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Abstract. This paper addresses the problem of communication-free par-
titioning of iteration spaces and data spaces along hyperplanes. We con-
sider statement-level partitioning for the iteration spaces. The technique
explicitly formulates array references as transformations from statement-
iteration spaces to data spaces. Based on these transformations, the nec-
essary and sufficient conditions for the feasibility of communication-free
hyperplane partitions are presented.

1 Introduction

It has been widely accepted that local memory access is much faster than mem-
ory access involving interprocessor communication on distributed-memory mul-
ticomputers. If data and computation are not properly distributed across proces-
sors, 1t may cause heavy interprocessor communication. Excessive interprocessor
communication will offset the benefit of parallelization even if the program has a
large amount of parallelism. Consequently, parallelizing compilers must pay more
attention on the distribution of computation and data across processors to re-
duce the communication overhead or to completely eliminate the interprocessor
communication, if possible. Communication-free partitioning, therefore, becomes
an interesting and worth studying issue for distributed-memory multicomputers.
In recent years, much research has been focused on the area of partitioning it-
eration spaces and/or data spaces to reduce interprocessor communication and
achieve high-performance computing.

Ramanujam and Sadayappan [5] consider the problem of communication-free
partitioning of data spaces along hyperplanes for distributed memory multicom-
puters. They present a matrix-based formulation of the problem for determining



the existence of communication-free partitions of data arrays. Their approach
proposes only the array decompositions and does not take the iteration space
partitionings into consideration. In addition, they concentrate on fully parallel
nested loops and focus on two-dimensional data arrays.

Huang and Sadayappan [3] generalize the approach proposed in [5]. They
consider the issue of communication-free hyperplane partitioning by explicitly
modeling the iteration and data spaces and provide the conditions for the feasi-
bility of communication-free hyperplane partitioning. However, they do not deal
with imperfectly nested loops. Moreover, the approach is restricted to loop-level
partitioning, i.e., all statements within a loop body must be scheduled together
as an indivisible unit.

Chen and Sheu [1] partition iteration space first according to the data de-
pendence vectors obtained by analyzing all the reference patterns in a nested
loop, and then group all data elements accessed by the same iteration partition.
Two communication-free partitioning strategies, non-duplicate data and dupli-
cate data strategies, are proposed in this paper. Nevertheless, they require the
loop contain only uniformly generated references and the problem domain be
restricted to a single perfectly nested loop. They also treat all statements within
a loop body as an indivisible unit.

Lim and Lam [4] use affine processor mappings for statements to assign
the statement-iterations to processors and maximize the degree of parallelism
available in the program. Their approach does not treat the loop body as an
indivisible unit and can assign different statement-iterations to different proces-
sors. However, they consider only the statement-iteration space partitioning and
do not address the issue of data space partitioning. Furthermore, their uniform
affine processor mappings can cause a large number of idle processors if the affine
mappings are non-unimodular transformations.

In this paper, communication-free partitioning of statement-iteration spaces
and data spaces along hyperplanes are considered. We explicitly formulate array
references as transformations from statement-iteration spaces to data spaces.
Based on these transformations, we then present the necessary and sufficient
conditions for the feasibility of communication-free hyperplane partitions. Cur-
rently, most of the existing partitioning schemes take an iteration instance as
a basic schedulable unit that can be allocated to a processor. But, when the
loop body contains multiple statements, it 1s very difficult to make the loop be
communication-freely executed by allocating iteration instances among proces-
sors. That is, the chance of communication-free execution found by using these
methods is limited. For having more flexible and possible in finding communica-
tion-free hyperplane partitions, we treat statements within a loop body as sep-
arate schedulable units. Our method does not consider only one of the iteration
space and data space but both of them. As in [4], our method can be extended
to handle more general loop models and can be applied to programs with im-
perfectly nested loops and affine array references [6].

The rest of the paper is organized as follows. In Section 2, we introduce
notation and terminology used throughout the paper. Section 3 describes the



characteristics of statement-level communication-free hyperplane partitioning.
The necessary and sufficient conditions for the feasibility of communication-free
hyperplane partitioning are presented in Section 4. Finally, the conclusions are
given in Section 5.

