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Abstract 

In this paper, we propose a source-to-source compilation 
strategy to  partition vectorized loop programs into multi- 
thread execution form. Each partitioned thread consists 
of instances of statements with localities in vector regis- 
ters. The multi-threading scheme gives a novel combina- 
tion of loop unrolling [9], statement instances reordering, 
index shifting [5], vector register reuse exploiting [2], and 
multi-threading. Expermantal results show that our multi- 
threading scheme assists vector compiler of Convex C38 
series to reduce the number of memory accesses and the 
number of synchronizations among CPUs and usually ob- 
tains a better performance. 

Keywords: Data dependence, loop optimization, multi- 
thread, parallelism, vector compilers, vector register reuse. 

1 Introduction 
Recent vector computers are equipped with several 

CPUs and a hierarchical memory to offer both vectoriza- 
tion and multiprocessing capabilities. In vector processing, 
a large class of loop programs applied in solving differential 
equations, fourier transform, image processing, and neural 
processing can be translated or rewritten into a vector ex- 
ecution form [l]. For these available vectorized programs, 
proper partition of the vector operations for parallel pro- 
cessing can significantly utilize the hardware design of mul- 
tiple CPUs and reduce the execution time. In parallel pro- 
cessing, several CPUs can work together to concurrently 
perform tasks which consist of scalar or vector operations 
defined in program. Synchronizations are needed among 
these CPUs if their references of array data have depen- 
dence relation. 

The factors determine the system performance of vector 
computers are not only parallelism but also the memory 
management. If compilers are capable of exploiting the 
opportunities of vector data reuse, the execution time of 

loop program can be significantly improved [2]. However, 
the discussions of reuse exploiting in vector computers fo- 
cus mainly on single CPU. Recently, Irigoin and Triolet 
proposed supernode partitioning technique [4] to vector- 
ize and parallelize the sequential loop program according 
to the data dependence relation. Multiple CPUs thus can 
concurrently execute vector operations in a manner of data 
reuse exploitation. However, two more efforts are needed 
to be further paid. First, there is one dependence vector 
considered to  exploit the reuse opportunity. The degree 
of reuse exploitation may be further improved if the given 
loop program has complex dependence relation. Second, 
the supernode partitioning treats an iteration as the min- 
imum parallelism unit. Statement instance partition may 
extract more parallelism from loop program which has the 
n-block dependence graph. We are motivated to design a 
systematic strategy to flexibly partition the vector opera- 
tions into multi-thread such that the number of synchro- 
nizations and the degree of data reuse exploitation can be 
improved. 

The approach adopted here automatically reconstructs 
the loop programs into multi-thread execution form with 
fewer synchronizations and more reuse exploitation of vec- 
tor register data. Comparisons are made to  illustrate 
that vector compiler assisted by the proposed multi-thread 
scheme usually produces a more efficient code for users to 
early complete their program execution. 

2 
Definition: Data Dependence Graph 

A data dependence graph DG(N,  E )  or DG of an n- 
nested sequential loop or an ( n  - 1)-nested vectorized 

rected edges E. The node labeled by S denotes a state- 
ment S in loop L ,  while an edge labeled by a depen- 
dence vector d = ( d i , d 2 ,  ..., dn) links from node S to 
node S' if array data are first referenced by S in iteration 
i, and then referenced again by S' in iteration j ,  where 

0 

Loop Model and Basic Concept 

loop L consists of a set of nodes N and a set of di- 

(d l ,  d 2 , .  . . , d , )  = j - i. 
'This work was supported by the National Science Council 
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There are four types of dependence vectors, the input, out- 
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put, true dependencies, and the anti-dependence [9], possi- 
bly existing in loop L .  Traditional vectorization techniques 
[9] first analyze the data dependence relation and then de- 
compose the DG into several r-blocks; each of them is a 
strongly connected component. Loops without ir-block DG 
are easy to  be dealt with in parallelism extraction, synchro- 
nizations reduction, and reuse exploitation. Here, we focus 
our attention on loops with r-block DG. There are very 
few reuse opportunities if references are not uniformly gen- 
erated. In this paper, only constant true dependence and 
input dependence which effect significantly the extraction 
of reuse and parallelism are considered. The loop L con- 
sidered as our input source is formulated as the following 
(n - 1)-nested vectorized loop program. 

DO I2 = 12,u2 
. . .  
DO I, = I,,u, 

vectoriaed statement SI 

vectoriaed statement S ,  
. . .  (JJ) 

ENDDO 
... 

ENDDO 

where 1; and U; are respectively normalized lower bound 
and upper bound of index variable I;, for 2 5 i 5 n. The 
DG of loop L is a r-block. A large class of application 
algorithms such as solving differential equations, fourier 
transform, image processing, and neural processing falls in 
this model. 

