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Abstract
In this paper, we consider an injured star graph with some

faulty links and nodes. We show that even with fe � n � 3
faulty links a Hamiltonian cycle still can be found in an n-
star, and that with fv � n�3 faulty nodes a ring containing
at most 4fv nodes less than that in a Hamiltonian cycle can
be found (i.e., containing at leastn!�4fv nodes). In general,
in an n-star with fe faulty links and fv faulty nodes, where
fe + fv � n� 3, our embedding is able to establish a ring
containing at least n! � 4fv nodes.

1 Introduction

One new interconnection network that has attracted a lot
of attention recently is the star graph [1]. Large references
can be found in studying the star graph’s topological proper-
ties [2, 8], embedding capability [4, 6], and communication
capability [3, 5, 7, 9].

The graph embedding problem has been heavily studied
for various host graphs. With a star graph as the host graph,
any ring of an even length has been shown to be embed-
dable [4]. Results regarding embedding multi-dimensional
meshes into a star graph can be found in [4, 8]. The embed-
ding of a Hamiltonian cycle and hypercubes is discussed in
[6].

In this paper, we consider the problem of embedding
a ring into an injured n-star graph which has some faulty
links (or edges) and nodes (or vertices). Rings are common
guest graphs with many applications. Fault tolerance is
an important issue in a multicomputer network, especially
when the network becomes large. If in a star graph some
components fail, it is desirable that the injured components
be isolated from the rest of the network so that the embedding
is still possible. The embeddings achieved in this paper are
summarized as follows: (1) with fe � n � 3 faulty links,
the embedding of a Hamiltonian cycle, (2) with fv � n� 3
faulty nodes, the embedding of a ring containing at most 4fv
nodes less than that of a Hamiltonian cycle, and (3) with fe
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Figure 1. A 4-dimensional star graph S4.

faulty links and fv faulty nodes, where fe+fv � n�3, the
embedding of a ring containing at most 4fv nodes less than
that of a Hamiltonian cycle.

Preliminaries are given in Section 2. In Section 3 we
develop a new scheme for finding a Hamiltonian cycle in
a star graph. The embedding is then extended with fault-
tolerant capability when only links and only nodes may
fail in Section 4 and Section 5, respectively. The result to
tolerate both link and node failure is presented in Section 6.

2 Preliminaries
Ann-dimensional star graph, also referred to as n-star or

Sn, is an undirected graph consisting of n! nodes (vertices)
and (n � 1)n!=2 links (edges). Each node is uniquely as-
signed a label x1x2 � � �xn which is the concatenation of any
permutation of n distinct symbols fx1; x2; : : : ; xng. Two
nodes are joined by an edge along dimension d iff the label
of one node can be obtained from the other by swapping
the first symbol and the d-th symbol, 2 � d � n. Without
loss of generality, throughout we let these n symbols be
f1; 2; : : :; ng. A 4-dimensional star graph S4 is shown in
Fig. 1.

An Sn is a recursive structure that contains many smaller
stars, or substars. Formally, a k-dimensional substar, or
k-substar, is denoted as a string X = x1x2 � � �xn, where
x1 = � and xi 2 f�; 1; 2; : : :; ng, 2 � i � n. The symbol
� means a “don’t care”. In string X there are exactly k �’s.
The substar represented byX is a subgraph ofSn containing
all vertices obtained from X by replacing each � with digits
f1; 2; : : :; ng. These vertices are connected by the original

IPPS '96
ISSN 1063-7133/96 $5.00 C 1996 IEEE.



links in Sn. For instance, ��53� is a 3-substar containing
six nodes 12534, 14532, 21534, 24531, 41532, and 42531.

Definition 1 Let X = x1x2 � � �xj � � �xn be a k-substar
with xj = �. The j-cut on X, j � 2, is to partition X

along the j-th dimension into k number of (k� 1)-substars,
each obtained from X by replacing xj with a legal non-�
symbol. Let D = (d1; d2; : : : ; dm);m � k; be a sequence
of dimensions such that the xdi = �; i = 1::m. Then the
D-cut on X is to first apply a d1-cut on X, whose result is
then applied a d2-cut, whose result is then applied a d3-cut,
etc. The final result is k(k � 1) � � � (k �m + 1) number of
(k �m)-substars.