2 Preliminaries

This section explains the statement-iteration space and the data space. It also
defines the statement-iteration hyperplane and the data hyperplane.

2.1 Statement-Iteration Space and Data Space

Let Q, Z and ZT denote the set of rational numbers, the set of integers and the
set of positive integer numbers, respectively. The symbol Z¢ represents the set
of d-tuple of integers. Traditionally, the iteration space is composed of discrete
points where each point represents the execution of all statements in one iteration
of a loop [8]. Instead of viewing each iteration indivisible, an iteration can be
divided into the statements that are enclosed in the iteration, 1.e., each statement
is a schedulable unit and has its own iteration space. We use another term,
statement-iteration space, to denote the iteration space of a statement in a nested
loop.

The following example illustrates the notion of iteration spaces and statement-
iteration spaces.

Example 1: Consider the following nested loop L;.

doiy =1, N
doiy =1, N
S A[il,—il—iz—l]:A[il—iz—l, —21+22—|—1]—|—
Bliy + i3, iy + 2iy — 1] (L)
S9. B[il—i2+1,i1—2i2+1]2A[i2—l,il—iz]*
Bliy +is — 1,4y +is — 2]
enddo enddo

Fig. 1 illustrates the iteration space and statement-iteration spaces of loop L
for N = 5. In Fig. 1(a), a circle means an iteration and includes two rectangles
with black and gray colors. The black rectangle indicates statement s; and the
gray one indicates statement s2. In Fig. 1(b) and Fig. 1(c), each statement is an
individual unit and the collection of statements forms two statement-iteration
spaces. O

The representations of statement-iteration spaces, data spaces and the rela-
tions among them are described as follows. Let § denote the set of statements
in the targeted problem domain and D be the set of array variables that are
referenced by §. Consider statement s € §, which is enclosed in a d-nested loop.
The statement-iteration space of s, denoted by SIS(s), is a subspace of Z? and
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Fig. 1. Loop (L1)’s iteration space and its corresponding statement-iteration spaces,
assuming N = 5. (a) IS(L1), iteration space of loop (Li). (b) SIS(s1), state-
ment-iteration space of statement s;. (¢) SIS(s2), statement-iteration space of state-
ment Ss.

is defined as SIS(s) = {[[1,I2,..., Id]'|LB; < I; < UB;, for 1 < i < d}, where
I; is the loop index variable, LB; and U B; are the lower and upper bounds of
the loop index variable I;, respectively. The superscript ¢ is a transpose oper-
ator. The column vector Iy = [I1,Is,..., 4]t is called a statement-iteration in
statement-iteration space ST1S(s), LB; < I; < UB;, for i = 1,2,...,d. On the
other hand, from the geometric point of view, an array variable also forms a
space and each array element is a point in the space. For exactly describing an
array variable, we use data space to represent an n-dimensional array v, which
is denoted by DS(v), where v € D. An array element v[Dy, Ds,..., Dy,] has a
corresponding data index in the data space DS(v). We denote this data index
by a column vector D, = [Dy, D3, ..., Dy]’.

The relations between statement-iteration spaces and data spaces can be built
via array reference functions. An array reference function is a transformation
from statement-iteration space into data space. As most of the existing methods,
we require the array references be affine functions of outer loop indices or loop
invariant variables. Suppose statement s is enclosed in a d-nested loop and has
an array reference pattern v[alylfl +ai oo+ -4ay gly+aro, az i +azals+
ctagalitaso, ..., an1litan s ls+ -+ an ¢lg+an o], where a; ; are integer
constants, for 1 < ¢ <n and 0 < j < d, then the array reference function can be



written as:

Refs,u(ls) — FS,U 'Is + fs,U’

where
@11 - Q1d @10

, ,
8,V . . . 8,V __
F*Y = o], and Y =
Ap 1 - Qpd QApn 0
We term F'*V the array reference coefficient matriz and f*v the array reference

constant vector. If data index D, € DS(v) is referenced in statement-iteration

I, € SIS(s), then Ref*"(I;) = D,.