Several vector compilers offer compiler directive instruc- 
tions for programer to manually perform the loop opti- 
mization. However, unless that users are skilled in parallel 
program design, it is difficult to write an efficient program 
with explicit definitions of multi-thread. In this paper, the 
proposed multi-threading scheme automatically restruc- 
tures the loop program and inserts the proper compiler 
directives to specify the multi-thread. Two compiler direc- 
tives related to multi-thread identification are introduced 
as follows. Instructions introduced here are recognizable 
to compiler of Convex C38 series [3]. 

Let FORCEPARALLEL be the compiler directive state- 
ment that informs compiler to parallelize the loop that 
follows, regardless of apparent of dependencies between it- 
erations. As an example, consider the following loop pro- 
gram. 

DO 11 = l , n  
CSDIR ForceParallel 
DO I2 = 1 ,  4 

ENDDO 
vectoriaed statements 

ENDDO 

The FORCEPARALLEL directive will assist compiler to par- 
allelize the execution of four instances I2 = 1, 12=2, I2=3, 
and I2=4 of vector statements on 4 CPUs. Since loop I1 
is a sequential loop, synchronizations are needed among 
these CPUs to guarantee the sequential execution of loop 
11. In this example, there are n synchronizations needed 
among 4 CPUs. 

Another compiler directive also can be used to define 
multi-thread. Let the compiler directive 

C$DIR Begin-Tasks 

C$DIR Next-nsk 
{statement group 1) 

{statement group 2) 

CSDIR Next-Task 

C$DIR End-Tasks 
{statement group t }  

can instruct the compilers to  parallelize t threads (or 
tasks). If the BEGIN-TASKS . . . END-TASKS directive a p  
pears in loop body of a loop program, the execution form 
is referred to DBSI (Different Body Same Instance) since 
the multi-thread is defined by running same instance on 
different statement groups. 

Consider the following vectorized loop program L1. 

DO J = 6 ,  646 

si : 
sa : 

s8 : 

A(2 : i a s ,  J )  = ~ ( i  : i aa ,  J - 3) E ( 2  : ias ,  J )  
B ( 2  : i a s ,  J )  = A(2 : 129, J - a) + c ( a  : ias, J - 6) 

- I r ( a  : ias ,  J - a) 
c ( a  : ias.  J )  = a ( a  : 129, J - 4) I 3 

(L1) 

ENDDO 

In L1, the data dependence vectors are 

(z, = ( 0 , 2 ) ,  <2 = ( 0 , 2 ) ,  4 = (1,3) between Si and S2, 
4 = (0,4), d5 = ( 0 , 5 )  between S2 and S3 

as shown in Figure 2.1 where the input dependence d2 is 
denoted by a dotted line and the true dependencies are 
denoted by solid lines. Although there exists an input de- 
pendence (1, -1) of army B between statements & and 
S3, their data reuse oppo~rtunities can be exploited by con- 
sidering the & and d 4 .  Thus, this input dependence is 
redundant in reuse exploiitation and can be ignored. 

Assume that there are 4 CPUs supported by system. 
Compiler of Convex C3840 will parallelize loop I and se- 
quentially execute the loop J as shown in the following 
equivalent code. 

DO J = 6 ,  645 
CODIR ForccSardlel 
DO r = a, ias,  3a 
si : n(r : I + 31, J )  = a(r - i : r + 30, J - 3) * E ( I  : r + 31, J )  
sa : B ( r  : I + 31, J )  n ( r  : r + 31, J - a) + C ( I  : I + 31, J - 6) 

- E ( r  : r + 31, J - a) 
s3 : c ( r  : r + 31, J )  = B ( I  : r + 31, J - 4) 3 

(L1') 

ENDDO 
ENDDO 

The compiler partitions the vector length of 128 into 4 
subsets each contains contiguous 32 instances and then 
vectorizes each subset in a vector length of 32. Due to 
that loop J is a sequential loop, synchronization should be 
made at  each running iteration of loop J. An attempt to 
perform loop interchange on loops I and J to reduce the 

d3 = (L3) ds =(0,5)  

Figure2.1: TheDGofloopLl. 
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number of synchronizations will cause semantic error. This 
is due to the fact that B(33,6) generated by the first thread 
1 = 2 at  the execution of J = 6 on S, will be referenced 
again by the second thread I = 34 at  the execution of 
J = 9 on SI. Two drawbacks are found in multi-thread 
version L1’. 
(1) The number of synchronizations is equal to 645 - 6 + 

1 = 640 which can be reduced by the proposed tech- 
nique introduced in this paper. 

(2) No data reuse is exploited in loop Ll’. 
Instead, the loop L1 can be transformed into another bet- 
ter version, the DBSI execution form, to exploit the reuse 
opportunities and reduce the number of synchronizations. 

