Extracting Multi-thread with Data Localities
for Vector Computers *

Jang-Ping Sheu and Chih-Yung Chang

Department of Computer Science and Information Engineering
National Central University, Chung-Li 32054, TAIWAN
E-mail: sheujp@mbox.ee.ncu.edu.tw

Abstract

In this paper, we propose a source-to-source compilation
strategy to partition vectorized loop programs into multi-
thread execution form. FEach partitioned thread consists
of instances of statements with localities in vector regis-
ters. The multi-threading scheme gives a novel combina-
tion of loop unrolling [9], statement instances reordering,
index shifting [5], vector register reuse exploiting [2}, and
multi-threading. Exzpermantal results show that our multi-
threading scheme assists vector compiler of Convez C38
series to reduce the number of memory accesses and the
number of synchronizations among CPUs and usually ob-
tains a better performance.

Keywords: Data dependence, loop optimization, multi-
thread, parallelism, vector compilers, vector register reuse.

1 Introduction

Recent vector computers are equipped with several
CPUs and a hierarchical memory to offer both vectoriza-
tion and multiprocessing capabilities. In vector processing,
a large class of loop programs applied in solving differential
equations, fourier transform, image processing, and neural
processing can be translated or rewritten into a vector ex-
ecution form [1]. For these available vectorized programs,
proper partition of the vector operations for parallel pro-
cessing can significantly utilize the hardware design of mul-
tiple CPUs and reduce the execution time. In parallel pro-
cessing, several CPUs can work together to concurrently
perform tasks which consist of scalar or vector operations
defined in program. Synchronizations are needed among
these CPUs if their references of array data have depen-
dence relation.

The factors determine the system performance of vector
computers are not only parallelism but also the memory
management. If compilers are capable of exploiting the
opportunities of vector data reuse, the execution time of

*This work was supported by the National Science Council
of the Republic of China under Grant NSC 83-0408-E-008-018.

0-8186-6555-6/94 $04.00 © 1994 IEEE

466

loop program can be significantly improved [2]. However,
the discussions of reuse exploiting in vector computers fo-
cus mainly on single CPU. Recently, Irigoin and Triolet
proposed supernode partitioning technique [4] to vector-
ize and parallelize the sequential loop program according
to the data dependence relation. Multiple CPUs thus can
concurrently execute vector operations in a manner of data
reuse exploitation. However, two more efforts are needed
to be further paid. First, there is one dependence vector
considered to exploit the reuse opportunity. The degree
of reuse exploitation may be further improved if the given
loop program has complex dependence relation. Second,
the supernode partitioning treats an iteration as the min-
imum parallelism unit. Statement instance partition may
extract more parallelism from loop program which has the
m-block dependence graph. We are motivated to design a
systematic strategy to flexibly partition the vector opera-
tions into multi-thread such that the number of synchro-
nizations and the degree of data reuse exploitation can be
improved.

The approach adopted here automatically reconstructs
the loop programs into multi-thread execution form with
fewer synchronizations and more reuse exploitation of vec-
tor register data. Comparisons are made to illustrate
that vector compiler assisted by the proposed multi-thread
scheme usually produces a more efficient code for users to
early complete their program execution.

2 Loop Model and Basic Concept

Definition: Data Dependence Graph

A data dependence graph DG(N, E) or DG of an n-
nested sequential loop or an (n — 1)-nested vectorized
loop L consists of a set of nodes N and a set of di-
rected edges E. The node labeled by S denotes a state-
ment S in loop L, while an edge labeled by a depen-
dence vector d = (di,dz,...,ds) links from node S to
node S’ if array data are first referenced by S in iteration
i, and then referenced again by S’ in iteration j, where
(d1,d2,...,dn) =7 — 1. o

There are four types of dependence vectors, the input, out-

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on October 02,2025 at 16:34:24 UTC from IEEE Xplore. Restrictions apply.

put, true dependencies, and the anti-dependence [9], possi-
bly existing in loop L. Traditional vectorization techniques
[9] first analyze the data dependence relation and then de-
compose the DG into several w-blocks; each of them is a
strongly connected component. Loops without n-block DG
are easy to be dealt with in parallelism extraction, synchro-
nizations reduction, and reuse exploitation. Here, we focus
our attention on loops with #x-block DG. There are very
few reuse opportunities if references are not uniformly gen-
erated. In this paper, only constant true dependence and
input dependence which effect significantly the extraction
of reuse and parallelism are considered. The loop L con-
sidered as our input source is formulated as the following
(n — 1)-nested vectorized loop program.

DO Iy = Iy, ugy

DO In = lp,tp
vectorized statement Sy

. (L)

vectorized statement S,

ENDDO
ENDDO

where I; and u; are respectively normalized lower bound
and upper bound of index variable I;, for 2 < ¢ < n. The
DG of loop L is a m-block. A large class of application
algorithms such as solving differential equations, fourier
transform, image processing, and neural processing falls in
this model.

