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Abstract 

In this paper, we propose two one-to-all optimal 
broadcasting algorithms in  incomplete star graphs. A n  
incomplete star graph with N nodes, where (n  - l ) !  < 
N < n! ,  is a subgraph of an n-star. Using a routing 
scheme to transmit a message to  each substar com- 
posed of the incomplete star, our proposed broadcasting 
algorithm is optimal in O(n1ogn) on the single-port 
communication model. While broadcasting m mes- 
sages on the incomplete star, we also present an opti- 
mal algorithm in  O ( n  log n+m). Multi-message broad- 
casting as done first by transmitting m messages to 
each substar in  a pipelined fashion and then by using 
the algorithm in  [I21 to broadcast them. 

1 Introduction 

Broadcasting, an important communication mech- 
anism, is frequently used in many applications includ- 
ing areas of parallel algorithms, scientific parallel com- 
puting, and so forth, for message-passing multicom- 
puters. Much research paid attention to the problems 
of broadcasting and personalized communication on a 
variety of interconnection networks [3] [4] [6] [9] [Ill 
[13] [14] for achieving high-performance computing. 
Recently, an attractive interconnection network, star 
graph, to the hypercube topology has been proposed 
in [l] and [a]. More topological properties of the star 
graph can be found in [l]. Several broadcasting algo- 
rithms in star graphs have been presented by [9] [lo] 
[ll] [13] [I41 [17]. The methods of constructing span- 
ning trees in star graphs have also 'been addressed for 
solving the problems of personalizled communication 

Although the interconnection networks including 
hypercube, star graph, and WK-recursive network 

[41 [51 [31. 

Jang-Ping Sheu 

Department of Computer Science and 
Informat ion Engineering 

National Central University 
Chung-Li, Taiwan, R.O.C. 

sheuj p@csie.ncu.edu. tw 

have many nice properties, there is a serious restriction 
on the number of nodes within them. To relieve this 
restriction and eliminate the gap between the two con- 
secutive sizes of a given topology, a variety of incom- 
plete interconnection networks have been proposed 
with any number of nodes, such as the incomplete 
hypercubes [7], the incomplete stars [8], and incom- 
plete WK-recursive networks [15]. Katseff proposed 
the broadcasting algorithm for the incomplete hyper- 
cubes [7]. Su, Chen, and Duh devoted to the broad- 
casting on the topology of incomplete WK-recursive 
networks [16]. For the incomplete star, the previous 
work [8] has designed the broadcasting algorithm on 
the special class called Cn-' defined latter. Thus, the 
purpose of this paper is to address broadcasting algo- 
rithms for the general incomplete star graphs. 

In this paper, we propose two one-to-all optimal 
broadcasting algorithms for incomplete star graphs 
on the single-port communication model. We assume 
that two nodes via a link can communicate with each 
other simultaneously. An incomplete star graph with 
N nodes, where (n  - I)! < N < n! ,  is a subgraph 
of an n-star. By partitioning the incomplete star 
into several substars to deliver the message, an opti- 
mal broadcasting in O(n  log n) is addressed. Through 
this broadcasting scheme, we can generalize the pre- 
vious work focused on a special class of incomplete 
stars. While broadcasting m messages on the inconi- 
plete star, we also present an optimal algorithm in 
O(n log n + m) based on the broadcasting scheme [la]. 
Multi-message broadcasting is done first by transmit- 
ting m messages to each substar in a pipelined fashion 
and then by using the algorithm proposed in [la] to 
broadcast them. 

The rest organization of this paper is stated as fol- 
Section 2 introduces some terms, definitions, 

In Section 3, how 
lows. 
and lemmas used in this paper. 
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to  perform one-to-all broadcasting with single-message 
and multi-message on the incomplete star is described. 
The two broadcasting algorithms are optimal in time. 
Finally, conclusions are summarized in Section 4. 