We first introduce the definitions of SIDG and parallel 
block. The DBSImethod is then introduced by example of 
loop L1. 

Definition: Statement Instance Dependence Graph 
( SID G) 

A s ta tement  ins tance  dependence graph, denoted by 
SIDG(V, E )  or SIDG, of loop L consists of a set of ver- 
tices V and a set of directed edges E. Each vertex in set V 
represents an instance of a vectorized statement in L and 
a directed edge labeled by d connects two vertices from v ,  
to  v, if they have dependence relation, where d is the label 
of edge linking from S, to S, in D G  and v i  and v, are the 

U respective instances of S, and S,. 

Figure 2.2 displays the SIDG of L1. The SIDG can be 
viewed as the extension of the D G  from itcration level to 
statement instance level. In SIDG, instances without data 
dependence can be executed simultaneously. In what fol- 
lows, we give the definition of parallel block to denote the 
union of these instances. 

Definition: Parallel Block 
The S I D G  can be partitioned into several disjoint par- 

allel blocks. The first parallel block of S I D G  consists of 
instance vertices that are not dependent on any other ver- 
tex. The ( i+ l ) th  parallel block is the maximum collection 
of all instances that can be parallel performed after the ex- 
ecution of the ith parallel block. 0 

Figure 2.3(a) displays the parallel blocks of SIDG of L1. 
In the next section, we will illustrate how to derive the 

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 21 ... 

Figure 2.2: The SIDG of loop LI. 

ignoredblock type 1 type2 type 1 type2 type 1 ... 

(a) Two types of parallel blocks in loop LI. 

(b) Combining two parallel blocks into an execution block. 

8 9 IO I1 12 13 14 IS 16 17 18 19 20 21 22 ... 

(c) Combining four parallel blocks into an execution block. 

Figure 2.3: The paralle blocks md he execution blocks of loop Lf. 

parallel blocks. In Figure 2.3(a), the first and the last 
parallel blocks are irregular. For simple discussion of the 
DBSI method, we ignore these two irregular blocks. When 
transforming loop program into DBSI execution form, in- 
stances within these two irregular blocks can be unrolled 
to meet our assumption. 

Two types of parallel blocks can be found in Figure 
2.3(a). There are 7 and 8 parallel instances can be con- 
currently executed in type one and type two of parallel 
blocks, respectively. In a parallel block, too many inde- 
pendent instances have no benefit to parallelism since vec- 
tor computer lacks enough CPUs to concurrently perform 
them. Let an execution block be the union of several par- 
allel blocks. Combining two or more parallel blocks into an 
execution block will incur data dependence in an execution 
block and the number of independent sets may be reduced. 
As shown in Figure 2.3(c), combining four parallel blocks 
into an execution block, the vertices in an execution block 
can be partitioned into 4 independent sets which are la- 
beled by T,,l < i < 4. In the following, we define the 
threads to denote the maximum independent sets in each 
execution block. 

Definition: Thread 
Vertices in an execution block can be partitioned into 

maximum number of sets such that there exists no edge 
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connecting two vertices which are belonged to different 
sets. Under this partition, each set is called a thread. 

The DBSI execution form is translated based on an ex- 
ecution block. That is, multiple CPUs can concurrently 
perform an execution block without synchronization. This 
can be achieved by assigning each thread to each CPU. 
Since there exists no edge connecting two threads, no syn- 
chronization is needed. Within an execution block, reuse 
opportunities exist between two vertices if they have de- 
pendence relation. That  is, there is a reuse opportunity 
between two instance vertices if they are linked by an edge. 
Combining several parallel blocks into an execution block, 
the number of threads may be decreased and the number of 
reuse opportunities may be increased. Figures 2.3(b) and 
2.3(c) respectively display the combination of two and four 
parallel blocks into an execution block. In Figure 2.3(b), 
there are 15 statement instances in an execution block in 
which 7 threads can be found to be concurrently executed 
on 4 CPUs. Let S,(j) denote the computation of instance 
J = j running on statement Si in loop L1. Since Sl(9) and 
Sz(l1) are assigned to the same CPU, A(2 : 129,9) gen- 
erated at  executing Sl(9) will be reused in the same CPU 
at executing Sz(l1). Because that instances connected by 
dependence edges will be collected into a thread and be 
performed by one CPU, the number of exploited reuse op- 
portunities within an execution block can be measured by 
the number of edges fallen in an execution block. As shown 
in Figure 2.3(b), 10 vector reuse opportunities ( there are 
double edges linking from instances of SI and instances of 
Sz) exploited during the execution of an execution block. 
Since there are roughly 640/5 =128 execution blocks, in 
total, 128*10= 1280 vector loads from memory to vector 
registers can be saved. 

