A Reliable Sorting Algorithm on Hypercube

Multicomputers

Yuh-Shyan Chen and Jang-Ping Sheu

Department of Computer Science & Information Engineering
National Central University, Chung-Li 32054, Taiwan, R.O.C.

sheujp@mbox.ee.ncu.edu.tw

Correspondence Address: Prof. Jang-Ping Sheu
Department of Computer Science & Information Engineering

National Central University, Chung-Li 32054, Taiwan, R.O.C.

November 10, 1993



Abstract

In this paper, we present an algorithm-based fault-tolerant technique, namely the
median-splitting strategy, for designing a reliable sorting algorithm. Combining the
median-splitting strategy with bitonic sorting algorithm, a reliable sorting algorithm
is proposed on the hypercube multicomputers. By the strategies of duplicating data
and rollback, the proposed algorithm can detect transient faults and automatically
correct errors without any hardware modification. We also implement our algorithm
on NCUBE/7 MIMD hypercube machines with 64 processors. The simulation results

show that our sorting algorithm is reliable and cost-effective.

Keywords: Bitonic sort, fault tolerance, hypercubes, parallel processing, transient

faults.



1. Introduction

With the advent of VLSI technology, hundreds even thousands of processors can be
built in a multicomputers system. The systems with a large number of processors will
incur faults more frequently than the single-processor systems. Designing reliable algo-
rithms to ensure the correctness of output results and keep the degree of performance
are important topics for the multicomputers in the presence of faults. Efficient sorting
algorithms have generally been the fundamental components and factors of many scien-
tific algorithms. Moreover, hypercube multicomputers recently become commercially
available parallel machines. Thus, it is more meritorious and interesting to design a
reliable sorting algorithm on the hypercubes.

Recently, many fault-tolerant schemes which comprise hardware and software strate-
gies have been addressed under the assumption of permanent fault model [2] [5] [6] [15]
[18] [19]. Particularly in the hardware strategies, notable is the result by Bruck, Cypher,
and Ho [6]. They proposed the efficient fault-tolerant hypercube and mesh architectures
with adding minimum redundancy processors and links based on the graph model. In
contrast to hardware strategies, ()zgiiner proposed the maximum dimensional fault-free
subcubes [14] method for tolerating two or more faulty processors. Bruck, Cypher, and
Soroker [5] also proposed the tolerating faults technique in n-dimensional hypercubes
by using the subcube partitioning. The approach is to partition a faulty hypercube
into subcubes within each of them contains less faults. Sheu, Chen, and Chang [19]
proposed similar subcube partitioning method for a fault-tolerant sorting algorithm on
n-dimensional hypercubes that can tolerate up at most n - 1 faults. However, compared
to permanent faults, it is more difficult to tolerate up transient faults since the tran-
sient faults occur more unpredictable and frequent. Tolerating transient faults thus is
a more meaningful and practical research topic in the multicomputers.

The algorithm-based fault-tolerant encoded scheme has been first proposed by
Huang [9] for the purpose of solving the transient faults. Banerjee [3] continually
proposed many algorithm-based error detection schemes that detect transient faults
and replace the faulty processors by spare processors in many applications. It is unrea-
sonable to detect a transient fault and then replace it by a spare processor because that
many faulty processors may produce correct results after those transient faults disap-
pear. Recently, Yeh and Feng [20] proposed an algorithm-based fault-tolerant approach
for the algorithm of matrix inversion. However, this approach just can correct a single
fault and detect multiple faults. Conventional encoding scheme is difficult to handle

the sorting problem on multicomputers when occurring transient faults in hardware.



Therefore, designing a reliable sorting algorithm that can tolerate up transient faults
is our main focus on this study.

We assume that the communication channels are reliable. Huang and Abraham
assumed the similar fault-model in [9]. This assumption is reasonable since effective
error correcting schemes such as coding theory [7] [13] and alternative retry method
[17] are proposed for tolerating faults in the communication lines and memories. The
input/output latch registers of a processor are considered as parts of the communica-
tion circuitry since a fault in the latch register affects the data transfer but not the
computation itself. Therefore, we only focus on fault tolerance of the computations of
processors in the multicomputers.