Several vector compilers offer compiler directive instruc-
tions for programer to manually perform the loop opti-
mization. However, unless that users are skilled in parallel
program design, it is difficult to write an efficient program
with explicit definitions of multi-thread. In this paper, the
proposed multi-threading scheme automatically restruc-
tures the loop program and inserts the proper compiler
directives to specify the multi-thread. Two compiler direc-
tives related to multi-thread identification are introduced
as follows. Instructions introduced here are recognizable
to compiler of Convex C38 series (3].

Let FORCE_PARALLEL be the compiler directive state-
ment that informs compiler to parallelize the loop that
follows, regardless of apparent of dependencies between it-
erations. As an example, consider the following loop pro-
gram.

DO I =1,n

C$DIR Force.Parallel
DO Iy=1,4
vectorized statements
ENDDO
ENDDO
The FORCE_PARALLEL directive will assist compiler to par-
allelize the execution of four instances Iz =1, I;=2, I,=3,
and I;=4 of vector statements on 4 CPUs. Since loop I
is a sequential loop, synchronizations are needed among
these CPUs to guarantee the sequential execution of loop
Ii. In this example, there are n synchronizations needed
among 4 CPUs.
Another compiler directive also can be used to define

multi-thread. Let the compiler directive

467

C$DIR Begin.Tasks
{statement group 1}

C$DIR Next_Task
{statement group 2}

C$DIR Next._Task
{statement group t}

C3$DIR End.Tasks
can instruct the compilers to parallelize ¢ threads (or
tasks). If the BEGIN_TASKS ... END_TASKS directive ap-
pears in loop body of a loop program, the execution form
is referred to DBSI (Different Body Same Instance) since
the multi-thread is defined by running same instance on
different statement groups.

Consider the following vectorized loop program L1.

DO J = 6, 645

Syt A(2:129,J) = B(1:128,J = 3) e E(2: 129, J)
Sg: B(2:129,J) = A(2:129,J - 2) +C(2:129,J — 5)
~1(2:129,J ~ 2) (L1)
S3: C(2:129.J)=B(2:129,J — 4) + 3
ENDDO

In L1, the data dependence vectors are

czl =(0,2), d:g = (0,2), d3 = (1,3) between S; and Sz,
ds = (0,4), ds = (0,5} between Sz and S3

as shown in Figure 2.1 where the input dependence d; is
denoted by a dotted line and the true dependencies are
denoted by solid lines. Although there exists an input de-
pendence (1, —1) of array B between statements S; and
S3, their data reuse opportunities can be exploited by con-
sidering the d3 and ds. Thus, this input dependence is
redundant in reuse exploitation and can be ignored.

Assume that there are 4 CPUs supported by system.
Compiler of Convex C3840 will parallelize loop I and se-
quentially execute the loop J as shown in the following
equivalent code.

DO J =6, 645
C3$DIR Force-Parallel

DO I = 2,129, 32
S1: AT :1431,7)=B(I—-1:1430,J=3)sBE(I:1I+431,J)
Sg :BI:I+431,))=A(:1+431,J-2)+C(I:I431,J<35)

~B(I :1431,J—-2)

S3:C(I:I1+431,J)=BI:I431,J—-4)e3

ENDDO

ENDDO

@)

The compiler partitions the vector length of 128 into 4
subsets each contains contiguous 32 instances and then
vectorizes each subset in a vector length of 32. Due to
that loop J is a sequential loop, synchronization should be
made at each running iteration of loop J. An attempt to
perform loop interchange on loops I and J to reduce the

dr1 =02 da=(0,4)

ds =(0, %)

d3=(13)
Figure 2.1: The DG of loop L1.

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on October 02,2025 at 16:34:24 UTC from IEEE Xplore. Restrictions apply.

number of synchronizations will cause semantic error. This
is due to the fact that B(33, 6) generated by the first thread
I = 2 at the execution of J = 6 on S, will be referenced
again by the second thread I = 34 at the execution of
J = 9 on S1. Two drawbacks are found in multi-thread
version L1’.

(1) The number of synchronizations is equal to 645 — 6 +
1 = 640 which can be reduced by the proposed tech-
nique introduced in this paper.

(2) No data reuse is exploited in loop L1'.

Instead, the loop L1 can be transformed into another bet-
ter version, the DBSI execution form, to exploit the reuse
opportunities and reduce the number of synchronizations.

We first introduce the definitions of SIDG and parallel
block. The DBSI method is then introduced by example of
loop L1.

Definition: Statement Instance Dependence Graph
(SIDG)

A statement instance dependence graph, denoted by
SIDG(V, E) or SIDG, of loop L consists of a set of ver-
tices V and a set of directed edges £. Each vertex in set V'
represents an instance of a vectorized statement in L and
a directed edge labeled by d connects two vertices from v;
to v; if they have dependence relation, where d is the label
of edge linking from S; to S; in DG and v; and v; are the
respective instances of S; and Sj. 0

Figare 2.2 displays the SIDG of L1. The SID@ can be
viewed as the extension of the DG from iteration level to
statement instance level. In SIDG, instances without data
dependence can be executed simultaneously. In what fol-
lows, we give the definition of parallel block to denote the
union of these instances.

