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Abstract

Inthispaper, weconsider aninjured star graph with some
faulty links and nodes. e show that even with f, < n — 3
faulty links a Hamiltonian cycle still can be found in an n-
gtar, andthat with f,, < n — 3 faulty nodesaring containing
at most 4f,, nodeslessthan that in a Hamiltoniancycle can
befound(i.e, containing at least n! —4f, nodes). Ingeneral,
in an n-star with f, faulty linksand f, faulty nodes, where
fe + fo < n— 3, our embedding isableto establish aring
containing at least n! — 4f, nodes.

1 Introduction

One new interconnection network that has attracted alot
of attention recently is the star graph [1]. Large references
can befoundin studying the star graph’stopol ogical proper-
ties[2, 8], embedding capability [4, 6], and communication
capability [3, 5, 7, 9].

The graph embedding problem has been heavily studied
for various host graphs. With astar graph as the host graph,
any ring of an even length has been shown to be embed-
dable [4]. Results regarding embedding multi-dimensional
meshes into a star graph can befound in[4, 8]. The embed-
ding of a Hamiltonian cycle and hypercubesisdiscussed in
[6].

In this paper, we consider the problem of embedding
aring into an injured n-star graph which has some faulty
links (or edges) and nodes (or vertices). Ringsare common
guest graphs with many applications. Fault tolerance is
an important issue in a multicomputer network, especially
when the network becomes large. If in a star graph some
componentsfail, it is desirable that the injured components
beisolated fromtherest of the network so that theembedding
isdtill possible. The embeddings achieved in this paper are
summarized as follows: (1) with f, < n — 3 faulty links,
the embedding of a Hamiltonian cycle, (2) with f, <n —3
faulty nodes, the embedding of aring containing at most 4,
nodes less than that of a Hamiltonian cycle, and (3) with f,
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Figure 1. A 4-dimensional star graph Sa.

faulty linksand f, faulty nodes, where f. + f, < n—3,the
embedding of aring containing at most 4f, nodesless than
that of aHamiltonian cycle.

Preliminaries are given in Section 2. In Section 3 we
develop a new scheme for finding a Hamiltonian cycle in
a star graph. The embedding is then extended with fault-
tolerant capability when only links and only nodes may
fail in Section 4 and Section 5, respectively. The result to
tolerate both link and node failureis presented in Section 6.

2 Preliminaries

Ann-dimensional star graph, alsoreferred toasn-star or
Sn, isan undirected graph consisting of n! nodes (vertices)
and (n — 1)n!/2 links (edges). Each node is uniquely as-
signed alabel xq25 - - - z,, whichisthe concatenation of any
permutation of n distinct symbols {«1, 22, ..., 2,}. Two
nodes are joined by an edge along dimension d iff the label
of one node can be obtained from the other by swapping
the first symbol and the d-th symbol, 2 < d < n. Without
loss of generality, throughout we let these n symbols be
{1,2,...,n}. A 4-dimensiona star graph S, is shown in
Fig. 1.

An S, isarecursive structurethat contains many smaller
gtars, or substars. Formally, a k-dimensional substar, or
k-subgtar, is denoted as a string X = x122- - - x,, Where
zp=xandx; € {x,1,2 ..., n},2<i<n. Thesymbol
x meansa“don’t care’. Instring X there are exactly k «'s.
The substar represented by X isasubgraph of .S, containing
all vertices obtained from X by replacing each x with digits
{1,2,...,n}. These vertices are connected by the original
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linksin S,,. For instance, *x53« is a 3-substar containing
six nodes 12534, 14532, 21534, 24531, 41532, and 42531.

Definition1 Let X = xq22---; - 2, be a k-substar
with z; = *. The j-cut on X, j > 2, isto partition .X
along the j-th dimension into & number of (k£ — 1)-substars,
each obtained from X' by replacing z; with alega non-x
symbol. Let D = (d1,da,...,dn), m < k, be asequence
of dimensions such that the 45, = *,¢ = 1..m. Then the
D-cut on X isto first apply a d;-cut on X, whose result is
then applied a d,-cut, whose result is then applied a ds-cut,
etc. Thefinal resultisk(k — 1) ---(k — m + 1) number of
(k — m)-substars.