In this paper, we propose a reliable sorting algorithm that can detect transient
faults without any hardware modification and can correct errors by low degree of data
duplication and replicated computations. The reliable sorting algorithm can rapidly
detect faults occurring, skillfully recover from the computation failures and continu-
ally perform the sorting operations. Algorithm presented here thus is not the fail-stop
fashion [11]. That is, the result of calculation is either completely correct, or the en-
tire algorithm halts with an error condition. Batcher’s [4] bitonic sorting algorithm
has two fundamental operations, compare-exchange and merge-compare-exchange op-
erations, without the fault-tolerant capability. We propose a strategy, namely the
median-splitting strategy, to additionally achieve the fault tolerance. On the basis
of the compare-exchange and merge-compare-exchange operations with the median-
splitting strategy, the reliable sorting algorithm can be applied on the hypercube mul-
ticomputers. Besides, we implement our algorithm on NCUBE/7 MIMD hypercube
machines with 64 processors. The simulation results show that our reliable sorting
algorithm running on hypercubes has lower extra-overhead.

The rest of this paper is organized as follows. Some basic properties of bitonic
sorting algorithm will be reviewed and a median-splitting strategy is proposed in Sec-
tion 2. A reliable sorting algorithm is presented in Section 3. The implementation
and performance analysis of the proposed algorithm are discussed in Section 4. The

conclusions will be finally presented in Section 5.



2. Median-Splitting Strategy

In this section, we first describe the compare-exchange and merge-compare-exchange
operations of the bitonic sorting algorithm [4] in Section 2.1. To achieve the fault tol-
erance on these two operations, a median-splitting method is then proposed to tolerate
the transient faults. The reliable compare-exchange and merge-compare-exchange op-

erations are then presented in Section 2.2.

2.1 Median-Splitting Method

We first recall the bitonic sorting algorithm [10] [16]. The key concept of the al-
gorithm is recursively executing the compare-exchange and merge-compare-exchange
operations on each pair of neighboring processors P and P’ such that the first half
smallest and sorted elements are located in processor P and the last half largest and
sorted elements are located in processor P’. For example, given a bitonic sequence
{b1,ba,...,b,, } such that there exists ascending subsequence {by,bs, ..., b,,/2} and de-
scending subsequence {b,,/241,bm/242,..,bn}, the two subsequences are located in
processors P and P’, respectively. After performing the compare-exchange operation,
sequences C'F; and C Ej, are then respectively located in processors P and P’ as follows.
Let

C Ey= {min(by, b,y j241), min(bg, by jo42), . . ., min(by, /2, by ) }
= {cey,ceq, ..., clmpa}t

= {061 Scep <o <cep Sy 2 Ceyg 2t 2 Cem/?}

A={ce1,cez,...,cei } B={ceiy1,ceit2 ,...,cem/Q}

and
C Ep= {max(by, b, 241), max(ba, b, /242), . .., max(b,, 2, b ) }
= {CCm/jat1,Clm 242, ., CER}

= {Cem/Q—}—l > Cem /242 > 2> Clm [2+4i < Clm /24i+1 < Clm /24042 < < Cem}7

A/:{Cem/2+1 1C€m [242 7~~~7C€m/2+i} BIZ{Cem/2+¢+1 1CEm 2442 yeeesCEM }

where 1 < m/2. It has been shown [4] that sequences C'E; and C E}, are also bitonic
sequences. Let A and B, B’ and A’ respectively denote the ascending and descending
subsequences from sequence C'F; and C'Ej. Processor P then merges subsequences
A and B to obtain sequential subsequence {b}, b, ..., b;n/?}' Similarly, processor P’
merges subsequences A’ and B’ to obtain sequential subsequence {b'/m,/2-|—17 O jasas -+
bl }.

Unfortunately, these two operations will result in a faulty execution on multicom-

puters as soon as the processors occurred transient faults. It leads to a serious problem
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that there exists an element * € C'E; in processor P’ and an element y € C'E), in pro-
cessor P. What is worse, the problem can further lead to the more serious condition
of error propagation as long as processor P repeatedly executes these two operations
on different neighboring processors. For the reason of preventing of error propagation
and achieving the fault tolerance, the two operations should be further improved with
fault tolerant capability. The reliable compare-exchange operation must be ensured to
correctly separate the original sequence into smaller and larger subsequences which are
respectively located in processors P and P’. In addition, the reliable merge-compare-
exchange operation must be ensured to correctly merge each pair of subsequences into
sequential sequence. In this paper, the median-splitting process is presented to achieve
the reliable capability of these two operations.