Definition: Parallel Block

The SIDG can be partitioned into several disjoint par-
allel blocks. The first parallel block of SIDG consists of
instance vertices that are not dependent on any other ver-
tex. The (¢+1)th parallel block is the maximum collection
of all instances that can be parallel performed after the ex-
ecution of the ith parallel block.]

Figure 2.3(a) displays the parallel blocks of SIDG of L1.
In the next section, we will illustrate how to derive the

9 10 11 12 13 14 15 16 17 1B

19 20 21 22 ..

SpuIwRIels
g l

| o
~

-

o

468

10

17 18 19 20 2) 22 ...

wE

SuIWANES

o]
ignored block typel type2 typel type2 typel

(a) Two types of parallel blocks in loop L1.

9 10 11 12 13 14

SUALFIS

(c) Combining four parallel blocks into an execution block.

Figure 2.3: The paralle blocks and the execution blocks ol loop L.

parallel blocks. In Figure 2.3(a), the first and the last
parallel blocks are irregular. For simple discussion of the
DBSImethod, we ignore these two irregular blocks. When
transforming loop program into DBSI execution form, in-
stances within these two irregular blocks can be unrolled
to meet our assumption.

Two types of parallel blocks can be found in Figure
2.3(a). There are 7 and 8 parallel instances can be con-
currently executed in type one and type two of parallel
blocks, respectively. In a parallel block, too many inde-
pendent instances have no benefit to parallelism since vec-
tor computer lacks enough CPUs to concurrently perform
them. Let an execution block be the union of several par-
allel blocks. Combining two or more parallel blocks into an
execution block will incur data dependence in an execution
block and the number of independent sets may be reduced.
As shown in Figure 2.3(c), combining four parallel blocks
into an execution block, the vertices in an execution block
can be partitioned into 4 independent sets which are la-
beled by Ti,1 < 3 < 4. In the following, we define the
threads to denote the maximum independent sets in each
execution block.

Definition: Thread

Vertices in an execution block can be partitioned into
maximum number of sets such that there exists no edge

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on October 02,2025 at 16:34:24 UTC from IEEE Xplore. Restrictions apply.

connecting two vertices which are belonged to different
sets. Under this partition, each set is called a thread. 0O

The DBSI execution form is translated based on an ex-
ecution block. That is, multiple CPUs can concurrently
perform an execution block without synchronization. This
can be achieved by assigning each thread to each CPU.
Since there exists no edge connecting two threads, no syn-
chronization is needed. Within an execution block, reuse
opportunities exist between two vertices if they have de-
pendence relation. That is, there is a reuse opportunity
between two instance vertices if they are linked by an edge.
Combining several paralle] blocks into an execution block,
the number of threads may be decreased and the number of
reuse opportunities may be increased. Figures 2.3(b) and
2.3(c) respectively display the combination of two and four
parallel blocks into an execution block. In Figure 2.3(b),
there are 15 statement instances in an execution block in
which 7 threads can be found to be concurrently executed
on 4 CPUs. Let S;(j) denote the computation of instance
J = j running on statement S; in loop L1. Since 51(9) and
S2(11) are assigned to the same CPU, A(2 : 129, 9) gen-
erated at executing S1(9) will be reused in the same CPU
at executing S2(11). Because that instances connected by
dependence edges will be collected into a thread and be
performed by one CPU, the number of exploited reuse op-
portunities within an execution block can be measured by
the number of edges fallen in an execution block. As shown
in Figure 2.3(b), 10 vector reuse opportunities (there are
double edges linking from instances of S; and instances of
52) exploited during the execution of an execution block.
Since there are roughly 640/5 =128 execution blocks, in
total, 128*10= 1280 vector loads from memory to vector
registers can be saved.

Instead, combining 4 parallel blocks into an execution
block, the execution block contains 30 instance vertices
which can be partitioned into 4 threads as shown in Figure
2.3(c). Since S1(9),82(11), Sa(11), 51(14), S3(15), S2(16)
are collected in thread 7, and can be executed by the
same CPU, reuse opportunities existed in the execution
of these instances can be exploited. Within an execution
block, there are 33 reuse opportunities exploited by 4 CPU.
In total, there are 33 * 64 = 2112 reuse opportunities ex-
ploited when executing L1. Thus, combining more parallel
blocks into an execution block can exploit more reuse op-
portunities. This is due to the fact that more edges will
fall in an execution block with larger size.

Within an execution block, the scheduling of threads
on multiple CPUs are determined by systems at run time.
Most compilers of supercomputers can only specify the
multi-thread and are not capable of scheduling threads on
multiple CPUs. Let v; and v, denote two instance vertices
that are respectively existed in two neighboring execution
blocks and there is at least one dependence edge linking
from v1 to vz, as shown in Figure 2.3(b). Assume that in-
stances labeled by v: and v2 are respectively scheduled on
CPUs P, and P; at run time. For guaranteeing that the ex-

469

ecution of v; is before the execution of v, synchronization
should be made between P; and P,. Reuse thus can only
be occurred within an execution block since the boundary
vertices that have dependence relation and are located in
different execution blocks may be scheduled on different
CPUs. Since the number of synchronizations is propor-
tional to the number of execution blocks, combining more
parallel blocks into an execution block will reduce the num-
ber of synchronizations. As shown in Figures 2.3(b) and
2.3(c), combining 2 and 4 parallel blocks into an execution
block will cause respective 128 and 64 synchronizations.
However, combining too many parallel blocks into an
execution block will loose the parallelism and result in
some CPUsidle. Thus, factors such as the number of CPUs
and the complexity of dependence relation should be con-
sidered as the criteria to the determination of the number
of parallel blocks combined into an execution block. As
described in the next section, we will determine that com-
bining four parallel blocks of loop L1 into an execution
block is the best choice for vector computers equipped with
4 CPUs. From Figure 2.3(c), four threads T;,1 < ¢ < 4,
within an execution block can be identified as follows.