For instance, given a4-substar X = xxx5x3inan Sg, a
3-cut on X isto partition X into four 3-substars 153,
#x 253, *+45+3, and *x65+3. If D = (3,5), a D-cut on
X will apply a 3-cut and then a 5-cut on X. This gener-
ates the following 2-substars: {**1523, *x1543, x+x1563},
{*x2513, *x2543, *xx2563}, {**4513, xx4523, *+4563},
and {*x6513, *xx6523, xx6543}.

Definition 2 Consider two k-substars X and Y in S,,. We
define X and Y to be adjacent if their string representations
differin exactly onenon-x position. If X and Y are adjacent,
the difference from X to Y, denoted as dif(X,Y), is the
symbol of X at the positionwhere X and Y differ.

For instance, substar X = xx5«13« isadjacentto Y =
++5x23%, but not adjacent to Y’ = *4+23«. Thedifference
from X to Y, or dif(X,Y), is 1, whereas the expression
dif(Y,X)is2.

The following discussion combines the notion of adja-
cency and cut. Consider two adjacent k-substars X =
x1--xj-xp adY = y1---y; -y, SUCh that 2; =
y; = *. Ifweapply aj-cuton X and Y, we will obtain &
substars (of dimension £ — 1) fromeach of X and Y. By the
above definition, one easily seesthat all £ substarsin X are
adjacent to each other, and so are thosein Y. Furthermore,
among these substars, k¥ — 1 substarsin X are adjacent to
k —1substarsinY” in aone-to-onemanner. Only the substar
r1-- x§ -z, inX andthesubstar y; - - ~y§» <y, inY are
not adjacent, where x; = dif(Y, X) and y; = dif(X,Y).
Theideaisillustratedin Fig. 2, where the adjacency relation
is represented by lines connecting substars. In particular,
Fig. 2(a) showsthreesubstars X, Y, 7, with X adjacentto Y’
and Y adjacent to 7. Withineach of XY, 7, the 3-substars
are fully connected, while between X and Y (and similarly
Y and 7) there are three connections. Also note that the 3-
substar +*x256 in X', which isnot connected to Y, satisfies
z; = 2=dif(Y,X) (and similarly 3-substar +++526inY’,
whichisnot connectedto X, satisfiesy; = 5= dif(X,Y)).

Definition 3 A
R = [Xo, X1, ...

sequence of k-substars
, X,_1] iscdled a k-ring if substar X;
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Figure 2. The substar adjacency relation.

is adjacent to its neighbors X; _ 1ymog- ad X(;1ymodr fOr
anyi=0.r—1

For example, R = [*+*3%2, *xx 142, *kx4x2, #x*4%5,
+++3+5] isa4-ringin an Se.

Lemmal Givenak-ringR = [Xo, X1, ..., X, 1], k > 4,
itispossibleto construct a (k — 1)-ring R’ of length £ from
R.

Proof. We apply any legal j-cut on each X;,i = 0..r — 1,
into (k — 1)-substars (by “legal”, the j-th symbol of X; must
be x). Asmentioned earlier, in X; al (k — 1)-substars are
fully connected (in terms of adjacency) and thereare k — 1
connections between X; and its neighbors X;_1 and X;11.
[tistrivial toderivean R’ which connectsall (k—1)-substars
by visiting X;’s along the direction of R. ]

3 Embedding of a Hamiltonian Cycle

Itisknown that astar graph containsaHamiltoniancycle
[4, 6]. Below we devel op the equiva ent result in adifferent
way.

Given an S,,, our embedding works as follows. First,
we construct from S, an (n — 1)-ring. Then, we apply
Lemma 1 (possibly combined with some specia techniques)
to construct fromthe (n — 1)-ring an (n — 2)-ring. Thiswill
berepeated recursively until a3-ringisobtained. Intheend,
wegeneratefrom the 3-ringa1-ring, whichisaHamiltonian
cycle.

In the following presentation, we will discuss the em-
bedding backward from the last step. We first show how to
congtruct a 1-ring from a 3-ring. Observe that there are 2
links between any two adjacent 3-substars. These connec-
tions have two properties.