For instance, given a 4-substar X = ���5�3 in an S6, a
3-cut on X is to partition X into four 3-substars ��15�3,
��25�3, ��45�3, and ��65�3. If D = (3; 5), a D-cut on
X will apply a 3-cut and then a 5-cut on X. This gener-
ates the following 2-substars: f��1523, ��1543, ��1563g,
f��2513, ��2543, ��2563g, f��4513, ��4523, ��4563g,
and f��6513, ��6523, ��6543g.

Definition 2 Consider two k-substars X and Y in Sn. We
define X and Y to be adjacent if their string representations
differ in exactly one non-� position. IfX andY are adjacent,
the difference from X to Y , denoted as dif(X;Y ), is the
symbol of X at the position where X and Y differ.

For instance, substar X = ��5�13� is adjacent to Y =

��5�23�, but not adjacent to Y 0
= ��4�23�. The difference

from X to Y , or dif(X;Y ), is 1, whereas the expression
dif(Y;X) is 2.

The following discussion combines the notion of adja-
cency and cut. Consider two adjacent k-substars X =

x1 � � �xj � � �xn and Y = y1 � � �yj � � �yn such that xj =

yj = �. If we apply a j-cut on X and Y , we will obtain k
substars (of dimension k�1) from each ofX and Y . By the
above definition, one easily sees that all k substars in X are
adjacent to each other, and so are those in Y . Furthermore,
among these substars, k � 1 substars in X are adjacent to
k�1 substars inY in a one-to-one manner. Only the substar
x1 � � �x

0

j � � �xn inX and the substar y1 � � �y
0

j � � �yn in Y are
not adjacent, where x0j = dif(Y;X) and y0j = dif(X;Y ).
The idea is illustrated in Fig. 2, where the adjacency relation
is represented by lines connecting substars. In particular,
Fig. 2(a) shows three substarsX;Y; Z, withX adjacent toY
and Y adjacent toZ. Within each of X;Y; Z, the 3-substars
are fully connected, while between X and Y (and similarly
Y and Z) there are three connections. Also note that the 3-
substar ���256 in X, which is not connected to Y , satisfies
x0j = 2 = dif(Y;X) (and similarly 3-substar ���526 in Y ,
which is not connected toX, satisfies y0j = 5 = dif(X;Y )).

Definition 3 A sequence of k-substars
R = [X0; X1; : : : ; Xr�1] is called a k-ring if substar Xi
Figure 2. The substar adjacency relation.

is adjacent to its neighbors X(i�1)modr and X(i+1)modr for
any i = 0::r� 1.

For example, R = [���3�2, ���1�2, ���4�2, ���4�5,
���3�5] is a 4-ring in an S6.

Lemma 1 Given a k-ringR = [X0; X1; : : : ; Xr�1], k � 4,
it is possible to construct a (k�1)-ringR0 of length kr from
R.

Proof. We apply any legal j-cut on each Xi; i = 0::r � 1;
into (k�1)-substars (by “legal”, the j-th symbol ofXi must
be �). As mentioned earlier, in Xi all (k � 1)-substars are
fully connected (in terms of adjacency) and there are k � 1
connections between Xi and its neighbors Xi�1 and Xi+1.
It is trivial to derive anR0which connects all (k�1)-substars
by visitingXi’s along the direction of R.

3 Embedding of a Hamiltonian Cycle
It is known that a star graph contains a Hamiltonian cycle

[4, 6]. Below we develop the equivalent result in a different
way.

Given an Sn, our embedding works as follows. First,
we construct from Sn an (n � 1)-ring. Then, we apply
Lemma 1 (possiblycombined with some special techniques)
to construct from the (n�1)-ring an (n�2)-ring. This will
be repeated recursively until a 3-ring is obtained. In the end,
we generate from the 3-ring a 1-ring, which is a Hamiltonian
cycle.