Ty = {S3(8), S1(10), 51 (11), S2(12), S3(12),
S2(13), S3(15), Sy (16), 53(16), S2(17), S3(17)}
Ty = {S3(9), 51(12), S3(13), S3(14), S1(17), S3(18)},

T3 ={52(10), S3(10), 51(13), S3(14), S2(15), 51(18), S3(19)},
Ty = {S1(9), S2(11), S3(11), 51(14), S3(18), S3(16)}.

The finial DBSI execution version can be written in
following loop L1” by using the compiler directive BE-
GIN.TASKS ... END_TASKs

Parallel do the following instances of the irregular parallel block
51(6), 51(T), 51(8), 52(5) S3(7), S3(6), S3(7), S3(8), S3(9)
End_Parallel
DOJ= 9, 645, 10
CsDIR Begin_Tasks

Sy :B(2:129, 7 - 1) = A(2:129, J = 3) 4+ C(2:129,J ~ 6)
~-FE(2:129,J - 3)

S12:A(2:129, J4 1) =B(1:128,J - 2)+ E(2:129, J+1)

S33:A(2:129,742)=B(1:128,J~1)2E(2:129,7J+12)

S14:B(2:129,J7+43) = A(2:129, T+ 1)+ C(2:129, J ~ 2)
-B(2:129, J 4 1)

S15:C(2:129, J43) = B(2:128, J—1)x3

S1g:B(2:129, J+4) = A(2:129, T +2)+ C(2:129, T~ 1)
—~E(2:129,J +2)

S17:A(2:129,J+6) = B(1:128,J 4+ 3) = E(2:129,7J46)

S18:A(2:129, T4+ 7) = FB(1:128,J+4)*F(2:129,J4+7)

S19:C(2:129, T4+ 7)=B(2:129, 7+ 3)e3

S1q 1 B(2:129, T 4 8) = A(2:129,J 4 6) 4 C(2:129, J 4 3)
~EB(2:129,J +6)

»:C(2:129,J 4+ 8) = B(2:129, J+4)‘3
CSDIR Next.Task

Sg1:B(2:129,J) = A(2:129,J -~ 2)+ C(2:129,J — 5)
~-E(2:129,J ~ 2

Sgg: A(2:129,J+3) = B(1:128,J)« E(2:129,J +3)

S93:C(2:129,74+4) =B(2:129,J)#3

S04 :B(2:129, 74+ 5) = A(2:129, T4+ 3) 4 C(2:129,)
~E(2:129, J 4+ 3) 1)

Sgs tA(2:129, J+8) = B(1:128,J+58)» E(2:129,J +8)

6:0C(2:129, J+9)=HB(2:129,J+5)*3

C$DIR Next.Task

S31:B(2:129, J41) = 4(2:129,J - 1)+ C(2:129, J - 4)
~FE(2:128,J—1)

S39:0C(2:129, J41) = B(2:129,J —3)»3

S33:A(2:129,J+44) = B(1:128,J+ 1)+ B(2:129,J +4)

S34:C(2:129, J4+58)=B(2:129,J+1)e3

S3g i B(2:129, J+6) = A(2:129, J+4) 4+ C(2:129,J +1)
~E(2:129,7 + 1)

Sse tA(2:129, 74 9) =B(1:128,J+6)#E(2:129,J +9)

7:C(2:129,J+10) = B(2:129,J+46)+3
C$DIR Next_Task

S41:A(2:129,7) = B(1:128,J — 3) » B(2:129, J)

Sz : B(2:129, 74 2) = A(2:129,J) + C(2:129,J — 3)
—-E(2:129,)

S43:C(2:129,J42) =B(2:129,J—-2)*3

Sqq:A(2:129, J4+8)=B(1:128, J42)*«F(2:129,J +5)

S45 * c(2:129, T+ €) = HB(2:120,J 4 2)e3

S46:B(2:129, J47) = A(2:129, J 4 5)+ C(2:129, J +2)
-B(2:129, J 4+ §)

C$DIR End.Tasks

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on October 02,2025 at 16:34:24 UTC from IEEE Xplore. Restrictions apply.

BENDDO

Parallel do the following irregular parallel block
$1(639),...51(648), S5(638), ..., S;(645), S3(640), ..