Instead, combining 4 parallel blocks into an execution 
block, the execution block contains 30 instance vertices 
which can be partitioned into 4 threads as shown in Figure 
2.3(c). Since sl(9),s~(ll),~3(11),~1(14),s3(15),S~(l6) 
are collected in thread T4 and can be executed by the 
same CPU, reuse opportunities existed in the execution 
of these instances can be exploited. Within an execution 
block, there are 33 reuse opportunities exploited by 4 CPU. 
In total, there are 33 * 64 = 2112 reuse opportunities ex- 
ploited when executing L1. Thus, combining more parallel 
blocks into an execution block can exploit more reuse op- 
portunities. This is due to the fact that more edges will 
fall in an execution block with larger size. 

Within an execution block, the scheduling of threads 
on multiple CPUs are determined by systems at  run time. 
Most compilers of supercomputers can only specify the 
multi-thread and are not capable of scheduling threads on 
multiple CPUs. Let v1 and v2 denote two instance vertices 
that are respectively existed in two neighboring execution 
blocks and there is at  least one dependence edge linking 
from vi to 212, as shown in Figure 2.3(b). Assume that in- 
stances labeled by VI and v2 are respectively scheduled on 
CPUs PI and Pz at run time. For guaranteeing that the ex- 

ecution of 211 is before the execution of v2, synchronization 
should be made between PI and Pz. Reuse thus can only 
be occurred within an execution block since the boundary 
vertices that have dependence relation and are located in 
different execution bloclks may be scheduled on different 
CPUs. Since the number of synchronizations is propor- 
tional to the number of execution blocks, combining more 
parallel blocks into an execution block will reduce the num- 
ber of synchronizations. As shown in Figures 2.3(b) and 
2.3(c), combining 2 and 4 parallel blocks into an execution 
block will cause respective 128 and 64 synchronizations. 

However, combining too many parallel blocks into an 
execution block will loose the parallelism and result in 
some CPUs idle. Thus, factors such as the number of CPUs 
and the complexity of dependence relation should be con- 
sidered as the criteria tal the determination of the number 
of parallel blocks combined into an execution block. As 
described in the next section, we will determine that com- 
bining four parallel blocks of loop L1 into an execution 
block is the best choice for vector computers equipped with 
4 CPUs. From Figure 2.3(c), four threads Ti,l 5 a 5 4, 
within an execution block can be identified as follows. 

D O J =  9, 646, 10 
CODIR Begin-Tasks 
S11 : B ( 2  : 129, J - 1 )  = ,4(a : 129, J - 3) + C(2 : 129, J - 6) 

- E ( 2  : 129,  J - 3) 
s12 : A(a : i a s ,  J + 1 )  = m ( i  : ias, J - a) E ( Z  : ias, J + I )  

s14 : B(a : 129, J + 3) = i t (a  : 119, J + I )  + c ( a  : ias, J - a) 
S13 : A ( 2  : 129, J + a) = Z?(l : 128, J - 1) E ( 2  : 129, J + a) 

- E ( 2  : 129, J + 1) 
S l b  ! C(a : 129, J + 3) = B ( 2  : 129, J - 1) I 3  
5‘16 : B ( 2  : l a s ,  J + 4) = A(2 : 129, J + a) + C(2 : 129, J - 1) 
Si7 : A(2  : 129,  J + 6) = E(l : 128, J + 3) * E ( 2  : 129, J + 6) 
S18 : A ( 2  : 129,  J + 7) = E?(1 : 128, J + 4) * E ( 2  : 129, J + 7) 

Sla : B(2 : lag, J + 8) = A ( 2  : 129, J + 6 )  + C(2 : 129, J + 3) 

. -E@ : 129, J +a)  

s19 : c ( a  : i a s ,  J + 7 )  = n ( a  : ias, J + 3) 3 

slb : c ( a  : ias ,  J + 8 )  = e ( a  : l a g ,  J + 4) 3 
- E ( 2  : 129, J + 6) 

C $ D I R  Next-Task 
Sal : B ( 2  : 129, J) = A(2 : 129, J - a) + C(2 : 129, J - 6) 
Sa2 : A(2  : l ag ,  J + 3) = Z ? ( l  : 128, J) * E ( 2  : 129, J + 3) 

Sa4 : B(2 : ias, J + 6 )  = A(a : 129, J + 3) + C ( 2  : 129, J) 

Sa6 : A ( 2  : lag, J + 8) = B(l : 128, J + 6 )  E ( 2  : 129, J + 8 )  

.-E(a : 129, J - a) 

sa3 : c ( a  : ias, J + 4) = ~ ( a  : ias, J )  3 

- - E ( 2  : 129, J + 3) (LI”) 

sas : c ( a  : lag, J + 9) = n ( a  : ias, J + 5 )  .I 3 

s31 : B(a : l ag ,  J + 1 )  = At(a : ias, J - 1) + c ( a  : ias, J - 4) C $ D I R  Next-Task 