In the following presentation, we will discuss the em-
bedding backward from the last step. We first show how to
construct a 1-ring from a 3-ring. Observe that there are 2
links between any two adjacent 3-substars. These connec-
tions have two properties.

P1: For any two adjacent 3-substars X and Y , the two
nodes in X connecting to Y are located at anti-podal
positionsof the hexagon formed byX (i.e., the distance
between these two nodes is 3).



Figure 3. Three adjacent 3-substarsX;Y; Z in anS5. In
(a), the graph is not Hamiltonian. In (b), a Hamiltonian
path starting from node s to e can be found (shown in
arrows).

P2: Consider any three 3-substarsX;Y; and Z such that (i)
X is adjacent to Y , (ii) Y is adjacent to Z, and (iii)
dif(X;Y ) 6= dif(Z; Y ). The two nodes inY connect-
ing to X are disjoint from those two in Y connecting
to Z.

P2 is important in finding a Hamiltonian cycle in our al-
gorithm. To shed some light, Fig. 3(a) shows three adjacent
substarsX;Y; Z in anS5 withdif(X;Y ) = dif(Z; Y ) = 4.
Nodes 42135 and 41235 in Y are connecting to both X

and Z. One easily sees that graph formed by X;Y; Z is
not Hamiltonian. On the contrary, in Fig. 3(b), the condi-
tion dif(X;Y ) 6= dif(Z; Y ) holds and the graph formed
by X;Y; Z has a Hamiltonian path. In fact, by P1 and
P2, it is not hard to prove that as long as the condition
dif(X;Y ) 6= dif(Z; Y ) holds, we can construct a path
starting from X, visiting all nodes in X, connecting to Y ,
visiting all nodes in Y , connecting to Z, and then visiting
all nodes in Z.

Lemma 2 Given a 3-ring R = [X0; X1; : : : ; Xr�1] such
that dif(X(i�1)modr ; Xi) 6= dif(X(i+1)modr ; Xi) for any
i = 0::r� 1, we can find a 1-ring R0 of length 6r from R.

Proof. We traverse the 3-substars of R one after another.
First, let x be any of the two nodes in X0 that have a link
connecting toX1. We traverse starting fromx, visitingevery
node in X1, and stopping at a node in X1 with a link to X2

(see Fig. 4 for illustration). By P1 and P2, it is easy to do
so. Clearly, this can be repeated until Xr�1 is reached.

Suppose we stop at a node inXr�1 with a link connecting
to a node, say y, in X0. By P1 and P2, the distance between
x and y is either 1 or 2 (see Fig. 4). Now we traverse nodes
in X0. In the former case, a ring of length 6r can be easily
formed. In the latter case, a ring of length 6r � 1 will be
formed, which is impossible because a star graph is bipartite
and a cycle must have an even length. Hence the lemma.

In earlier Lemma 1, we have shown how to construct a
3-ring from a given 4-ring. However, care must be taken
Figure 4. Proof of Lemma 2.

Figure 5. Three adjacent 4-substars X;Y; Z with
dif(X;Y ) = 5 6= dif(Z; Y ) = 3. The path from
s to e satisfies P2.

to ensure that the 3-ring satisfies P2 so as to be used by
Lemma 2�. For instance, we can not find a 3-ring satisfying
P2 from the 4-ring in Fig. 2(a) for the following reasons.

1. Substar a can not be the first or last one visited in Y

since it has no connection to X and Z.
2. Because dif(X;Y ) = 5, the difference from any 3-

substar in X to any adjacent 3-substar in Y is 5. How-
ever, the difference from substar a to any of b; c; d is
also 5. So a can not be the second substar visited in Y .

3. Because dif(Z; Y ) is also 5, the difference from any
3-substar inZ to any adjacent 3-substar in Y is 5. So a
can not be the third substar visited inY , a contradiction.

As a counter-example, Fig. 5 shows three adjacent 4-
substars X;Y; Z with dif(X;Y ) 6= dif(Z; Y ). A path
satisfying P2 can be found. This is formally reasoned below.