End.-Parallel

., S3(648)

Compared with L1’, loop L1” is superior since the number
of synchronizations in L1” is (645 ~9+1)/10 = 64. There
are 33 reuse opportunities have been exploited in an exe-
cution block. For example, in the fourth task of loop L1”,
vector data A(2:129,J) and E(2 : 129, J) referenced by
S41 can be immediately reused by Sy2. In total, there are
33%(645—9+1)/10 = 2112 vector loads saved. Thus, loop
L1" is better than L1’ in the number of synchronizations
and the degree of reuse exploitation. We run loops L1’ and
L1"” on Convex C3840 with 4 CPUs by 10000 calls to scale
the execution time measured in second. Compared to loop
L1', loop L1” has 39.08% improvement in execution time.

Note that, in general, statement instances within a
thread (or a task) can be transformed into a loop form.
In loop L1”, because the number of instances within a
thread is small, we apply loop unrolling technique to each
task.

3 Extracting Multi-Thread with Lo-
calities in DBSI Execution Form

The DBSImethod can be categorized into three phases.
In phase one, the translator should identify the basic par-
allel blocks. The second phase is to combine some parallel
blocks into an ezecution block. In the third phase, compil-
ers or translators should identify the threads in an execu-
tion block. The transformation scheme then automatically
restructures the original vectorized loop program and in-
serts the proper compiler directives to generate the DBSI
execution form.

We first describe how the translator can identify the ba-
sic parallel blocks for a given loop program. Without loss
of generality, we assume that the input source is vectorized
in the first dimension of array operations. Let walue v(d)
[7] of the dependence vector d = (d1,...,dn) be

n—1 n
Z(de H Nj)+dn, Nj =u; =1 +1,

i=2 g=itl

where u; and I, respectively denote the value of upper and
lower bounds of induction variable I;. As an example, in
Figure 2.1, value of dy, dz, da, ds, and ds are respective
2, 2, 3, 4, and 5. To identify the basic parallel blocks, a
restricted dependence graph defined as follows should first
be constructed.

Definition: Restricted Dependence Graph (RDG)
Assume there are s statements in loop L. Let E; de-
note the set of edges pointing to node S; in DG, where
1 <3 < s Let dj be the labels of edges e; € Ei. A re-
stricted dependence graph RDG(N, E'} or RDG of loop L
is a subgraph of DG(N, F). The node set in RDG is the
same as one in DG and the edge set E' is a subset of E.

470

di=(0,2) d¢=0,9

ds=(1,3)
Figure 3.1: The restricted dependence graph of loop L1.

Edge e; € E; belongs to E' if its label has minimum value
in E;, for 1 < i < s. That is,

E' = {ejle; € Ei,v(d;) = min(v(d;)), for all ey € Ei}.
[w]

Figures 2.1 and 3.1 respectively display the DG and RDG
of loop L1. The value of dependence vector pointing to
Si in RDG indicates the amount of parallel instances of
S; in a parallel block. The dependence vectors in RDG
represent the information of the size of parallel blocks in
SIDG.

To identify the parallel block in SIDG for a given RDG,
an s X 1 restricted matrix R,, representing the RDG and
an s X ¢ transformation matrix T operated on R, should
be constructed. In RDG, let dependence vector d be the
label of edge e pointing to node S;. The value of ith row of
Ro is equal to the value of d. The jth row of matrix T is
equal to [; if there exists an edge pointing from statement
S; to statement .S; in RDG, where I; is the ¢th row of the
8 X s identity matrix and 1 < ¢,57 < 3. For instance, the
restricted matrix R,, and the transformation matrix T of
loop L1 are respective

v(ds) 3 0 1 0
RF[@@] =[2]W=[100]
v(ds) 3x1 4 01 .01,

Value in the ith row of R, denotes the number of instances
of S; in the first irregular basic parallel block. The multi-
plication relation of matrices T' and R, denotes the block
size transition from the current parallel block to the next
one.

Let T° denote the multiplication of i matrices T. A
minimum integer r is said to be repeating number if r sat-
isfies T° % Ry = T7%° % Ry for ¢ > 1. The existence of
repeating number r is obvious. The size of basic parallel
blocks of SIDG can be represented by several s x 1 block
size matrices (BSM)

BSM=[T*Rm], ...[T* " xRn |

sx1’

where the sth column matrix 7°t*~! % Ry, 1 < i < 1,
denotes the size of the ith basic parallel block if we ignored
the first ¢ irregular parallel blocks. Statement instances in
SIDG can be categorized into r types of basic block whose
size can be denoted by BSM. For example, in loop L1,
T*Rm =[2,3,2]', T> ¥ R = [3,2,3), and T° ¥ R =

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on October 02,2025 at 16:34:24 UTC from IEEE Xplore. Restrictions apply.

J=1 J=2 J=3 J=4 J=l J=2 J=3 J=4

d; 3 J=1 J=2 J=3 J=4

S s‘I .I > I » I 5
_Sz - Sz Sz
d1 wnd dy e necesary edges
41 isunnecessary edge (c) The SIDG for "otherwise”
! (b) The SIDG after removing condition.
(a) Original SIDG. the unnecessary edges.
Figure 3.2: Ni y and y edges in SIDG.