2 Preliminaries 

In this section, we introduce some notations and 
terms for star graphs and incomplete star graphs. 
A permutation of n distinct symbols in the set 
{ 1 , 2, . . . , n} is represented by ( P I  , p2, . . . , Pn) where 
p i , p j  E (1, 2, . . . ,  n}  and pi # p j  for i # j and 
1 5 i , j  5 n. A star graph with dimension n is an 
undirected graph in which the nodes with addresses 
correspond to the elements of the permutations of 
(1, 2, . . ., n }  and the edges correspond to the ac- 
tions of generators [1] [a]. The generator gi is de- 
fined as the function gi(plp2 . . .pi-lpipi+l . . . pn )  = 
pip2 . . 'pi-lplpi+l . . .p, that interchanges pi  with p l  
for 2 5 i 5 n. 

An undirected star graph with dimension n is de- 
noted by S, = (P,, E,) where the set of vertices P, is 
defined as ( ~ 1 ~ 2 . .  I pi, p j  E {1 ,2 ,  . . ., n} ,  pi # p j  
for i # j ,  1 5 i , j  _< n} and the set of edges E, is 
defined as { ( V I  , w 2 )  I w1 , 212 E P,, 01 # 212, such that 
w1 = gi(v2)  for 2 <_ i 5 n} .  We use the notation S, or 
n-star to denote an n-dimensional star graph in this 
paper. 

Let (pl  , p2,  . . . , pn-i) be a permutation of n - i dis- 
tinct symbols in (1, 2, . . ., n}  for 1 5 i 5 n. The 
substar graph, denoted by S ~ ( p ~ ' , p % ' ,  . . .,PE:;'), is 
defined as a subgraph (V ,E)  of S, where V is the 
set of nodes with the same n - i symbols p1 in posi- 
tion a l ,  p z  in position a2, . . ., pn-i in position a n p i ,  
and E is the set of edges incident with any two of 
those nodes in V S ~ .  Occasionally, we may denote 
5'; (p;',  pz2  , . . . , p::;') by a sequence 2 1 2 2  . . .x, such 
that for all 1 <_ i 5 k symbol xp, = si and for all 
j {p1 ,p2 , .  . . , p k }  symbol xj = *, where a * means 
a "don't care." For instance, S2(32, 14) is denoted as 
*3*1. 

We define the incomplete star graph as follows [$I. 
An important aspect of the incomplete star is the 
methodology for constructing such a graph for an ar- 
bitrary number of nodes. Assume that N is the to- 
tal number of nodes in the incomplete star where 
( n  - l ) !  < N < n! for some integer n. In this construc- 
tion, we define the coejjicient vector as an (n - 1)-tuple 
(6,-1, 6,-2,. . . , b2, b l ) ,  where 0 5 6i 5 i, such that: 

N = b n - i ( n -  l ) ! + b n - 2 ( n - 2 ) ! + . . . + b 2 ( 2 ! ) + 6 l ( l ! )  
- - bi (i!) 

***4 

***3 

Figure 1: The incomplete star graph with 17 nodes. 

That is, there exist bn-1 (n  - 1)-stars, bn-2 (n - 2)- 
stars, . . ., 61 1-star in an N-node incomplete star 
graph. 

The labeling scheme for each node in the incomplete 
star graph has been described in [8].  Those stars with 
the same dimension IC are classified to form a class 
Ck. According to such a labeling scheme, two con- 
secutive labels (stars) are said to  be adjacent. Note 
that two adjacent substars need not belong to the 
same class. For example, a 17-node incomplete star 
graph with the coefficient vector (b3, b2, b l )  = (2 ,2 ,1)  
consists of C3 ={***4, ***3} ,  C2 ={**12, **42}, 
and C1 ={4132} as shown in Fig. 1. The two sub- 
stars **12 and **42 are adjacent in the same class 
C2. The two substars **42 and 4132 are adjacent 
in different classes. For simplicity, we use the nota- 
tion *kCk+l . . 'c, to denote the k-dimensional substar 
**. . .*ck+l. . .en.  Without loss of generality, the func- 
tion nez:t() as in [SI denotes the modulo operation for 
the integers unused in a lexicographical order. As the 
above illustration for the two adjacent substars **I2 
and **42, the value of next(1) is 4, i.e., **nezt(l)2 = 
**42. 