In general, consider any two adjacent 4-substars X and
Y . After applying an appropriate cut on X and Y , let x
be the 3-substar in X that does not have a connection to
Y , and similarly let y be the one in Y that does not have a
connection to X. We propose two rules to visit 3-substars
in X and Y :

R1: arrange x as the first or second substar traversed in X,
and

R2: arrange y as the third or fourth substar traversed in Y .

These two rules are sufficient to ensure finding a 3-ring
satisfying P2. It will be helpful to first verify these rules
using the example in Fig. 5. To prove R1, first observe that
any path in X must satisfy P2 even if we arbitrarily visit
the substars in X. Secondly and apparently, we will not let
x be the last substar visited in X, as there is no connection
from x to Y . Thirdly, suppose x and x0 are the third and
forth substars, respectively, visited in X. Then dif(x; x0)

must be equal to dif(Y;X) for any x0. As dif(Y;X) is the
difference from any 3-substar inY to any 3-substar inX, the

�By satisfying P2, we mean that every consecutive 3-substars in the
ring has the property (iii) in P2.



path will violate P2. Sox can not be the thirdor forth substar
visited in X. Lastly, following rule R1, suppose x0(6= x)

and x00(6= x) are the third and forth 3-substars, respectively,
visited in X. One can easily show that dif(x0; x00) is not
equal to dif(Y;X), the difference from any 3-substar in Y

to any 3-substar in X. So the path must satisfy P2. Similar
argument can be extended to R2.

Lemma 3 Given a 4-ring R = [X0; X1; : : : ; Xr�1]

such that dif(X(i�1)modr; Xi) 6= dif(X(i+1)modr; Xi)

for any i = 0::r � 1, it is possible to construct a
3-ring R0

= [X0

0; X
0

1; : : : ; X
0

4r�1] from R such that
dif(X0

(i�1)mod4r; X
0

i) 6= dif(X0

(i+1)mod4r; X
0

i) for any i =
0::4r� 1.

Proof. First, we apply any (legal) cut on R. Let x be any of
the three 3-substars inX0 that have connections toX1. Then,
connect a path of 3-substars from x to X1, X2, etc., while
in the process rules R1 and R2 must be followed. Note that
there is no conflict in following both rules together because
in any Xi the 3-substar that does not have a connection
to Xi�1 must be distinct from the 3-substar that does not
have a connection to Xi+1 (which is ensured by condition
dif(Xi�1; Xi) 6= dif(Xi+1 ; Xi)).

When the path is built up to Xr�1, care must be taken to
ensure that the last 3-substar visited in Xr�1 is not adjacent
to the starting 3-substar x. Then we can traverse X0 and
generate a 3-ringR0 as desired. This step is possible because
there are sufficient (three) connections from Xr�1 to X0.
The proof is trivial and we leave it to the reader.

The next job is to construct a 4-ring as desired in Lemma 3
from a given 5-ring. The following lemma shows that any
5-ring can offer such possibility.

Lemma 4 Given any 5-ring R = [X0; X1; : : : ; Xr�1], it is
possible to construct a 4-ringR0

= [Y0; Y1; : : : ; Y5r�1] from
R such that dif(Y(i�1)mod5r; Yi) 6= dif(Y(i+1)mod5r; Yi) for
any i = 0::5r� 1.

Proof. First, we apply any (legal) cut on R. For any two
adjacent 5-substars X and Y , let x be the 4-substar in X

that does not have a connection toY , and y the one in Y that
does not have a connection to X. Similar to R1 and R2, we
can derive two rules to construct a 4-ring:

R1’: x is the first, second, or third 4-substar visited in X,
and

R2’: y is the third, forth, or fifth 4-substar visited in Y .

Using similar proving techniques as in Lemma 3, this
lemma can be proved. We omit the details. However,
as opposed to Lemma 3, note that this lemma does not
rely on any relationship among Xi�1; Xi; Xi+1 because if
dif(Xi�1; Xi) = dif(Xi+1; Xi), by R1’ and R2’, the 4-
substar in Xi that does not have a connection to both Xi�1

and Xi+1 still can be visited as the third one in Xi.
Below we put together the above lemmas into a complete
algorithm. The algorithm finds a Hamiltonian cycle in any
Sn with n � 6.