P1: For any two adjacent 3-substars X and Y, the two
nodes in X connecting to Y are located at anti-podal
positionsof thehexagonformed by X (i.e, thedistance
between these two nodesis 3).
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Figure 3. Three adjacent 3-substars X, Y, Zinan Ss. In
(@), the graph is not Hamiltonian. In (b), a Hamiltonian
path starting from node s to e can be found (shown in
arrows).

P2: Consider any three 3-substars X, Y, and 7 such that (i)
X isadjacent to Y/, (ii) Y is adjacent to 7, and (iii)
dif(X,Y) # dif(Z,Y). ThetwonodesinY” connect-
ingto X are digoint from those two in Y connecting
to 7.

P2 isimportant in finding a Hamiltonian cycle in our al-
gorithm. To shed some light, Fig. 3(a) showsthree adjacent
substars X, Y, Zinan Sswithdi f(X,Y) = dif(Z,Y) = 4.
Nodes 42135 and 41235 in Y are connecting to both X
and Z. One easily sees that graph formed by XY, 7 is
not Hamiltonian. On the contrary, in Fig. 3(b), the condi-
tion dif(X,Y) # dif(Z,Y) holds and the graph formed
by XY, 7 has a Hamiltonian path. In fact, by P1 and
P2, it is not hard to prove that as long as the condition
dif(X,Y) # dif(Z,Y) holds, we can construct a path
gtarting from X, visiting all nodes in X, connecting to Y,
visiting al nodesin Y, connecting to 7, and then visiting
al nodesin 7.

Lemma?2 Given a 3-ring R = [Xo, X1, ..., X,—1] such
that dif(X(i—l)mOdTaXi) 3& dif(X(i-I—l)mOdTaXi) for any
i=0..r — 1, wecanfindal-ring R’ of length 6- from R.

Proof. We traverse the 3-substars of R one after another.
First, let « be any of the two nodesin X, that have a link
connectingto X;. Wetraversestartingfromz, visitingevery
nodein X1, and stopping a anodein X; with alink to X,
(see Fig. 4 for illustration). By P1 and P2, it is easy to do
so. Clearly, this can be repeated until X _; isreached.
Supposewestop at anodein X,._; withalink connecting
toanode, say y, in Xo. By P1 and P2, the distance between
z and y iseither 1 or 2 (see Fig. 4). Now we traverse nodes
in Xo. Intheformer case, aring of length 6 can be easily
formed. In the latter case, aring of length 6r — 1 will be
formed, whichisimpossible because astar graph isbipartite
and acycle must have an even length. Hence thelemma. ®

In earlier Lemma 1, we have shown how to construct a
3-ring from a given 4-ring. However, care must be taken
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Figure 5. Three adjacent 4-substars XY, 7 with
dif(X,Y) =5 # dif(Z,Y) = 3. The path from
s to e satisfies P2.

to ensure that the 3-ring satisfies P2 so as to be used by
Lemma 2*. For instance, we can not find a 3-ring satisfying
P2 fromthe 4-ringin Fig. 2(a) for the following reasons.

1. Substar a can not be the first or last one visited in Y’
sinceit has no connectionto X and 7.

2. Because dif(X,Y) = 5, the difference from any 3-
substar in X to any adjacent 3-substar in Y is5. How-
ever, the difference from substar a to any of b,¢,d is
also 5. So a can not bethe second substar visitedin Y.

3. Because dif(7,Y) isdso 5, the difference from any
3-substar in 7 to any adjacent 3-substarin Y is5. Soa
can not bethethird substar visitedinY", acontradiction.

As a counter-example, Fig. 5 shows three adjacent 4-
substars X, Y, Z with dif(X,Y) # dif(Z,Y). A pah
satisfying P2 can befound. Thisisformally reasoned bel ow.

In general, consider any two adjacent 4-substars X and
Y. After applying an appropriate cut on X and Y, let «
be the 3-substar in X that does not have a connection to
Y, and similarly let y betheonein Y that does not have a
connection to X. We propose two rules to visit 3-substars
inX andY:

R1: arrange » asthefirst or second substar traversed in X,
and
R2: arrange y asthethird or fourth substar traversed in Y.