[2,3,2]°. Thus, we have ¢ = 1 and r = 2. The size of basic
parallel blocks can be denoted by

2 3
BSM=]|3 2
2 3

which denotes the size of two types of basic parallel blocks
as shown in Figure 2.3(a). The size of the first type of
basic parallel block can be represented by the first column
[2,3,2]" of BSM. The first row has value 2 denoting that
there are two instances of S; in type one of parallel block
as shown in Figure 2.3(a).

If an execution block consists of r contiguous parallel
blocks, the number of instances within an execution block
is equal to) ;_, 2;21 p], where p! denotes the value of
tth row of jth column of BSM. This yields the following
property holds.

PROPERTY 3.1: The basic parallel blocks have the property
that combining r parallel blocks into an execution block,
the instances of SIDG will be equally partitioned. That is,

. . 8 ;
:'«l.ll executlon‘blocks have the same size of) ;_, Z;=1 !
instance vertices. [m]

By way of example, Property 3.1 can be examined in loop
L1. In Figure 2.3(b), combining r = 2 parallel blocks into
an execution block, each execution block contains 15 in-
stances and the SID(is equally partitioned. Usually, the
number of CPUs is less than the number of threads in a
basic parallel block. Too many threads can not benefit
to parallelism and in contrary limit the reuse exploitation.
Thus, further combining several basic parallel blocks into
an execution block is needed.

Within an execution block, a pair of vertices (v, v;) is
said to be reachableif there exists at least one path in SIDG
from v; to v; which may consist of several directed edges.
A dependence vector d; € SIDG is said to be necessary if
there exists at least one reachable pair (vi,v;) such that
removing d; will cause (v;, v;) unreachable. For example,
the unnecessary dependence da in Figure 3.2(a) can be re-
moved and the resultant SIDG is shown in Figure 3.2(b).
Both d; and d3 are necessary. For instance, removing d
will cause (S1(1), S1(2)) unreachable. It is easy to verify
that an existing dependence edge is necessary or unneces-
sary. A dependence edge d; is unnecessary if it is a linear
combination of other dependence vectors.

471

In what follows, we will pay attention to the determi-
nation of size of an execution block. Before that, we intro-
duce some notations which are used in the derivation of a
feasible size of an execution block.

& the number of statements in loop body

k: the number of parallel blocks combined into an execution
block, k is a multiple of r

t(k): number of threads existed in an execution block

#d;: the number of instance pairs that are connected by
. dependence vector d; within an execution block
p'Z: the value of ith row of jth column of BSM
¢(k): the number of total instances within an execution block
m; the number of necessary dependence vectors existed in an

execution block
the number of CPUs system suppoirts

#CPU:
According to the Property 3.1, the number of total in-
stances in an execution block is equal to

8 r
B =235 i
=1 y=1 (1)
The number of threads within an execution block can be
estimated by
(k) = { §k) = o0, #di i €)= 00, #di > 1
1 otherwise (2)
for all necessary dependence vectors d; in an execution
block. The reason is stated as follows. After remov-
ing unnecessary edges from an execution block, there still
exist Z:’;l #d; edges in an execution block. Since two
vertices linked by a directed edge belong to the same
thread, there are) .. #d; vertices should be combined
with other vertices. The number of threads is at most
£(ky — >_7 . #di. However, if there exists complex de-
pendence relation among vertices such that the number of
thread is only one, the value £(k) — z:l #d; may be less
than one. As shown in Figure 3.2(c), all dependence edges
are necessary, the value of £(k)— " #d;is 8—10 = ~2.
Thus, the ”otherwise” condition is needed to deal with
this condition. As an example, in Figure 2.3(c), all edges
except dz are necessary, the value of £(k) — 2::1 #d; is
30— (7+8+8+3) = 4. Thus, we know that the execution
block combined by 4 parallel blocks has 4 threads. Since
the number of threads is the main parameter for determin-
ing the size of an execution block, for quickly determining
the feasible size of an execution block, we use formula (2)
to measure the number of threads for a given fixed size ex-
ecution block instead of extracting threads from the given
execution block.
The following theorem derives the degree of reuse ex-
ploitation and the number of synchronizations for a given
execution block.

THEOREM 3.2: Let there be k parallel blocks combined
into an execution block. The number of synchronizations
and the number of reuse exploitation in loop L are respec-
tive

8 x 2;1 #d; x N7, (u; = 1 + 1)

sx I o(ui — L +1) and

£(k) §(k)

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on October 02,2025 at 16:34:24 UTC from IEEE Xplore. Restrictions apply.