2.2 Statement-Iteration Hyperplane and Data Hyperplane

A statement-iteration hyperplane on statement-iteration space SIS(s), denoted
by ¥(s), is a hyperspace [2] of STS(s) and is defined as W, (s) = {[I1, Is, . . ., 14]*]
0111430205+ -+8414 = e}, where d1, ..., and §; € Q are the coefficients of the
statement-iteration hyperplane and ¢, € Q is the constant term of the hyper-
plane. The formula can be abbreviated as Wy, (s) = {I;|A - I, = ¢y}, where A =
[01,...,d4] is the statement-iteration hyperplane coefficient vector. Similarly, a
data hyperplane on data space DS(v), denoted by &(v), is a hyperspace of DS(v)
and is defined as @4(v) = {[D1, D2, ..., Dp)"|01 D1 + 62Ds + -+ 6, D, = ¢4},
where 6,,..., and 6, € Q are the coefficients of the data hyperplane and ¢, €
Q is the constant term of the hyperplane. In the same way, the formula also can
be abbreviated as @,4(v) = {Dy|O - D, = ¢4}, where @ = [0, ..., 6,] is the data
hyperplane coefficient vector. The hyperplanes that include at least one integer
point are considered in this paper.

Statement-iteration hyperplanes and data hyperplanes are used for character-
izing communication-free partitioning. We discuss some of these characteristics
in the next section.

3 Characteristics of Communication-Free Hyperplane
Partitioning

A program execution is communication-free if all operations on each of all pro-
cessors access only data elements allocated to that processor. A trivial partition
strategy allocates all statement-iterations and data elements to a single proces-
sor. The program execution of this trivial partitioning is communication-free.
However, we are not interested in this single processor program execution be-
cause it does not exploit the potential of parallelization and it conflicts with
the goal of parallel processing. Hence, in this paper, we consider only nontrivial
partitioning, in specific, hyperplane partitioning.

The formal definition of communication-free hyperplane partition is defined
as below. Let partition group, G,

G = Uses¥y (5) U UUED@g(v)



be the set of hyperplanes that should be assigned to one processor. The definition
of communication-free hyperplane partition can be given as the following.

Definition 1 The hyperplane partitions of statement-iteration spaces and data
spaces are sald to be communication-free if and only if for any partition group

G = Usesn(s) UUuen®y(v),
VI, € Uy(s), Ref*V(I;) € By4(v), Vs € S,v € D.
O

As mentioned above, the statement-iterations which access the same array
element should be allocated to the same statement-iteration hyperplane. There-
fore, it 1s important to decide statement-iterations that access the same array
element. The following lemma states the necessary and sufficient condition that
two statement-iterations will access the same array element.

Lemma 1 For some statement s € 8 and its referenced array v € D, I; and
I! are two statement-iterations on SI1S(s) and Ref®V is the array reference

function from SIS(s) into DS(v) as defined above. Then
Ref*V(I;) = Ref*"(I)) <= (I. — I;) € Ker(F*")
where Ker(S) denotes the null space of S [2]. O

The proof of this lemma is referred to [6]. We explain the significance of
Lemma 1 and show how this lemma can help to find communication-free hy-
perplane partitions. Communication-free hyperplane partitioning requires those
statement-iterations that access the same array element be allocated to the
same statement-iteration hyperplane. According to Lemma 1, two statement-
iterations access the same array element if and only if the difference of these two
statement-iterations belongs to the kernel of F*¥. Hence, Ker(F*") should be
a subspace of the statement-iteration hyperplane. Since there may exist many
different array references, partitioning a statement-iteration space must consider
all array references appeared in the statement. Thus, the space spanned from
Ker(F*?) for all array references appearing in the same statement should be a
subspace of the statement-iteration hyperplane. The dimension of a statement-
iteration hyperplane is one less than the dimension of the statement-iteration
space. If there exists a statement s such that the dimension of the spanning
space of Ker(F*") is equal to the dimension of S15(s), then the spanning space
cannot be a subspace of a statement-iteration hyperplane. Therefore, there ex-
ists no nontrivial communication-free hyperplane partitioning. From the above
observation, we obtain the following theorem.