These two rules are sufficient to ensure finding a 3-ring
satisfying P2. It will be helpful to first verify these rules
using the examplein Fig. 5. To prove R1, first observe that
any path in X must satisfy P2 even if we arbitrarily visit
the substarsin X. Secondly and apparently, we will not let
x bethelast substar visited in X, as thereis no connection
from z to Y. Thirdly, suppose » and =’ are the third and
forth substars, respectively, visited in X. Then dif(xz, ")
must be equal to di f(Y, X) forany =’. Asdif(Y, X) isthe
differencefromany 3-substarin Y to any 3-substarin X, the

*By satisfying P2, we mean that every consecutive 3-substars in the
ring hasthe property (iii) in P2.



pathwill violateP2. So x can not bethethird or forth substar
visited in X. Lastly, following rule R1, suppose #'(# )
and "/ (# z) arethethird and forth 3-substars, respectively,
visited in X. One can easily show that dif(«', z’") is not
equal to dif(Y, X), the difference from any 3-substar in ¥
to any 3-substar in X. So the path must satisfy P2. Similar
argument can be extended to R2.

Lemma3 Given a 4-ring R = [Xo, X1,...,Xr_1]
such that dif(X(i—1ymodr, Xi) # dif(X(ig1ymodr, Xi)
for any ¢ = 0. — 1, it is possble to construct a
3ring R = [Xp X4,..., X4 from R such that
gif;(X(/iil)modef) # dif (X{i11)moaar» X7) fOr anyi =
ar — L.

Proof. First, we apply any (legal) cut on R. Let = be any of
thethree 3-substarsin X that have connectionsto X;. Then,
connect a path of 3-substars from = to X;, X5, etc., while
in the process rules R1 and R2 must be followed. Note that
thereisno conflict in following both rules together because
in any X; the 3-substar that does not have a connection
to X;_1 must be distinct from the 3-substar that does not
have a connection to X; 1 (which is ensured by condition
dif(Xi—1, Xy) # dif(Xig1, Xy)).

When the path is built up to X,._1, care must betaken to
ensure that the last 3-substar visitedin X,._; isnot adjacent
to the starting 3-substar . Then we can traverse X, and
generatea3-ring R’ asdesired. Thisstep ispossiblebecause
there are sufficient (three) connections from X, _; to Xo.
The proof istrivia and we leave it to the reader. ]

Thenextjobistoconstruct a4-ringasdesiredinLemmas3
from a given 5-ring. The following lemma shows that any
5-ring can offer such possibility.

Lemmad4 Givenany 5-ring R = [Xo, X1, ..., X,—1],itis
possibleto construct a4-ring R’ = [Yo, Y1, . . ., Y5,._1] from
Rsuch that di f(Y(;~1)modsr, ¥i) # dif(Y(i+1)mods-, Y:) for
any: = 0.5 — 1.

Proof. First, we apply any (legal) cut on R. For any two
adjacent 5-substars X and Y, let « be the 4-substar in X
that doesnot haveaconnectionto Y, and y theoneinY that
does not have a connectionto X . Similar to R1 and R2, we
can derive two rulesto construct a 4-ring:

R1': z isthe first, second, or third 4-substar visited in X,
and
R2': yisthethird, forth, or fifth 4-substar visitedin Y.

Using similar proving techniques as in Lemma 3, this
lemma can be proved. We omit the details. However,
as opposed to Lemma 3, note that this lemma does not
rely on any relationship among X;_1, X;, X; 41 because if
dif(Xi_l,Xi) = dif(XZ'+1,XZ'), by R1' and R2’, the 4-
substar in X; that does not have a connection to both X;_4
and X; 11 still can bevisited asthethird onein X;. [ |

Below we put together the above lemmas into acomplete
algorithm. The algorithm finds a Hamiltonian cycle in any
S, withn > 6.