?

where z is the number of dependence vectors in DG.
Proof:
See [6] in detail. O

For example, in loop L1, the number of statements is s = 3.
There are r = 2 types of basic parallel blocks in SIDG. If
we combine & = 2 parallel blocks into an execution block
as shown in Figure 2.3(b), the number of total instances in
an execution block is equal to £(2) = E?___l Zj___l p! = 15,
By applying formula (2), the number of threads in an ex-
ecution block is

t(2)=£(2)—i#d_,'=15—(2+3+3+0)=7.

i=1

In Figure 2.3(b), instances of an execution block are di-
vided into 7 threads T:, for 1 < ¢+ < 7. The number of
synchronizations is 3%65@ = 128. The number of reuse ex-
ploitation is

3 (#d1 + fda + #£da + #ds + #ds) * 640
15

_ 3%(2+24343+0) 640

- 15
Similarly, as shown in Figure 2.3(c), the execution block
combined by 4 parallel blocks has ¢(4) = 4 threads. The 4
CPUs system supported can be fully utilized. The number
of synchronizations is 22820 — 64. The number of reuse ex-
ploitation is 2*33640 —'2112. Thus, the execution block
combined by 4 parallel blocks is better than one combined
by 2 parallel blocks due to that the former has fewer syn-
chronizations and higher degree of reuse exploitation.

If the number of threads is larger than the number
of available CPUs, we can further combine more parallel
blocks into a larger execution block such that the num-
ber of threads and the number of synchronizations can be
decreased and the degree of reuse exploitation can be in-
creased. Value k that satisfies the following criterion can
be a feasible solution to the determination of size of an
execution block.

= 1280.

CRITERION: The maximal value k that satisfies

t(k) = £(k) — Y _ #di > #CPU
1=1 (3)
is a feasible solution to the determination of size of an ex-
ecution block.

Value k satisfying condition (3) yields that the reuse op-
portunities can be exploited and the number of synchro-
nizations can be reduced as possible under the constraint
that the degree of parallelism is maximized according to
the number of available CPUs.

In loop L1, the optimal value of k=4 can be obtained
since the #CPU is 4 in Convex C3840 vector computer.
Figure 2.3(c) displays the 4 threads in an execution block
which is obtained by combining 4 parallel blocks. A greedy

472

algorithm can be applied to determine the value of k. If the
current execution block has the number of threads larger
than #CPU, we may increase the value of k as far as
condition (3) holds. Note that if the parallel block’s size is
too small such that the number of threads within a parallel
block is less than the number of CPUs, compilers may ad-
ditionally extract threads from the vectorized dimension.
Thus, in worst case, the multi-threading scheme will de-
generate to the original rules of current vector compilers.

After the size of execution block is determined, the next
goal of DBSI approach is to identify the threads and trans-
form them into the DBSI execution form. Partitioning
method in [6] can be applied such that instances of an
execution block can be partitioned into several threads.
The time complexity of identifying ¢ threads is O(|E]),
where |E| denotes the number of edges in DG of loop L.
Translation then can be made to transform the original
loop program L into DBSI execution form in which mul-
tiple threads are defined and the reuse of each thread is
exploited.

4 Performance Analysis

In this section, we measure the performance improve-
ment of several application programs by applying the pro-
posed DBSI scheme. For each program, two versions of
multithreaded program are measured in Convex C3840
which is equipped with 4 CPUs for parallel processing.
For the first version, we take vectorized program written
in Fortran 90 language as the input of vector compiler of
Convex. To inform the vector compiler of Convex C3840
generating a multi-thread object code, we set the compi-
lation option with *-O3 -f90°. The object code generated
by vector compiler is referred to the original version. In-
stead, another version is generated by the following two
steps. First, the vectorized program written in Fortran
90 language is taken as the input of the DBSI scheme.
The DBSI scheme analyzes the dependence relation and
then partitions the vector operations into multi-thread by
inserting the compiler directives. The multi-thread code
translated by using the DBSI scheme is then taken as the
input of vector compiler of Convex C3840 in the second
step. The generated object code by these two steps is re-
ferred to the DBSI version.

Loops selected as the source programs for comparison
can be roughly cataloged into two classes. The first class
is the vector benchmark that is extracted from NETLIB
of NCHC (National Center for High Performance Com-
puting). The benchmark consists of 107 subroutines of
loops that are originally designed for testing the vector-
ization capability of PFC [1] [9]. In total, there are 65
subroutines can be vectorized by vector compiler of Con-
vex. The 65 subroutines are compiled and the execution
time of two versions, the original version and the DBSI
version, is compared. In total, there are 21 subroutines
improved by applying our DBSI scheme.

. The second class selected as the benchmark programs

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on October 02,2025 at 16:34:24 UTC from IEEE Xplore. Restrictions apply.

consists of several libraries including subroutines of BLAS1
and BLAS2. The level 1 BLAS (Basic Linear Algebra Sub-
programs) and level 2 BLAS respectively perform the vec-
tor/vector and matrix/vector operations. All subroutines
of BLAS1 and BLAS2 are designed in libraries for calls
in most supercomputers. The subroutines of BLAS1 and
BLAS2 used as the input source are also stored in NETLIB
of NCHC.

The experimental results of execution time and speedup
for these two classes of programs are summarized in Table
I. Note that, the benchmark programs with the same exe-
cution time in both versions are not listed in Table I. Un-
der the assistance of DBSI scheme, the vector compiler of
Convex C3840 generates more efficient multi-thread codes.
Compared with the original version, the DBSI version in
average has a speedup of 2.54. The main factors of im-
provement are the number of synchronizations and the
reuse exploitation. The reuse exploitation of vector reg-
ister data has significant effect on those programs that are
vectorized in the second dimension of array operations.
This is due to the fact that the vector data accessing with
a larger memory stride needs more memory accessing time.
This effect can be found in speedup of programs S029,
S084, and S100 as shown in Table I.