Theorem 1 If3s € S such that
dim(span(Uyep Ker(F*"))) = dim(SIS(s)),

then there exists no nontrivial communication-free hyperplane partitioning for S
and D. O



Example 2: Consider matrix multiplication.

doi=1,N
doj=1N
dok=1N
s: Cli,j] = C[i, 3] + A[i, k] = B[k, j]

enddo enddo enddo

In the above program, there are three array variables, A, B, and C, with three
distinct array references involved in statement s. The three array reference coeffi-
cient matrices, F*4 F*P and F*¢ are [(1) 8 (1)] , [8 (1) é], and [(1) (1) 8] , respec-
tively. Thus, Ker(F*4) = {r[0,1,0]*|r; € Z}, Ker(F*B) = {r3[1,0,0]'|r, €
Z},and Ker(F*¢) = {r3[0,0, 1]}|r3 € Z}. Ker(F*4), Ker(F*B), and Ker(F*°)
span Z3 which has the same dimensionality as the statement-iteration space. By
Theorem 1, matrix multiplication has no nontrivial communication-free hyper-
plane partitioning. a

Theorem 1 can be useful for determining nested loops that have no nontriv-
1al communication-free hyperplane partitioning. Furthermore, when a nontrivial
communication-free hyperplane partitioning exists, Theorem 1 can also be useful
for finding the hyperplane coefficient vectors. We state this result in the following
corollary.

Corollary 1 For any communication-free statement-iteration hyperplane Wy (s)
={L|A - I; = cp}, the following two conditions must hold:

(1) span(UyepKer(F*V)) C Uy (s),
(2) A € (span(Uyep Ker(F*?)))L,

where St denotes the orthogonal complement space of S. a

Corollary 1 gives the range of communication-free statement-iteration hyper-
plane coefficient vectors. It can be used for the finding of communication-free
statement-iteration hyperplane coefficient vectors. On the other hand, the range
of communication-free data hyperplane coefficient vectors is also given as follows.

As mentioned before, the relations between statement-iteration spaces and
data spaces can be established via array references. Moreover, the statement-
iteration hyperplane coefficient vectors and data hyperplane coefficient vectors
are related. The following lemma expresses the relation between these two hy-
perplane coefficient vectors. A similar result is given in [3].

Lemma 2 For any statement s € S and its referenced array v € D, Ref>" is
the array reference function from SIS(s) into DS(v). Wu(s) = {I;|A- I, = cp}
and $4(v) = {D,|@ - Dy = ¢4} are communication-free hyperplane partitions if
and only if A= a@® - F*", for some a, a # 0. a

By Lemma 2, the statement-iteration hyperplane coefficient vector A can
be decided if the data hyperplane coefficient vector @ has been determined.



If F*? is invertible, the statement-iteration hyperplane coefficient vectors can
be decided first, then the data hyperplane coefficient vectors can be derived
by © = o/ A(F*¥)~!, for some o',a’ # 0. The range of communication-free
data hyperplane coefficient vectors can be derived from this lemma. Corollary 1
shows the range of statement-iteration hyperplane coefficient vectors. The next
corollary provides the ranges of data hyperplane coefficient vectors.

Corollary 2 For any communication-free data hyperplane @4(v) = {D,|O@ -
D, = ¢4}, the following condition must hold:

O € (UsesKer((F*)")),
where S’ denotes the complement set of S. O

The next section describes the communication-free hyperplane partitioning
technique. The necessary and sufficient conditions of communication-free hyper-
plane partitioning for a single perfectly nested loop will be presented.

4 Communication-Free Hyperplane Partitioning for a
Perfectly Nested Loop

Each data array has a corresponding data space. However, a nested loop with
multiple statements may have multiple statement-iteration spaces. In this sec-
tion, we will consider additional conditions of multiple statement-iteration spaces
for communication-free hyperplane partitioning. These conditions are also used
in determining statement-iteration hyperplanes and data hyperplanes.