In the following, we first describe how to find the [m/2]th element of the origi-
nal sequence and then separate the original sequence {b, by, ..., b, } into smaller and
larger subsequences. The process of finding the median element for splitting the orig-
inal sequence is called the median-splitting process in this paper. To introduce the
median-splitting process, we first define the notations of sequence, sequence pair, and
subsequence pair. Assume there exist sequences G = {g1, ¢2, ..., ¢-} and H = {hy,
hay ..., hs}, where g1 < go < -+ < g, and hy < hy < -+ < hy. Let S[1, 7] denote the
sequence (G and sequence pair S([1,r],[1,s]) denote the pair of sequence ({g1, g2, - - -,
gr}{h1, hay .., hs}). More, let S([i, 5], [, 5']) denote the subsequence pair ({gi, git1,
evy Gi by {hiry hirg1, <., by }) which respectively extract subsequence from sequence
pair ({g1, 92, .-+, gr }y{h1, oy .., hs}),for 1 <o < j<rand 1 < <j <s. For
example, consider the sequence G = {¢1,92,93,94} = {1, 3, 7, 9} and sequence H =
{h1,ha, h3, ha, hs,he} ={2,4,5, 6,8, 10}. Sequence S[1,4] = {1, 3,7, 9} and sequence
pair S([1,4],[1,6]) = ({91, 92, g3, ga}, {h1, ha, hs, ha, hs, he}) = ({1, 3,7, 9}, {2, 4, 5,
6, 8, 10}) exist. Subsequence pair S([2,3],[2,4]) is ({92, 93}, {h2, ks, ha}) = ({3, 7},{4,
5, 6}).

Splitting the original sequence pair into smaller disjoint subsequence pairs is the
basis step of our median-splitting process. Without loss of generality, we assume that
i = 1,7 = ri =1, and 3/ = s for the original sequence pair S([1,r],[1,s]). It
is straightforward that the original sequence pair S([1,r], [1,s]) can be recursively
split into many disjoint subsequence pairs. We first consider the condition of splitting
the sequence pair S([1,r], [1,s]) into two disjoint subsequence pairs. We may obtain
two fully disjoint subsequence pair; one is S([1,p], [1,¢]) and another is S([p + 1,r],
[+ 1,s]) where 1 < p <rand 1 < ¢ < s. In other words, the sequence pair ({g1,
92, - Gr}, {h1, ha, ..., hs}) can be split into two disjoint subsequence pairs ({g1,
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gz, - gp}v {hlv h27 T hq}) and ({gp-l-lv Gp+25 + o gr}7 {hq+17 th-?v ten hS}) There

possibly exist many disjoint subsequence pairs. In what follows, we state how to find
the feasible subsequence pairs. Let G.H denote the merged sequence resulting from
merging sequences (G and H, and (z,y) denote the median-index pair of S([1,r],[1,s])
such that all elements in sequence S([1,z],[1,y]) are the first [(r + s)/2] smallest
elements of GG.H, and all elements in S([z + 1,7],[y + 1, s]) are the remainder larger
elements of G.H for 1 < <rand 1 <y <s.

Recalling the above example, we obtain the merged sequence G.H = {1, 2, 3,4, 5, 6,
7,8,9, 10}. The median-index pair (x,y)is (2, 3). This is because that elements gy, g2,
hi,hq, and hg are the first half smallest elements in sequence G.H as shown in Fig. 1.
Hence, one of the disjoint subsequence pairs is S([1,2],[1,3]) = ({¢1,92}, {h1, h2, h3})
= ({1, 3}, {2, 4, 5}) and the other one is S([3,4],[4,6]) = ({93, 94}, {ha, b5, he}) = ({7,
9}, {6, 8, 10}).

In general, if we have known the valid median-index pair (z,y) of S([¢, 7], [, 5']),
we may correctly separate the original sequence into two parts S([i,z], [/, y]) and
S([x + 1,4],ly + 1,7']). For the presentation of this scheme, we formally introduce
the following definition.