- E ( 2  : 129, J - 1) 
Sg2 : C ( 2  : lag. J + 1 )  = B(2 : lag, J - 3) 3 
S33 : A ( 2  : 129,  J + 4) = E1(1 : 1’28, J + 1) t E ( 2  : 129, J + 4) 
s34 : c ( a  : 129, J + 5) 
sJS : B(a : ias, J + 6) = A(a  : ias, J + 4) + c ( a  : ias, J + 1) 

s3, : c ( a  : ias ,  J + io) = B(2 : ias, J + 6) * 3 

s4a : B ( a  : ias, J + a) = A ( Z  : i a s ,  J )  + c ( a  : ias, J - 3) 

s43 : c ( a  : tag, J + a) = 13(a : ias, J - a) * 3 
s** : C(2 : I D S ,  J + 6) = B ( 2  : 120. J + 2) 3 
sa6 : B ( a  : ias, J + 7) 

n ( a  : l ag ,  J + 1) 3 

- E ( 2  : 129, J + 4) 
S36 : A(a i ias, J + 9) = .?3(l : 118, J + 6) E ( 2  : 199, J 9) 

C $ D I R  Next-Task 
S41 : A(a : lag,  J) = B(l : 128, J - 3) E ( 2  : 129, J )  

. - ~ ( a  : l ag ,  J) 

S44 : A ( 2  : ias, J + 5) = E 3 ( l  : 1’28, J + a) 8 E ( 2  : 129,  J + 5 )  

ri(a : lag, J + 6) + c(a : ias, J + a )  
. - E ( a  : 129, J + 6) 

CIDIR End-Tasks 
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DNDDO 
Parallel do the following irregular parallel block 

EndParallel 
Si (639), . . . 51 (646), Sa(638), . . . , Sa(646), S3(640), . . . , S ~ ( 6 4 6 )  

Compared with Ll‘, loop L l”  is superior since the number 
of synchronizations in L1” is (645 - 9 + 1)/10 = 64. There 
are 33 reuse opportunities have been exploited in an exe- 
cution block. For example, in the fourth task of loop Ll” ,  
vector data A(2 : 129, J )  and E ( 2  : 129, J) referenced by 

can be immediately reused by s 4 2 .  In total, there are 
33* (645 - 9 + 1)/10 = 2112 vector loads saved. Thus, loop 
L1” is better than L1’ in the number of synchronizations 
and the degree of reuse exploitation. We run loops L1’ and 
L1” on Convex C3840 with 4 CPUs by 10000 calls to scale 
the execution time measured in second. Compared to loop 
Ll’,  loop Ll”  has 39.08% improvement in execution time. 

Note that,  in general, statement instances within a 
thread (or a task) can be transformed into a loop form. 
In loop Ll”, because the number of instances within a 
thread is small, we apply loop unrolling technique to each 
task. 

3 Extracting Multi-Thread with Lo- 
calities in DBSI Execution Form 

The DBSImethod can be categorized into three phases. 
In phase one, the translator should identify the basic par- 
allel blocks. The second phase is to combine some parallel 
blocks into an execution block. In the third phase, compil- 
ers or translators should identify the threads in an execu- 
tion block. The transformation scheme then automatically 
restructures the original vectorized loop program and in- 
serts the proper compiler directives to  generate the DBSI 
execution form. 

We first describe how the translator can identify the ba- 
sic parallel blocks for a given loop program. Without loss 
of generality, we assume that the input source is vectorized 
in the first dimension of array operations. Let value w(d) 
[7] o f  the dependence vector d = ( d 1 ,  . . . , d n )  be 

n-1 n 

i=2 j=i+l 

where U, and lJ respectively denote the value of upper and 
lower bounds of induction variable I,. As an example, in 
Figure 2.1, value of 21, &, d3, &, and &, are respective 
2, 2, 3, 4, and 5. To identify the basic parallel blocks, a 
restricted dependence graph defined as follows should first 
be constructed. 

Definition: Restricted Dependence Graph (RDG) 
Assume there are 3 statements in loop L. Let Ei de- 

note the set of edges pointing to node S, in DG, where 
1 5 i 5 s. Let dJ be the labels of edges e, E E,. A re- 
stricted dependence graph RDG(N,  E’) or RDG of loop L 
is a subgraph of DG(N,  E ) .  The node set in RDG is the 
same as one in DG and the edge set E’ is a subset of E. 

Figure 3.1 : The restricted dependence graph of loop Ll .  