Suppose 8 = {s1,82,...,8m} and D = {v,vs,...,v,}, where m,n € Z7T.
The number of occurrences of array variable v; in statement s; is r; ;, where r; ; €
ZTtUu{0},i=1,2,...,mand j =1,2,...,n. If s; does not reference vj, r; ; is
set to 0. The previous representation of array reference function can be modified
slightly to describe the array reference of statement s; to variable v; in the k-th
occurrence as Ref, """ (I,,), where 1 < k < r; ;. The related representations will
be changed accordingly, such as Ref,""’(I,,) = F,""7 - I, + [, = Dy,.

In this section, a partition group that contains a statement-iteration hyper-
plane for each statement-iteration space and a data hyperplane for each data
space is considered. Suppose that the data hyperplane in data space DS(v;) is
®4(v;) = {Dy,|O; - Dy, = ¢4, }, for all j,1 < j < n. Since D,, = Ref,""" (Iy,),
fori=1,2,....om,j=1,2,...,nand k =1,2,...,r;; and @; - Dy, = cg4;, we
have

O; - Dy; = cy,

7

SO (F I+ £77) = ¢y,
(0 - F,") I, =cg, — (05 [ ).



Let

A =0, FY, (1)
ch, = cg; — (05 - [, (2)

As a result, those statement-iterations that access the data lay on the data
hyperplane @,(v;) = {D,;|@; - Dy; = ¢4, } will be located on the statement-
iteration hyperplane Wy (I,) = {I;,[(©; - F,""") - I, = ¢g; — (@5 - fu"7)}.

To simplify the presentation, we assume all variables v; appear in every
statement s;. To satisfy that each statement-iteration space contains a unique
statement-iteration hyperplane, the following two conditions should be met.

() Vi, @ F =0, -F" (G#iVEER),
forj,j'=1,2,...,n; k=1,2,...,r;;and k' = 1,2,... r; ju.

() Vi e - (05 F) =gy — (O ST), (G £ T VEEK),
forj,j'=1,2,...,n; k=1,2,...,r;and k' = 1,2,...,7r; ju.

3 3

Condition (i) can infer to the following two equivalent equations.
0 Fy" =0 F{", (3)

fore=1,2,....m;j=12,...,nand k=2,3,...,7; ;.

O; .Ff’u”j =0, .Fls,,vl’ (4)

for i = 1,2,...,m; j = 2,3,...,n. Condition (ii) deduces the following two
equations, and vice versa.

O [ =0 [, (5)

fore=1,2,...m;j=12,...,nand k=2,3,...,7; ;.

i) $i,U5
ngzcgl_el'ff U1+9j' 1 (6)

fore=1,2,...,m;5=2,3,...,n.

Eq. (6) can be used to evaluate the data hyperplane constant terms while
some constant term is fixed, say ¢4, . Furthermore, we obtain the following results.
For some j, ¢4, should be the same for all 7, 1 < ¢ < m. Therefore,

L= @1 . 1517'U1 + @j . fflyvj =cg, — @1 .flsl,'Ul + @j . 131ij’ (7)

Cyg

fori=12,3,...,nand j = 2,3,...,n. Eq. (7) can be further inferred to obtain
the following equation:

O (" = ) = 01 (" = ) (5)

fort=2,3,...,mand 5 =23,...,n.
After describing the conditions for satisfying the communication-free hyper-
plane partitioning constraints, we can conclude the following theorem.



Theorem 2 Let & = {s1,s2,...,8m} and D = {vy,vs,...,v,} be the sets
of statements and array variables, respectively. Reflj”vj 1s the array reference
function for statement s; accessing array variables v; at the k-th occurrence
in s, where i = 1,2,....m; j = 1,2,...,nand k = 1,2,...,7; ;. U(I;,) =
{Is,]4; - Is, = cp,} is the statement-iteration hyperplane in SIS(s;), for i =
L,2,...,m. @4(Dy;) = {Dy,;|0; - Dy, = cy,} is the data hyperplane in DS(v;),
forj = 1, 2,...,n. Lﬁh( s;) and §4(D u]-) are communication-free hyperplane par-
titions if and only iof the followmg conditions hold.

(C1) VYi,0; ~F:”Uj =0; Fs”vj, forj=1,2,...,n; k=2,3,... ;.
(C2) Vi,0; - F,"" @1 SOUL for j=2,3,...,n.