Algorithm Ham();
1) Apply an n-cut on S,,. Construct an (n — 1)-ring
(referred to as R,, 1) of length n from S,,.
2) for k = n — 1downto 6 do

Apply a k-cut on R;, and then use Lemma 1 to
congtruct from R a(k — 1)-ring (referred to as
Ri_1).

3) Apply a 5-cut on Rs and construct from Rs a 4-ring
(referred to as R4) using Lemma 4.

4) Apply a 4-cut on R4 and construct from R4 a 3-ring
(referred to as R3) using Lemma 3.

5) Construct from R3 al-ring R, using Lemma 2. ]

When n = 5 (resp., 4), we can consider Ss (S4) as a
trivia 5-ring Rs (4-ring R4) with asingle node and directly
run the algorithm from step 3 (step 4).

4 Ring Embedding When Links Fail

In this section, we enhance Ham() to tolerate at least
fe < n — 3faulty links. We first show how to tolerate one
faulty link in Lemma 2.

Lemma5 In Lemma 2, if there exists a faulty link e which
falls between two substars X; and X;,1, a 1-ring R’ can
till be constructed without using link e.

Proof. Without loss of generality, we can assume that e
fals between Xo and X;. Recal the proof of Lemma 2.
We can traverse 2 from any of the two nodes in X with
alink connecting to X;. Clearly link e can be avoided by
choosing an appropriate x. ]

Note that in the above lemma, ¢ may not be the only
faulty link inthe 3-ring. However, avoiding e already serves
our need. The following lemma can be proved similarly.

Lemma6 In Lemma 1, Lemma 3, and Lemma 4, if there
exists a faulty edge e which falls between two k-substars X;
and X;11,a(k —1)-ring R’ still can be constructed without
usinglink e.

Using Lemma 5 and Lemma 6, we can tolerate at least
one faulty link in each construction from R,,_1 to R, _»,
fromR,_>t0R,_3, ..., from R3to ; (herewefollowing
the same notation as in Ham()). Thus we should be able to
tolerate at least n — 3 faulty links.

To use these two lemmas, we need to make sure that
the faulty links are falling between two k-substars in R,
(observe that faulty links may be “encapsulated” within k-
substars). This can be done by applying an appropriate cut



on Ry41. For instance, if afaulty link e along dimension
j fallsinsidea (k + 1)-substar in Rj1, then we can apply
a j-cut on Ry 41 in the process of constructing Ry. Then
two cases may happen: (8) e isnot used in R, at all (which
isfine for us), or (b) e falls between two k-substarsin Ry.
Note that in the latter case e is ensured to be diminated in
the construction from Ry, to R _1 using the above lemmas.

The following embedding agorithm works for any 5,,,
n > 6, with f, < n — 3faulty links.

Algorithm Link-Failure();

1) Let D =(d,,dn—1,...,ds) bethesequence of dimen-
sions such that numbers of faulty linksfalling on them
are sorted in a descending order.

2) Execute steps 1 to 4 of agorithm Ham(), but apply
a di-cut while constructing an Ry _; from R;. Use
Lemma 6 to avoid at least one (if any) faulty edge
falling between two k-substars.

3) Construct from Rz a fault-free 1-ring Ri using
Lemma 5. ]

Note that in step 1 we require the number of faulty links
along dimension d; be no less than that along dimension
d;_1 so that faulty linksmay be avoided as early as possible.
Also note that the above agorithm can be modified as we
have done for Ham() in Section 3 to run for cases of n = 4
or5.

Theorem 1 Given an S,,,n > 4, with f, < n — 3 faulty
links, algorithm Link-Failure() can find a fault-free Hamil-
toniancyclein S, .

5 Ring Embedding When Nodes Fail

In this section we study the following problem: given
an S, with £, faulty nodes, find aring that is as large as
possiblewithout passing through any faulty node. Our main
result showsthat for any f, < n — 3aringof length at least
n! — 4f, can be found.

We first consider the construction of a 1-ring from a 3-
ring which has somefaulty nodes. In Fig. 6(a), we show two
adj acent 3-substars, through which al-ring passes(indicated
by solid lines). Now suppose one node in the second 3-
substar becomes faulty. In Fig. 6(b)—g), we show how
to “route around” the faulty node under six possible fault
scenarios. Note that the routing isbased on asimple greedy
strategy by including as many nodes as possible. Asone can
observe, the number of nodes (both faulty and non-faulty)
lost dueto thefailureisat most 4.