Edge e, E E, belongs to E’ if its label has minimum value 
in E,, for 1 5 i 5 3. That  is, 

E’ = {e,le, E E,,v(d,)  = min(v(d,,)), for a l l  e3’ E E,}. 
0 

Figures 2.1 and 3.1 respectively display the DG and RDG 
of loop L1. The value of dependence vector pointing to 
Si in RDG indicates the amount of parallel instances of 
Si in a parallel block. The dependence vectors in RDG 
represent the information of the size of parallel blocks in 
SIDG. 

To identify the parallel block in SIDGfor a given RDG, 
an 3 x 1 restricted matrix R, representing the RDG and 
an s x 3 transformation matrix T operated on R ,  should 
be constructed. In RDG, let dependence vector d be the 
label of edge e pointing to node Si. The value of ith row of 
R ,  is equal to the value of d. The j t h  row of matrix T i s  
equal to  I ;  if there exists an edge pointing from statement 
S; to statement S, in RDG, where I ,  is the i th row of the 
3 x 3 identity matrix and 1 5 i , j  5 3. For instance, the 
restricted matrix R ,  and the transformation matrix T of 
loop L1 are respective 

0 1 0  

R - = [  $!4]3x1=[ V ( d 3 )  4 1  a n d T = [ ;  ; 
Value in the ith row of R ,  denotes the number of instances 
of Si in the first irregular basic parallel block. The multi- 
plication relation of matrices T and R, denotes the block 
size transition from the current parallel block to the next 
one. 

Let T‘ denote the multiplication of i matrices T.  A 
minimum integer T is said to be repeating number  if T sat- 
isfies T“ * R ,  = T‘+‘: * R ,  for c 2 1. The existence of 
repeating number T is obvious. The size of basic parallel 
blocks of SIDG can be represented by several s x 1 block 
size matrices (BSM) 

B S M  = [ T“ * R ,  ] s x l  . . . [ TCt‘-l * E m  l s x l ,  
where the ith column matrix TCt’-’ * R,, 1 5 i 5 r ,  
denotes the size of the ith basic parallel block if we ignored 
the first c irregular parallel blocks. Statement instances in 
SIDG can be categorized into T types of basic block whose 
size can be denoted by BSM. For example, in loop L1, 
T * R ,  = [2 ,3,  2 J t ,  T2  * R ,  = [3 ,2,  3It, and * R ,  = 

470 

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on October 02,2025 at 16:34:24 UTC from IEEE Xplore.  Restrictions apply. 



J=1 j=l j = 3  j=.j J=l J=l J=3 5 4  
J=1 J=l J=3 J=4 

. .  
(a) original slm. 

Figure 3.2: Necessary and unnecessary edges in SIDG. 

[2,3,2]*. Thus, we have c = 1 and T = 2. The size of basic 
parallel blocks can be denoted by 

B S M = [  i ]  [ I ]  
which denotes the size of two types of basic parallel blocks 
as shown in Figure 2.3(a). The size of the first type of 
basic parallel block can be represented by the first column 
[2,3, 2]* of BSM. The first row has value 2 denoting that 
there are two instances of SI in type one of parallel block 
as shown in Figure 2.3(a). 

If an execution block consists of T contiguous parallel 
blocks, the number of instances within an execution block 
is equal to e:=, p : ,  where p i  denotes the value of 
ith row of j t h  column of B S M .  This yields the following 
property holds. 

PFWPERTY 3.1: The basic parallel blocks have the property 
that combining T parallel blocks into an execution block, 
the instances of SIDG will be equally partitioned. That  is? 
all execution blocks have the same size of E:=, ps 
instance vertices. 0 

By way of example, Property 3.1 can be examined in loop 
Ll .  In Figure 2.3(b), combining r = 2 parallel blocks into 
an execution block, each execution block contains 15 in- 
stances and the SIDG is equally partitioned. Usually, the 
number of CPUs is less than the number of threads in a 
basic parallel block. Too many threads can not benefit 
to parallelism and in contrary limit the reuse exploitation. 
Thus, further combining several basic parallel blocks into 
an execution block is needed. 

Within an execution block, a pair of vertices (vi, v j )  is 
said to be reachableif there exists at  least one path in SIDG 
from v; to v j  which may consist of several directed edges. 
A dependence vector d, E SIDG is said to be necessaryif 
there exists at least one reachable pair (v , ,v j )  such that 
removing d;  will cause (vi, v j )  unreachable. For example, 
the unnecessary dependence 2 2  in Figure 3.2(a) can be re- 
moved and the resultant SIDG is shown in Figure 3.2(b). 
Both d1 and & are necessary. For instance, removing dl 
will cause (S1(1),&(2)) unreachable. It is easy to verify 
that an existing dependence edge is necessary or unneces- 
sary. A dependence edge d; is unnecessary if it is a linear 
combination of other dependence vectors. 

