient. Moreover, one 
significant advantage of our approach is its stability. The execution time of our 
approach varies a little when the alignment stride or the distribution block size 
are increasing. As for the implementation issue, the proposed method is easy- 
implement. Experimental results do confirm the advantages of our methods over 
the existing methods. 

On the other hand, the compilations of array statements and data redis- 
tribution are very important for parallelizing compilers on distributed-memory 
multicomputers. However, performing array statements or data redistribution in- 
curs indexing overhead and communication overhead. How to alleviate the over- 
heads resulted from performing array statements or data redistribution becomes 
critical important for distributed-memory multicomputers. Hence, the future fo- 
cuses are on how to efficiently generate communication sets for performing array 
statements and data redistribution in order to reduce the indexing and commu- 
nication overheads. 
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