Definition 1 : Median-splitting and median-index pair

The median-splitting is the process of splitting the S([z, j], [#/, 7']) into two disjoint
subsequence pairs S([z, z], [+, y]) and S([x+1,7],[y+1,7']), where (z,y) is the median-
index pair of sequences {g;, giy1, - .-, g;} and {hiys, hirp1, ..., by} such that the elements
of sequence S([¢, z], [/, y]) are smaller than the elements of sequence pair S([z+1, j], [y+
L)) and (z =i+ 1)+ (y— i+ 1) = [EH= 4],

O

In order to successfully separate S([z, ], [¢,7']) into two parts and detect whether
the obtained median-index pair (x,y) is valid or not, an invoked self-checking routine
is described as follows. By definition 1, we know that if the number of elements in
S([z,x],[2",y]) is half of the number of elements in S([¢, ], [¢', ']) and each element in
S([z,x], 7", y]) is smaller than elements in S([z+ 1, 7], [y+1,7]), the median-index pair
(z,y) is valid. In special, because that all elements in sequence pair S([7, 2], [#/,y]) are
smaller than elementsin S([z+1, j],[y+1,']), we just need to check whether the mini-
mum value in S([z+1, 7], [y+1,7']) is no less than the maximum value in S([z, z], [¢, y])
or not. That is, whether the criteria g, < hyq; and h, < gy41 hold or not. Therefore,
provided that sequences S|z, 7] and S’[¢/, j'] in sequence pair S([t, 5], [/, j']) are the cor-

rect sequences, we can successfully check a given (x,y) is valid median-index pair or
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not by following self-checking routine.

/* Checking the value (z,y) is the valid median-index pair of S([, 7], [, 5']) or not.

If the calculated (z,y) is valid then return TRUE. Otherwise, return FALSE.  */
Function self-checking-routine((z,y), S([z, j], [+, j']))
if(e+y—(G+d)+2= (# + 1] and g, < hyyy and hy < g,41) return TRUE;
else return FALSE;

The alternative retry statements are used here to guarantee the self-checking-routine
function with high reliability. That is, the recalculation of the condition ([% +1]
=z+y—(i+¢)+2and hypy > g, and gy41 > hy) is necessary for the sake of
reliability. It is assumed throughout this paper that the period time between two of
consecutive transient faults is larger than the computation time of the alternative retry
statements. Therefore, we have enough capability to check whether there exists fault
or not by using the replicated calculation method. According to the assumption, the
self-checking routine is considered as reliable. After applying the reliable self-checking
routine, it can be known that whether the calculated median-index pair is valid or
invalid. Referring the above example, the valid median-index pair (2,3) is detected
by applying the self-checking-routine((2,3), S([1,4],[1,6])). This is because that the
conditions (x +y — (1 +4¢') +2 = [#—I—H = [%—I—H =5and gop = 3
< hy =6 and hy = 5 < g3 = 7) hold. Once the correct median-index pair (z,y)
found, the (x,y) is used to achieve the reliable compare-exchange and merge-compare-
exchange operations with median-splitting technique in a recursive manner which will

be introduced in the next subsection.

2.2 Reliable Compare-Exchange and Merge-Compare-Exchange Operations

In the previous subsection, a median-splitting method is proposed to separate an
original sequence pair into two subsequence pairs by a valid median-index pair. Based
on the median-splitting technique, the reliable compare-exchange and merge-compare-
exchange operations will be presented in this subsection.

Consider an n-dimensional hypercube @), that has 2" processors with address space
{b_1bu_2 ... bg}. Let processors P and P’ be a pair of neighboring processors in hy-
percube (), and perform the reliable compare-exchange operation along dimension k,
where 0 < k£ < n — 1. The compare-exchange operation with median-splitting tech-
nique can correctly separate the original sequence into smaller and larger subsequences

and are respectively located in P and P’ even if some faulty computations occurring.
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The proposed technique has the fault-tolerant capabilities of detecting transient faults,
correcting incorrect values, and preventing error propagation.