In what follows, we will pay attention to  the determi- 
nation of size of an execution block. Before that,  we intro- 
duce some notations which are used in the derivation of a 
feasible size of an execution block. 

I :  

k: 

i ( k ) :  
#a,: 

p' : 

({k): 
mi 

#CPU: 

the number of at.dsmonts in loop body 
the number of parallel blocks combined into an execution 
block, k is s mnltipla of r 
number of thrcadla existed in an execution block 
the number of inatsncs pdrs that are connected by 
dependence v e c t o i  6, within an execution block 
the value of cth I O W  of j th column of W S M  
the number of toisl instances within an execution block 
the number of ncccaaory dcpondsnsc vectors existed in an 
execution block 
the number of CPU. system supports 

According to  the Property 3.1, the number of total in- 
stances in an execution block is equal to 

(1) i = l  j=1 

The number of threads within an execution block can be 
estimated by 

for all necessary dependence vectors d* in an execution 
block. The reason is stated as follows. After remov- 
ing unnecessary edges from an execution block, there still 
exist czl #& edges in an execution block. Since two 
vertices linked by a directed edge belong to  the same 
thread, there are e,"=, #& vertices should be combined 
with other vertices. The number of threads is a t  most 
€(k) - # d , .  However, if there exists complex de- 
pendence relation among vertices such that the number of 
thread is only one, the value [(k) - E:, #& may be less 
than one. As shown in Figure 3.2(c), all dependence edges 
are necessary, the value of ((k) - #dl is 8 - 10 = -2. 
Thus, the "otherwise" condition is needed to deal with 
this condition. As an eKample, in Figure 2.3(c), all edges 
except 2 2  are necessary, the value of [(k) - #& is 
30 - (7 + 8 + 8 + 3) = 4. Thus, we know that the execution 
block combined by 4 parallel blocks has 4 threads. Since 
the number of threads ie, the main parameter for determin- 
ing the size of an execution block, for quickly determining 
the feasible size of an execution block, we use formula (2) 
to measure the number of threads for a given fixed size ex- 
ecution block instead of extracting threads from the given 
execution block. 

The following theorem derives the degree of reuse ex- 
ploitation and the number of synchronizations for a given 
execution block. 

THEOREM 3.2: Let there be IC parallel blocks combined 
into an execution block. The number of synchronizations 
and the number of reuse exploitation in loop L are respec- 
tive 
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where 2 is the number of dependence vectors in DC. 
Proof: 

See [6] in detail. 0 

For example, in loop 151, the number of statements is s = 3. 
There are T = 2 types of basic parallel blocks in SZDG. If 
we combine k = 2 parallel blocks into an execution block 
as shown in Figure 2.3(b), the number of total instances in 
an execution block is equal to t ( 2 )  = E,=, p: = 15. 
By applying formula (a), the number of threads in an ex- 
ecution block is 

3 2  

m 

t(2) = t(2) - E#& = 15 - (2 + 3 + 3 + 0) = 7. 

In Figure 2.3(b), instances of an execution block are di- 
vided into 7 threads T,, for 1 5 i 5 7. The number of 
synchronizations is 9 = 128. The number of reuse ex- 
ploitation is 

s = l  

3 * (#d; + #& + #& + #& + #&) * 640 
15 

- 3 * (2 + 2 + 3 + 3 + 0 )  * 640 = 1280, - 
15 

Similarly, as shown in Figure 2.3(c), the execution block 
combined by 4 parallel blocks has t(4) = 4 threads. The 4 
CPUs system supported can be fully utilized. The number 
of synchronizations is - = 64. The number of reuse ex- 
ploitation is - = 2112. Thus, the execution block 
combined by 4 parallel blocks is better than one combined 
by 2 parallel blocks due to that the former has fewer syn- 
chronizations and higher degree of reuse exploitation. 

If the number of threads is larger than the number 
of available CPUs, we can further combine more parallel 
blocks into a larger execution block such that the num- 
ber of threads and the number of synchronizations can be 
decreased and the degree of reuse exploitation can be in- 
creased. Value k that satisfies the following criterion can 
be a feasible solution to the determination of size of an 
execution block. 

CRITERION: The maximal value k that satisfies 
m 

t ( k )  = [(k) - E#& 2 #CPU 
i = l  (3) 

is a feasible solution to the determination of size of an ex- 
ecution block. 

Value k satisfying condition (3) yields that the reuse op- 
portunities can be exploited and the number of synchro- 
nizations can be reduced as possible under the constraint 
that the degree of parallelism is maximized according to 
the number of available CPUs. 