Lemma? Given a 3-ring R = [Xo, X1,...,X,_1] in
which (a) no two consecutive 3-substars both contain faulty
nodes, (b) each 3-substar containsat most 1 faulty node, and
(C) dif(X(i—l)mOdTa Xz) 3& dif(X(i-I—l)mOdra Xz) for anyi- it
ispossibleto construct a 1-ring R’ of length at least 61 — 4 f
from R, where f isthe number of faulty nodesin R.

O healthy node
[ ) faulty node
—— traversed link
- spare link

@] [ ]

O O O
(b) loss =4 (c)loss =3

o o

[ ] o

(d) loss =3

(e) loss =3

(0]
(D loss =4 (g)loss =1

Figure 6. (a) The original routing on two adjacent
healthy 3-substars, and (b)-(g) the fault-tolerant rout-
ing when one node in the second 3-substar becomes
faulty.

Proof. By (a), let X; be healthy and X1 contain afaulty
node. By (b), let « be any node in X; whose neigh-
bor in X;y1 is hedthy. We traverse R from z toward
substars X141, ..., X,—1, Xo, ..., X;—1, by applying the
greedy strategy as indicated in Fig. 6. As discussed ear-
lier, thiswill skip at most 4f nodes.

When the path returns back to X, the end node may be
at adistance of 1 or 2 from « (the scenario issimilar to that
inFig. 4). As X; isfault-free, in the former case al nodes
in X; can beincluded in the ring, while in the latter case
one more node will be excluded from the ring. Thus, the
ring hasalength > 6r — 4f — 1. Asthering length must be
even, thelemma then follows. [ |

Due to space limit, proof of the following lemmas is
omitted and can be found in [10].

Lemma8 Given a 4-ring R = [Xo, X1,...,X,_1] in
which (1) one of the 4-substars is fault-free, (2) each
4-substar contains at most 1 faulty node, and (3)
dif(X(i—l)mOdTaXi) 3& dif(X(i-I—l)mOdTaXi) for any i, it
is possible to construct from R a 3-ring R’ satisfying the
conditions (a)—(c) in Lemma 7.

Lemma9 Inan S,,,n > 4, with f, < n — 3faulty nodes,
therealwaysexistsa D-cut, | D| = n—4, 0on S, whichresults
in 4-substars each containing at most one faulty node.

Below we summarize the above discussion into an algo-
rithmfor ring embeddinginan S,,, n > 6, with f, < n — 3



faulty nodes.

Algorithm Node-Failure();
1) Use Lemma 9 to find a sequence of dimensions D =
(dn,dn-1,...,da).
2) Execute steps 1 to 3 of algorithm Ham(), but apply a
dr-cut inthe constructionfrom Ry, to Ry _1.
3) Construct from R4 a3-ring R3 using Lemma 8.
4) Construct from Rz al-ring R1 using Lemma 7. ]

After steps 1 to 3, a 4-ring R4 is obtained. Note how
the conditions (1)—<(3) in Lemma 8 are satisfied. Condition
(3) is guaranteed by agorithm Ham(). Condition (2) is
ensured by Lemma 9. Condition (1) holds because the
number of 4-substars(n — 4)! > n—3> f, forany n > 6.
The correctness then follows directly from Lemma 8 and
Lemma 7. Note again that the above algorithm can be easily
modified to run for cases of n = 4 or 5.

Theorem 2 Given an S,,,n > 4, with f, < n — 3 faulty
nodes, algorithm Node-Failure() can find a fault-free ring
of length > n! — 4f,.

6 When Both Linksand Nodes Fail

By combining algorithms Link-Failure() and Node-
Failure(), we can tolerate both link and nodefailure. Dueto
space limit, we only summarize theresult. For details, refer
to[10].

Theorem 3 Given an S, with f. faulty linksand f, faulty
nodes, where f, + f, < n — 3, algorithm Link-Node-
Failure() can find a fault-freering of length > n! — 4f,.
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