In class C k ,  we can number those substars to 
C,", C,", . . ., and Cb", according to the labeling scheme. 
We call Cf the i-th substar in C k .  Hence, the two 
substars Ct and Ctt1 for 1 < i < bk are adjacent. We 
claim that each pair of substars in the same class has 
the adjacent property. That is, any node in substar 
C," via constant links can connect to one of nodes in 
substar Cf, for i # j .  
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Lemma 1: 
Suppose that there exist two substars Cf and Cj” in 

the same class Ck where i # j ,  1 L i , j  b k .  Routing 
is done in a t  most two steps from any node in C! to  
one of nodes in Ct. 

Proof: Assume that C! = *kack+2...c, and 
Cj” = *kbck+:! . . .  e,. Suppose that there exists 
a node c = 21x2. .  .xkack+Z. . ‘c‘, in Cf where 
x ,  = b,  1 < - s 5 k .  The first step is to route 
the message from node c to node d = gs(c) = 

the second step routing is from node d to node 

Clearly, the node e belongs to the substar Ct.  Thus, 
this routing is done in at  most two routing steps. 

bxz . . . X , - 1 X 1 X s + 1  . . . xkUCk+z . . . C ,  

e = gk+l(d) = UX2...Xs-121Xs+1...XkbCk+2...C ,. 

in et. Then 

0 

Corollary 1: 
While sending message simultaneously on any two 

nodes on a pair of substars in Ck respectively, no con- 
flict can be occurred. 

Proof: For any first step routing in each substar in 
Ck, no conflict can be occurred. Then the second step 
routing is to  apply the generator gk+l t o  send message. 
Because all of the second routing steps are not to  use 
the same links in Ck for any k ,  1 :i IC 5 n - 1, the 
proof of this corollary is held. 

0 

In the following, we also claim 1,hat two substars 
according to the labeling scheme in the two consecu- 
tive classes also have the adjacent property. That is, 
any node in the last substar Ci, can connect to  one of 
nodes in the first substar C!, i < j ,  via O(i  - j )  links 
PI. 
Lemma 2: 

Suppose that there exist two contiguous classes Cz 
and Cj for i < j. Routing is done in at most 2( i - j )+2  
steps from any node in the last substar Ci, to one of 
nodes in the first substar C{ according to the labeling 
scheme. 

Proof: Assume that a node s is of the form 

in Ci, and a node d is of the form 

d = *jzj+ixj+2.  . .x inext(ai+l)ai+2. .  .a, 

in Ci . Routing from s to SI as the following form 

j .  S = * X 3 + 1 X j + 2 ” ’ Z i U i + l C l i + 2 ” ‘ U ,  

in c: is at most 2 ( i - j )  steps because each symbol x k ,  

j +  1 5 k 5 i ,  located at  its appropriate position needs 
to  take at  most 2 steps. Then, the node SI connects 
to  the node 

d = * jx j+ l z j+z .  . . zinezt(ai+l)ai+:! . . .a, 

in C: via at most 2 links. Therefore, the total routing 
steps is a t  most 2 ( i  - j) + 2. 

0 

Based on these terms and lemmas, we will address 
two broadcasting algorithms in the following section. 

3 Broadcasting 

In this section, we will introduce two one-to-all 
broadcasting algorithms on incomplete star graphs. 
The first one is for broadcasting a single message and 
the second is for broadcasting a stream of messages on 
the incomplete stars. 

3.1 Single- message Broadcasting 

First, the basic idea is described as follows. As- 
sume that the source node in class Ci needs to deliver 
a message to all other nodes. First, the source node 
sends the message to one node of the first substar in (7% 
according to the labeling scheme. This node delivers 
the message to one node of the last substar in Ci and 
to  one node of the last substar in the previous class 
simultaneously. To recursively deliver the source mes- 
sage in this manner, one node of each substar in all of 
classes can receive the message from the source node. 
We know that a class is composed of substars with the 
same dimension. For each class, the node with source 
message is to transmit the message to  other substars. 
Thus, one node of each substar in the incomplete star 
has received the message. By the broadcasting algo- 
rithm in [9] [ll] [14], we can independently perform 
the one-to-all broadcasting on each substar in paral- 
lel. 

In the following lemma, we shall prove how many 
steps are required to complete the processing that one 
node of the first substar in each class received the mes- 
sage from the source node. 