In loop L l ,  the optimal value of k=4 can be obtained 
since the #CPU is 4 in Convex '23840 vector computer. 
Figure 2.3(c) displays the 4 threads in an execution block 
which is obtained by combining 4 parallel blocks. A greedy 

algorithm can be applied to determine the value of k. If the 
current execution block has the number of threads larger 
than #CPU, we may increase the value of k as far as 
condition (3) holds. Note that if the parallel block's size is 
too small such that the number of threads within a parallel 
block is less than the number of CPUs, compilers may ad- 
ditionally extract threads from the vectorized dimension. 
Thus, in worst case, the multi-threading scheme will de- 
generate to the original rules of current vector compilers. 

After the size of execution block is determined, the next 
goal of DBSI approach is to identify the threads and trans- 
form them into the DBSI execution form. Partitioning 
method in [6] can be applied such that instances of an 
execution block can be partitioned into several threads. 
The time complexity of identifying t threads is O(lEl),  
where !El denotes the number of edges in DG of loop L. 
Translation then can be made to transform the original 
loop program L into DBSI execution form in which mul- 
tiple threads are defined and the reuse of each thread is 
exploited. 

4 Performance Analysis 

In this section, we measure the performance improve- 
ment of several application programs by applying the pro- 
posed DBSI scheme. For each program, two versions of 
multithreaded program are measured in Convex C3840 
which is equipped with 4 CPUs for parallel processing. 
For the first version, we take vectorized program written 
in Fortran 90 language as the input of vector compiler of 
Convex. To inform the vector compiler of Convex C3840 
generating a multi-thread object code, we set the compi- 
lation option with '-03 -f90'. The object code generated 
by vector compiler is referred to the original version. In- 
stead, another version is generated by the following two 
steps. First, the vectorized program written in Fortran 
90 language is taken as the input of the DBSI scheme. 
The DBSZ scheme analyzes the dependence relation and 
then partitions the vector operations into multi-thread By 
inserting the compiler directives. The multi-thread code 
translated by using the DBSI scheme is then taken as the 
input of vector compiler of Convex C3840 in the second 
step. The generated object code by these two steps is re- 
ferred to  the DBSI version. 

Loops selected as the source programs for comparison 
can be roughly cataloged into two classes. The first class 
is the vector benchmark that is extracted from NETLIB 
of NCHC (National Center for High Performance Com- 
puting). The benchmark consists of 107 subroutines of 
loops that are originally designed for testing the vector- 
ization capability of PFC [l] [9]. In total, there are 65 
subroutines can be vectorized by vector compiler of Con- 
vex. The 65 subroutines are compiled and the execution 
time of two versions, the original version and the DBSI 
version, is compared. In total, there are 21 subroutines 
improved by applying our DBSI scheme. 

The second class selected as the benchmark programs 
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consists of several libraries including subroutines of BLASl 
and BLAS2. The level 1 BLAS (Basic Linear Algebra Sub- 
programs) and level 2 BLAS respectively perform the vec- 
tor/vector and matrixlvector operations. All subroutines 
of BLASl and BLAS2 are designed in libraries for calls 
in most supercomputers. The subroutines of BLASl and 
BLAS2 used as the input source are also stored in NETLIB 
of NCHC. 

The experimental results of execution time and speedup 
for these two classes of programs are summarized in Table 
I. Note that, the benchmark programs with the same exe- 
cution time in both versions are not listed in Table I. Un- 
der the assistance of DBSI scheme, the vector compiler of 
Convex C3840 generates more efficient multi-thread codes. 
Compared with the original version, the DBSI version in 
average has a speedup of 2.54. The main factors of im- 
provement are the number of synchronizations and the 
reuse exploitation. The reuse exploitation of vector reg- 
ister data has significant effect on those programs that are 
vectorized in the second dimension of array operations. 
This is due to the fact that  the vector data accessing with 
a larger memory stride needs more memory accessing time. 
This effect can be found in speedup of programs S029, 
S084, and SlOO as shown in Table I. 

Table I .  Comparisons of original and DBSI versions for benchmarks 

n Benchmarks I Problem I Original I D E S I  I speedup fl 
I Sive I version I version I U 

The DBSI scheme reduces not only the the number of 
synchronizations but also the memory accesses for a vector- 
ized program written in Fortran 90. Experimental results 
show that vector compiler assisted by the the DBSI multi- 
threading technique usually produces a more efficient code 
for users to early complete their program execution. 

vector operations which have reuse opportunities into one 
thread and individually executed by one CPU. For vec- 
tor computers with powerful vector processing and par- 
allel processing capabilities, multiple CPUs can concur- 
rently perform multi-thread with less synchronizations and 
higher degree of vector :reuse exploitation. 

Comparisons have been made in Convex C3840 super- 
computer by using several application loop programs. Ex- 
permantal results show that our multi-threading scheme 
assists vector compiler of Convex C38 series to generate 
a more efficient multi-tlhread code and usually obtains a 
better performance. 
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