(C3) Vi,0; szl’uj 51 )j fs“vj, fog _];}— 1,%,.U..,n; k=2,3...r;.
(C4) @] ( | P _f1 ) ]) @1 ( V1 _flly 1)’
fori=2,3,. 3_23,...,71

(C5) Vj,0} € (U2, Ur” Ker((F,"")%)".
(C6) Vi, A O, F,""

for some ],k,j E{l 2, .0k ke{l,2,...,m;}.
(CT) Vi, Al € (span(U] 1 Ur’ g Aer(sti’Uj)))L.
(C8) Vj,j=2,3,... Cg; =Cg —O1 - [V 405 f100

for some z',z'E{l 2,...,m}.
(C9) Viicn, = cgy — (8- i),

for some j,k, j € {1 2, .0k ke{l,2,...,m;}

O

Theorem 2 can be used to determine whether a nested loop is communication-
free. It can also be used as a procedure of finding a communication-free hyper-
plane partitioning systematically. Conditions (C1) to (C4) in Theorem 2 are
used for finding the data hyperplane coefficient vectors. Condition (C5) can
check whether the data hyperplane coefficient vectors found in preceding steps
are within the legal range. Following the determination of the data hyperplane
coefficient vectors, the statement-iteration hyperplane coefficient vectors can be
obtained by using Condition (C6). Similarly, Condition (CT) can check whether
the statement-iteration hyperplane coefficient vectors are within the legal range.
The data hyperplane constant terms and statement-iteration hyperplane con-
stant terms can be obtained by using Conditions (C8) and (C9), respectively.
If one of the conditions is violated, the whole procedure will stop and verify that
the nested loop has no communication-free hyperplane partitioning.

On the other hand, combining Equations (3) and (5) together, a sufficient
condition of communication-free hyperplane partitioning can be derived as fol-
lows.

@j(F]:S“'Uj _F;ly’[/j FS,,'UJ' —F;“Uj’...’FS“’U] FSI’U]’

Ti,j

szy’Uj 31:“] 317"/] _ sz,Uj i,V sz,UJ =0
2 3 ) 141 i — Y

Ti,j

for e = 1,2,...,m and 7 = 1,2,...,n. To satisfy the constraint that @ is a
non-zero row vector, the following condition should be true.

S v 8¢,V5 8¢,V
Rank( z;]_FzzyJ’...7F Vs F.sl,vj7

Ti,j



P = BT Y = ) < dim(DS(v;)), (9)

fori=1,2,...,mand j = 1,2,...,n. Note that this condition is similar to the
result in [3] for loop-level hyperplane partitioning. We conclude the following
corollary.

Corollary 3 Suppose S = {s1,82,...,8m} and D = {vy,vy,...,v,} are the
sets of statements and array variables, respectively. st“vj and f;”vj are the
array reference coefficient matriz and constant vector, respectively, where i €
{1,2,...,m}, j € {1,2,...,n} and k € {1,2,...,7;;}. If communication-free
hyperplane partitioning exists then Eq. (9) must hold. a

Theorem 1 and Corollary 3 can be used to check the absence of communica-
tion-free hyperplane partitioning for a nested loop, because these conditions are
sufficient but not necessary. Theorem 1 is the statement-iteration space dimen-
sion test and Corollary 3 is the data space dimension test. To determine the
existence of a communication-free hyperplane partitioning, we need to check the
conditions in Theorem 2. We show the following example to explain the find-
ing of communication-free hyperplanes of statement-iteration spaces and data
spaces.

Example 3: Reconsider loop L1. The set of statements S is {s1, sz} and the
set of array variables D is {v1,v2}, where v1 = A and vy = B. The occurrences
of array variables are r1 1 =2, 712 =1, r31 =1, and ry 2 = 2.

Since dim(span(Ui_, Up2?, Ker(F,""))) = 1 is less than dim(SIS(s;)) =
2, for ¢ = 1,2. By Theorem 1, it may exist a communication-free hyperplane
partitioning for loop Li. Again, by Corollary 3, the loop is tested for the possible
existence of a nontrivial communication-free hyperplane partitioning. For array
variable vy, the following inequality is satisfied:

Rank(FyV" — Fyvt fioft — fo07) = 1 < dim(DS(v1)) = 2.