Lemma 3: 
It takes at most 6n - 10 steps that the source node 

sends the message to all of one node of the first substar 
in their corresponding class. 

Proof: We consider the worst case that there are 
several substars in each class and the source node is in 
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Figure 2: Routing among classes. 

\ 
\ 
I 

Figure 3: Routing on the 17-node incomplete star. 

the class C"-l, This is because that if the source node 
is located in the middle of these classes, the commu- 
nication routing will be independently along the two 
opposite directions in parallel. This is not the worst 
case. 

Thus, we assume that there exist substars in each 
class of Cn-l ,  Cn-' , . . ., and C'. The sketch proof 
can be easily examined from the Fig. 2. By Lemma 1, 
the node a sends the message to the one node b of the 
last substar, which is to take 2 steps. By Lemma 2, 
the node b sends the message to  the node of the first 
substar in class Cn-2, which is to take 2((n- 1) - (n-  
2)) + 2 = 4 steps. While proceeding the two previous 
operations to route the message to the node in C:, the 
total steps is: 

n--2 

2 + c(2 + 4) = 672 - 10. 
i = l  

0 
For example, we consider the broadcasting in a 17- 

node incomplete star as shown in Fig. 3. Assume that 
the source node is 2143 in ***3. First, the node 2143 
sends the source message to  node 3124 of the first 

substar C: in C3 via node 4123. The node 3124 sends 
the message to  4123 of the last substar C; in C3. The 
node 4123 sends the message to 2413 via 1423. The 
node 2413 sends message to 3412 of the first substar 
C: in C2. The node 3412 sends the message to 1342 
of the last substar Ci in C2 via 4312. The node 1342 
delivers the message to 4132 in Ci via 3142. Hence, 
the nodes of 3124,3412, and 4132 on the first substars 
in classes C3, C 2 ,  and C1 received the message from 
the source node, respectively. 

The above mentioned process is to  route message 
among classes. In the following, we describe the rout- 
ing among substars in the same class. We shall derive 
how many steps are required to complete the process- 
ing that one node of each substar in class Ci received 
the message from the node of the first substar in class 
ci as follows. 

Lemma 4: 
In class Ci, there are substars Cf , C;, . . ., and Cit. 

Assume that a node a1 in Cf has received the broad- 
casting message. It takes at most 2riogbil steps that 
node a1 delivers the message to one node of other sub- 
stars in C'. 

Proof: One node a1 in Cf sends the message to 
one node a2 in C;, which is to take at  most 2 steps. 
From Corollary 1, a1 and a2 in parallel send message 
to nodes a3 and a4 in Ci and Ci , respectively. Finally, 
it takes at most 2rlogbil steps to broadcast the mes- 
sage to one node in class Ci by using the recursively 
doubling scheme. 

U 

For example, there are eight substars Ci, . . ., Ci 
in class Ci. First, one node with the message in Ci 
delivers to one node in C;. Then, the two nodes in 
Cf and Ci deliver the message in parallel to the two 
nodes in CA and C;, respectively. Finally, the four 
nodes in (32, Ci, C;, and Cj send the message to the 
nodes in C;, C;, C+, and C;, respectively, in parallel. 
The whole processing mentioned above can be shown 
in Fig. 4. The basic time step t is at  most 2. 

Based on the above processing, one node within all 
of substars composed of the incomplete star received 
the message from the source node. Next, we can per- 
form broadcasting on each substar by the proposed 
algorithms in [9], [ll], or [14] to accomplish this op- 
eration. For the problem of one-to-all broadcasting, 
the lower bound of time complexity is O(1ogN) = 
O(nlogn),  where (n - l)! < N < n!.  

Theorem 1: 
The single-message broadcasting algorithm takes 
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Figure 4: Routing in class Ci. 

O(nlogn) ,  which is optimal, for am N-node incom- 
plete star. 