Table I. Comparisons of original and DBSI versions for benchmarks.

Benchmarks Problem Original DBSI speedup
u | Size version version ”
5022 1024 X 1024 482 ms 166 ms 3.98
¥023 1024 X 1024 3469 ms 147 ms 319
5025 1024 X 1024 183 ms 15.6 ms 7.80
5030 1024 X 1024 146 ms 48 ms 3.04
3032 1024 X 1024 142 ms 49 ms 2.89
5044 1048576 95 ms 51 ms 1.94
30486 1048576 126 ms 79 ms 1.69
047 1024 X 1024 174 ms 68 ms 2.58
2048 1024 x 1024 162 ms 67 ms 2.41
2049 1024 X 1024 188 ms 723 ms 319
5067 1024 X 1024 143 ms 72 ms 1.98
¥oé8 1024 X 1024 132 ms 62 ms 2.13
3070 1024 X 1024 167 ms 78 ms 2.26
082 1024 X 1024 231 ms 128 ms 1.84
— 3083 1624 X 1024 368 ms 159 ms 2.91
S08% 1024 x 1024 184 ms 23.4 ms 7.86
3090 1048576 43 ms 41.3 ms 1.04
5091 1048576 49 ms 452 ms 1.08
092 1048576 135 ms 76 ms 177
F100 1024 X 1024 1327 ms 217 ms 6.11
3101 1024 X 1024 255 ms 138 ms 1.84
SAXPY 1048576 BEO ms 509 ms 1.66
SCOPY 1048576 30 ms 32 ms T.25
[—38CAL 1048876 440 ms 319 ms 1,38
DAXPY 1048576 3340 ms | 2657 ms 1.26
DCOPY 1048576 70 ms 67 ms 1.08
B3CAL 1048576 B10 ms 365 ms 1.50
SGEMV 1024 X 1024 1770 ms 620 ms 2.85
[8GBMV 1024 X 1024 180 ms 82 ms 2.20
DGEMV 1024 X 1024 2470 ms 1190 ms 2.08
DGBMV 1024 X 1024 396 ms 273 ms 1.45

The DBSI scheme reduces not only the the number of
synchronizations but also the memory accesses for a vector-
ized program written in Fortran 90. Experimental results
show that vector compiler assisted by the the DBSI multi-
threading technique usually produces a more efficient code
for users to early complete their program execution.

5 Conclusions

In this paper, a systematic multi-threading technique
has been proposed. The presented mechanism collects

473

vector operations which have reuse opportunities into one
thread and individually executed by one CPU. For vec-
tor computers with powerful vector processing and par-
allel processing capabilities, multiple CPUs can concur-
rently perform multi-thread with less synchronizations and
higher degree of vector reuse exploitation.

Comparisons have been made in Convex C3840 super-
computer by using several application loop programs. Ex-
permantal results show that our multi-threading scheme
assists vector compiler of Convex C38 series to generate
a more efficient multi-thread code and usually obtains a
better performance.

References

[1] R. Allen and K. Kennedy, ” Automatic Translation of
Fortran Programs to Vector Form,” ACM Transac-
tions on Programming Languages and Systems, Vol.
9, No. 4, pp. 491-542, Oct. 1987.

R. Allen and K. Kennedy, ”Vector Register Alloca-
tion,” IEEFE Transactions on Computers, Vol. 41, No.
10, pp. 1290-1317, Oct. 1992.
CONVEX FORTRAN Optimization Guide, CON-
VEX Computer Corporation.

[2]

F. Irigoin and R. Triolet, ”Supernode Partitioning,”
Proceedings of the Fifteenth Annual ACM SIGACT-
SIGPLAN Symposium on Principles of Programming
Languages, pp. 319-329. Jan. 1988.

L. S. Liu, C. W. Ho, and J. P. Sheu, ”"On the
parallelism of Nested For-Loops Using Index Shift
Method,” Proceeding of 1990 International Confer-
ence on Parallel Processing, Vol. 11, pp. 119-123, 1990.

J. P. Shen and C. Y. Chang, ”Extracting Multi-
thread, Reducing Synchronizations, and Improving
Localities for Vector Computers,” Technique Report,
Department of Computer Science and Information
Engineering, National Central University, 1994.

S. D. Wang and C. M. Wang, ”Compiler Techniques
for Extracting Loop-Level Parallelism,” Journal of In-
formation Science and Engineering 7, pp. 543-563,
1991.

M. E. Wolf and M. S. Lam, A Data Locality Op-
timizing Algorithm,” Proceedings of the ACM SIG-
PLAN’91 Conference on Programming Language De-
sign and Implementation, pp. 30-44, June 1991.

[4]

(5]

(7]

(8]

H. Zima and B. Chapman, Supercompilers for Paral-
lel and Vector Computers, Addison-Wesley Publish-
ing Company, 1990.

(9]

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on October 02,2025 at 16:34:24 UTC from IEEE Xplore. Restrictions apply.