Similarly, with respect to the array variable vs, the following inequality is ob-
tained:

Rank(F:»V* — iV 5292 _ £2292) — | & dim(DS(vs)) = 2.

Although Eq. (9) holds for all array variables, it still can not ensure that the
loop has a nontrivial communication-free hyperplane partitioning.

Using Theorem 2, we further check the existence of a nontrivial communica-
tion-free hyperplane partitioning. In the mean time, the statement-iteration and
data hyperplanes will be derived if they exist. Recall that the dimensions of data
spaces DS(v1) and DS(v2) are two, @1 and @3 can be assumed to be [f11, f12]
and [f21, 095], respectively. The conditions listed in Theorem 2 will be checked
to determine the hyperplane coefficient vectors and constants.

By Condition (C1) in Theorem 2, the following equations are obtained.

O1 - FoV" =0 - F{ (4
Oy F3"2 =04 - F>"2 (i

=1,j=1,and k =2,)
2,j=2, and k= 2.)



By the Condition (C2) in Theorem 2,

Oy - Fiv'2 =@ - F{""' (i=1and j=2)
Oy - Fi*"? =@, - F{*"" (i=2and j = 2)

By Condition (C3) in Theorem 2,

Or-f;" =01 i (i=1,5=1
@y f372 =0y fi272 (i=2,j=2, and k= 2)

By Condition (C4) in Theorem 2,
@2 . ( S2,V2 fi91,’l/2) — @1 ( fz,vl _ fis’l,vl) (l — 2 and _] — 2’)

Substituting [611, 612] and [fs1, 822] for @1 and @4, respectively, the above
equations form a homogeneous linear system. Solving this homogeneous linear
system, we obtain the general solution (611, 612, 021, 622) = (27, 7, 37, —2r), where
r € Q — {0}. Therefore, ©®1 = [2r, 7] and O3 = [3r, —2r].

Next, we show ©; and O3 satisfy Condition (C5):

(U Upsy Ker((F2)9) = {1, 1]fler € Q — {0},
= (U2, U Ker((F")) = {lr1, raltlry # ra,m1,m0 € Q — {03},
= 01 = [2r,r]" € (U, UL, Ker((F"")Y)).

(UFZy U2y Ker((F")1) = {eall, —1]'ez € Q — {0}},
= (UL, U Ker((F0")N) = {[r1,r2]'lr1 # —ra, 71,72 € Q = {0}},
= 0L = [3r, —2r]" € (UL, U2 Ker((F"")h)".

Now the statement-iteration hyperplane coefficient vectors can be determined
using Condition (C6) in Theorem 2.

Ay =01 F{"" =01 Fyt" =0y F{V2 = (r, —7)
A2 — @2 3 Fi327U2 — @1 3 Fi527U1 — @2 ) F;27U2 — (7“, 7“)

Note that the statement-iteration hyperplane coefficient vectors may be obtained
using many different equations, e.g., A; can be obtained using @, - F; """, ©; -
F;©" or @4 - F;""?. Conditions (C1) and (C2) in Theorem 2 ensure that all
the equations lead to the same result.

For the statement-iteration hyperplane coefficient vectors, Condition (CT7)
is satisfied:

span(Uj_; U2y Ker(F"")) = {1, 1]']es € Q = {0}},
= (span(Uj_, U2y Ker(F77)) 0 = {fr, —m]'[r € Q- {0}}
= Al =[r, —r]' € (spa'n(U?z1 U;lz’jl Ker(stl’Uj)))L.

span(Uf_y U Ker(F ")) = {ca[l, =1]*|ca € Q = {0}},
= (span(Uj=y U2y Ker(F"7))t = {lrz, o]’ |r2 € Q = {0},
= AL =[rr]'€ (.s:pcm(U?:1 U:“:’jl I(er(F:2’Uj)))J‘.