Algorithm Ham();
1) Apply an n-cut on Sn. Construct an (n � 1)-ring

(referred to as Rn�1) of length n from Sn.
2) for k = n� 1 downto 6 do

Apply a k-cut on Rk and then use Lemma 1 to
construct from Rk a (k � 1)-ring (referred to as
Rk�1).

3) Apply a 5-cut on R5 and construct from R5 a 4-ring
(referred to as R4) using Lemma 4.

4) Apply a 4-cut on R4 and construct from R4 a 3-ring
(referred to as R3) using Lemma 3.

5) Construct from R3 a 1-ring R1 using Lemma 2.

When n = 5 (resp., 4), we can consider S5 (S4) as a
trivial 5-ring R5 (4-ringR4) with a single node and directly
run the algorithm from step 3 (step 4).

4 Ring Embedding When Links Fail
In this section, we enhance Ham() to tolerate at least

fe � n � 3 faulty links. We first show how to tolerate one
faulty link in Lemma 2.

Lemma 5 In Lemma 2, if there exists a faulty link e which
falls between two substars Xi and Xi+1 , a 1-ring R0 can
still be constructed without using link e.

Proof. Without loss of generality, we can assume that e
falls between X0 and X1. Recall the proof of Lemma 2.
We can traverse R from any of the two nodes in X0 with
a link connecting to X1. Clearly link e can be avoided by
choosing an appropriate x.

Note that in the above lemma, e may not be the only
faulty link in the 3-ring. However, avoiding e already serves
our need. The following lemma can be proved similarly.

Lemma 6 In Lemma 1, Lemma 3, and Lemma 4, if there
exists a faulty edge e which falls between two k-substarsXi

andXi+1, a (k�1)-ringR0 still can be constructed without
using link e.

Using Lemma 5 and Lemma 6, we can tolerate at least
one faulty link in each construction from Rn�1 to Rn�2,
from Rn�2 toRn�3, : : : , from R3 toR1 (here we following
the same notation as in Ham()). Thus we should be able to
tolerate at least n� 3 faulty links.

To use these two lemmas, we need to make sure that
the faulty links are falling between two k-substars in Rk

(observe that faulty links may be “encapsulated” within k-
substars). This can be done by applying an appropriate cut



on Rk+1. For instance, if a faulty link e along dimension
j falls inside a (k + 1)-substar in Rk+1, then we can apply
a j-cut on Rk+1 in the process of constructing Rk. Then
two cases may happen: (a) e is not used in Rk at all (which
is fine for us), or (b) e falls between two k-substars in Rk.
Note that in the latter case e is ensured to be eliminated in
the construction from Rk to Rk�1 using the above lemmas.

The following embedding algorithm works for any Sn,
n � 6, with fe � n� 3 faulty links.

Algorithm Link-Failure();
1) Let D = (dn; dn�1; : : : ; d4) be the sequence of dimen-

sions such that numbers of faulty links falling on them
are sorted in a descending order.

2) Execute steps 1 to 4 of algorithm Ham(), but apply
a dk-cut while constructing an Rk�1 from Rk. Use
Lemma 6 to avoid at least one (if any) faulty edge
falling between two k-substars.

3) Construct from R3 a fault-free 1-ring R1 using
Lemma 5.

Note that in step 1 we require the number of faulty links
along dimension di be no less than that along dimension
di�1 so that faulty links may be avoided as early as possible.
Also note that the above algorithm can be modified as we
have done for Ham() in Section 3 to run for cases of n = 4
or 5.

Theorem 1 Given an Sn; n � 4; with fe � n � 3 faulty
links, algorithm Link-Failure() can find a fault-free Hamil-
tonian cycle in Sn.

5 Ring Embedding When Nodes Fail
In this section we study the following problem: given

an Sn with fv faulty nodes, find a ring that is as large as
possible without passing through any faulty node. Our main
result shows that for any fv � n� 3 a ring of length at least
n! � 4fv can be found.