Proof: In Lemma 3 ,  first, it takes O(6n - 10) = 
O(6n).  In Lemma 4, this process takes at most 
O(maxl<i<,-l(2[log b i l ) )  = O(log(n- 1)). After per- 
forming-Lemmas 3 and 4,  one node of each substar 
composed of the N-node incomplete star has received 
the broadcasting message. By the proposed algo- 
rithms as in [9], [ll], or [14], the broadcasting time 
in n-star is O(n1ogn). The largest size of substar in 
the incomplete star is n- 1. Thus, the time complexity 
of our proposed algorithm is 

0 (671) $0 (log( 12- 1))+0( (n- 1) log(n- 1)) = O ( n  log n)  

which is optimal. 
0 

3.2 Multi- message Broadcasting 

Due to the need to transmit a large amount of data 
to all other nodes for some applications, we may di- 
vide the original data  into several packets (messages) 
to  do broadcasting. In this subsection, an optimal al- 
gorithm is presented for multi-message broadcasting 
on incomplete stars. The basic idea for broadcasting 
is described as follows. 

Assume that the source node in class Ci needs to 
deliver a stream of m messages to  all other nodes. 
First, we will build a path to connect each class. The 
source node can be connected with one node of the first 
substar in Ci. This node of the first substar can be 
connected to one node of the last substar in this class 
and to one node of the last substar in the previously 
consecutive class. We recursively construct a routing 
path so that the path connects the first substar and 

the last substar on each class among classes. Thus, we 
can transmit these messages in a pipelined fashion via 
this established path. By the same idea of this con- 
struction, we can build a path connecting each substar 
in class Ci. By this way, we can also transmit the mes- 
sages in a pipelined fashion via this constructed path. 
So far, one node of each substar in the incomplete 
star has received the m messages. By the broadcast- 
ing algorithm in [12], we can independently perform 
the one-to-all broadcasting with multiple messages on 
each substar in parallel. 

By Lemma 3 ,  we can construct a path with length 
of at most 6n - 10, which connects the nodes of the 
first substar in each class. In this constructed path, 
we may use the same links but different directions. 
If the source node is in C"-l or C1, transmitting a 
stream of m messages in a pipelined fashion requires 
to take O(n  + m) time steps. Otherwise, it costs two 
times of O(n+m) at most. Thus, this operation takes 

Within a class Ci, the transmission of m messages 
proceeded in a pipelined fashion costs O(bi + m) for 
1 5 i 5 n - 1. Due to the operation performed in 
parallel for each class, it takes O(maxl<i<,-l bi + m) 
= O(n + m) time steps that one node i f  each substar 
received m messages from the node of the first substar 
with these messages. 

After executing the above two procedures, we can 
apply the proposed algorithm in [la] to accomplish 
this broadcasting. In [la], the time of broadcast- 
ing nz messages to all other nodes for an n-star is 
O(n  logn + m),  which is time optimal. Thus, it is op- 
timal for broadcasting m messages to all other nodes 
for an N-node incomplete star in O(n  log n + m).  Our 
proposed broadcasting algorithm takes O ( n  log n + m) 
which will be proven below. 

O ( n  + m). 

Theorem 2: 
The multi-message broadcasting algorithm is to 

take O(n1ogn + m),  which is optimal, for an N-node 
incomplete star. 

Proof: We know that the path we constructed is 
with length of at most 6n - 10 which connects the 
nodes of the first substar in each class. Transmitting a 
stream of m messages in a pipelined fashion requires to 
take O(n+m) time. For each class, it requires to take 
O ( n  + m) time that one node of each substar received 
m messages from the node of the first substar with 
these messages. One node of each complete substar 
will deliver these m messages to all other nodes, which 
takes O(maxl<i<,-l(ilogi+m)) = O((n - -  l ) l og (n -  
1) + m).  Hence, t h e  time complexity of this algorithm 
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1s 

O(n + m) + O ( n  + m) + O ( ( n  - 1) log(n - 1) + m) 
= O(nl0gn + m) 

which is optimal. 
U 

4 Conclusions 

In this paper, two optimal broadcasting algorithms 
were proposed on incomplete stars both based on 
the single-port comniunication model. The first one 
takes optimal time, O(n logn), for one-to-all broad- 
casting in an N-node incomplete star where ( n -  l)! < 
N < n!.  The second optimal algorithm presented is 
in O(n1ogn + m) for broadcasting m messages in a 
pipelined fashion on the incomplete star. 
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