Next, we determine the data hyperplane constant terms. Due to the hyper-
planes are related to each other, once a hyperplane constant term is determined,
the other constant terms will be determined accordingly. Assuming cg, is known,
Cgar Chy, and cp, can be determined using Conditions (C8) and (C9) as below:

— $1,V1 $1,V2 __ $2,V1 $2,V2 __ <
Cgo =Cgy —O1 - f17 T+ O f1V =g, — O [77TT O f177F =g, + 31,

— $1,V1 __ $1,V1 __ $1,V2 __
chl_cgl—@1~fls’v =cg —O1- %’U _692—@2~f15’v =cg, + 1,

_ 2,V2 __ 2,V1 __ 2,V2 __ ¢
Chy = Cgy —Oa - [1772 =g, —O1- [y =g, — O f37777 = ¢q, + 2r.

Similarly, statement-iteration and data hyperplane constant terms can be eval-
uated using many different equations. However, Conditions (C3) and (C4) in
Theorem 2 ensure that they all lead to the same values.

It is clear that there exists at least one set of nonzero statement-iteration and
data hyperplane coefficient vectors such that the conditions listed in Theorem 2
are all satisfied. By Theorem 2, this fact implies that the nested loop has a
nontrivial communication-free hyperplane partitioning. The partition group is
defined as the set of statement-iteration and data hyperplanes that are allocated
to a processor. The partition group for this example follows. G = ¥, (I5,) U
J/hz (152) U @91 (D'Ul) U @92 (DU2)’ where

l‘Dhl (151) = {131 | [ri —7“] ' 151 =Cq + 7"}
l‘phz (152) = {132 | [7“, T’] ' ISz = C91 + 27’}
gl(D'U):{D'Ul |[2r’r]'DU1:Cgl}

@92 (Dl/z) = {DU2 | [31‘, —27‘] : sz =Cq + 37"}

S

1

Given loop bounds 1 < #; < 5 and 1 < i3 <5, for r = 1, the constant term
cg, corresponding to statement-iteration hyperplane coefficient vector A; and
Ay are ranged from —5 to 3 and from 0 to 8, respectively. The intersection part
of these two ranges means that the two statement-iteration hyperplanes have to
be coupled together onto a processor. For the rest, just one statement-iteration
hyperplane, either A; or A, is allocated to a processor. The constant terms ¢, ,
¢h,, and cp, are evaluated to the following values:

—2<¢y, <11, —4<ecp, <4, and 2<cp, <10.
The corresponding parallelized program is as follows.

doall c = —5, 8
do #; = max(c— 3,1), min(c+ 1, 5)
ig = —il +c+ 2
Bliy —ig + 1,41 — 25 + 1] = Afig — 1,41 —is] * Bliy + i3 — 1,11 + iy — 2]
enddo
do i; = max(c+ 2, 1), min(c+ 6, 5)
i2 = il —c—1
Aliy, —iy — iy — 1] = A[iy — 9 — 1, =iy + 9 + 1]+ Bliy + 12,41 + 25 — 1]
enddo
enddoall
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Fig. 2. Communication-free statement-iteration hyperplanes and data hyperplanes for
a partition group of loop (L1), where r = 1 and ¢4, = 2. (a) Statement-iteration hyper-
plane of SIS(s1). (b) Statement-iteration hyperplane of SIS(sz). (¢) Data hyperplane
of DS(A). (d) Data hyperplane of DS(B).

Fig. 2 illustrates the communication-free hyperplane partitionings for a par-
ticular partition group, r = 1 and ¢4, = 2. a

The communication-free hyperplane partitioning technique for a perfectly
nested loop has been discussed in this section. Our method treats statements
within a loop body as separate schedulable units and considers both iteration
and data spaces at the same time. Partitioning groups are determined using affine
array reference functions directly, instead of using data dependence vectors.



5 Conclusions

This paper presents the techniques for finding statement-level communication-
free hyperplane partitioning for a perfectly nested loop. The technique can also
be generalized to deal with sequences of imperfectly nested loops [6].

In reality, most loops are not communication-free. If a program is not com-
munication-free, it is important to identify a subset of iteration and data spaces
which are communication-free and then generate communication code for other
statement-iterations. The technique presented in this paper can be used for
searching subsets of communication-free iteration and data spaces. The future
work is to develop heuristics for this searching process and generate efficient
code when communication is inevitable.
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