We first consider the construction of a 1-ring from a 3-
ring which has some faulty nodes. In Fig. 6(a), we show two
adjacent 3-substars, through which a 1-ring passes (indicated
by solid lines). Now suppose one node in the second 3-
substar becomes faulty. In Fig. 6(b)–(g), we show how
to “route around” the faulty node under six possible fault
scenarios. Note that the routing is based on a simple greedy
strategy by including as many nodes as possible. As one can
observe, the number of nodes (both faulty and non-faulty)
lost due to the failure is at most 4.

Lemma 7 Given a 3-ring R = [X0; X1; : : : ; Xr�1] in
which (a) no two consecutive 3-substars both contain faulty
nodes, (b) each 3-substar contains at most 1 faulty node, and
(c) dif(X(i�1)modr; Xi) 6= dif(X(i+1)modr; Xi) for any i, it
is possible to construct a 1-ringR0 of length at least 6r�4f
from R, where f is the number of faulty nodes in R.
Figure 6. (a) The original routing on two adjacent
healthy 3-substars, and (b)–(g) the fault-tolerant rout-
ing when one node in the second 3-substar becomes
faulty.

Proof. By (a), let Xi be healthy and Xi+1 contain a faulty
node. By (b), let x be any node in Xi whose neigh-
bor in Xi+1 is healthy. We traverse R from x toward
substars Xi+1; : : : ; Xr�1; X0; : : : ; Xi�1; by applying the
greedy strategy as indicated in Fig. 6. As discussed ear-
lier, this will skip at most 4f nodes.

When the path returns back to Xi, the end node may be
at a distance of 1 or 2 from x (the scenario is similar to that
in Fig. 4). As Xi is fault-free, in the former case all nodes
in Xi can be included in the ring, while in the latter case
one more node will be excluded from the ring. Thus, the
ring has a length� 6r� 4f � 1. As the ring length must be
even, the lemma then follows.

Due to space limit, proof of the following lemmas is
omitted and can be found in [10].

Lemma 8 Given a 4-ring R = [X0; X1; : : : ; Xr�1] in
which (1) one of the 4-substars is fault-free, (2) each
4-substar contains at most 1 faulty node, and (3)
dif(X(i�1)modr; Xi) 6= dif(X(i+1)modr ; Xi) for any i, it
is possible to construct from R a 3-ring R0 satisfying the
conditions (a)–(c) in Lemma 7.

Lemma 9 In an Sn; n � 4; with fv � n � 3 faulty nodes,
there always exists aD-cut, jDj = n�4, onSn which results
in 4-substars each containing at most one faulty node.

Below we summarize the above discussion into an algo-
rithm for ring embedding in an Sn, n � 6, with fv � n� 3



faulty nodes.

Algorithm Node-Failure();
1) Use Lemma 9 to find a sequence of dimensions D =

(dn; dn�1; : : : ; d4).
2) Execute steps 1 to 3 of algorithm Ham(), but apply a

dk-cut in the construction from Rk to Rk�1.
3) Construct from R4 a 3-ring R3 using Lemma 8.
4) Construct from R3 a 1-ring R1 using Lemma 7.

After steps 1 to 3, a 4-ring R4 is obtained. Note how
the conditions (1)–(3) in Lemma 8 are satisfied. Condition
(3) is guaranteed by algorithm Ham(). Condition (2) is
ensured by Lemma 9. Condition (1) holds because the
number of 4-substars (n� 4)! > n� 3 � fv for any n � 6.
The correctness then follows directly from Lemma 8 and
Lemma 7. Note again that the above algorithm can be easily
modified to run for cases of n = 4 or 5.

Theorem 2 Given an Sn; n � 4; with fv � n � 3 faulty
nodes, algorithm Node-Failure() can find a fault-free ring
of length � n! � 4fv.

6 When Both Links and Nodes Fail
By combining algorithms Link-Failure() and Node-

Failure(), we can tolerate both link and node failure. Due to
space limit, we only summarize the result. For details, refer
to [10].

Theorem 3 Given an Sn with fe faulty links and fv faulty
nodes, where fe + fv � n � 3, algorithm Link-Node-
Failure() can find a fault-free ring of length � n! � 4fv.
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