In the following, we describe how our compare-exchange operation achieves the
fault-tolerant capabilities. Assume that neighboring processors P and P’ have se-
quence S[1,m/2] and S'[1,m/2], respectively. Processor P then sends its allocated
sequence S[1,m/2] to processor P’ and receives sequence S’[1,m/2] from processor
P’. Similarly, processor P’ also sends its allocated sequence S’[1,m /2] to processor
P and receives sequence S[1,m/2] from processor P. As a result, both processors P
and P’ have the same sequence pair S([1,m/2], [I,m/2]). Processors P and P’ inde-
pendently calculate its own median-index pair (x,y) of the sequence pair S([1,m/2],
[1,m/2]) and then detect the validation of the (x,y) for preventing any transient fault
occurring during the period of finding the median-index pair (z,y). The operation
of automatic detecting transient faults is achieved by performing the function self-
checking-routine((z,y), S([1,m/2], [1,m/2])). The strategy of correcting faults is to
compare each median-index pair with another one calculated by the neighboring node.
Three cases are discussed in follows. First, if both the median-index pairs are valid,
nothing needs to do. Second, if one of the median-index pairs is invalid, the valid
median-index pair can mask the invalid median-index pair. The third, when both the
median-index pairs are invalid, the routine of finding the median-index pair (z,y) will
be performed again. After finding the correct median-index pair (x,y), processor P
correctly reserves the smaller sequence pair S([1,z],[1,y]) and P’ reserves the larger
subsequence pair S([x + 1,m/2],[y + 1,m/2]). The purpose of prevention of error
propagation is also achieved by correctly performing each reliable compare-exchange
operation. The procedure of the compare-exchange operation with median-splitting

technique (CEMS) is outlined as follows.

Procedure CEMS(P, P', k)

Input: Assume processors P and P’ are neighboring processors along dimension & in
n-dimensional hypercubes, where 0 < & < n — 1. Processors P and P’ have

sequences S[1,m/2] and S’[1,m/2], respectively.

Output: The smaller subsequence pair S([1, z],[1,y]) is located in processor P and the
larger subsequence pair S([z+1,m/2],[y+1,m/2]) is located in processor P’,

where (z,y) is the correct median-index pair of the sequence pair S([1,m/2],
[1,m/2]).

Step 1: /* Duplicating data */



Step 2:

Step 3:

Step 4:

4-1:

4-2:

4-3:

Step 5:

Processor P (P’) sends its allocated sequence S[1,m/2] (S'[1,m/2]) to its
neighboring processor P’ (P) and receives sequence S’[1,m/2] (S[1,m/2])
from the neighboring processor P’ (P).

/* Finding median-index pair */
Both processors P and P’ calculate a median-index pair (x,y) of the sequence

pair S([1,m/2], [1,m/2]) independently.

/* Detecting faults */

Each processor sets a variable flag by performing the operation
flag = self-checking-routine((z,y), S([1,m/2],[1,m/2])).

[* If flag = TRUE, the (z,y) is valid; else (x,y) is invalid. */

/* Correcting faults */

Processor with flag = TRUE (flag = FALSE) sends the valid median-index

pair (z,y) (the "Invalid” message) to its neighboring processor.

If (processor with flag = FALSE and receives valid (z,y) from neighboring
processor) then corrects its invalid median-index pair and then sets variable
flag to be TRUE; else do nothing.

If (processor with flag = TRUE) then discard the received message.

If (the processor’s flag is still equal to FALSE) then goto Step 2.

/* Splitting sequence pair */

Processor P keeps the index pairs (1, z) and (1, y) for reserving the smaller se-
quence pair S([1,z],[1,y]) and processor P’ keeps the index pairs (z+1,m/2)
and (y+ 1, m/2) for reserving the larger subsequence pair S([z + 1, m/2],[y+
1,m/2]).

Example 1 illustrates how processors P and P’ in ), perform the CEMS procedure

along dimension k. Initially, processors P and P’ respectively have sequences S[1,4]

= {2, 4,

13, 22} and S'[1,4] = {3, 7, 24, 31} as shown in Fig. 2(a). After applying

step 1 of the CEMS procedure, processors P and P’ duplicate the same sequence pair
S([1,4],[1,4]) = ({2, 4, 13, 22}, {3, 7, 24, 31}) as shown in Fig. 2(b). In step 2,
processor P and P’ respectively find its own median-index pairs (2,2) and (2,3). In

the step 3, only the processor P finds the valid median-index pair (2,2) as shown in Fig.

2(c). After applying the step 4, the correct median-index pair (2,2) can mask the invalid

median-index pair of processor P’ as shown in Fig. 2(d). Finally, applying the step 5,
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processor P reserves the smaller subsequence pair S([1,2],[1,2]) =
processor P’ reserves the larger subsequence pair S([3,4],[3,4]) =
as shown in Fig. 2(e).

The following lemma states that the proposed CEMS procedure is reliable.

Lemma 1 : The CEMS procedure is reliable.

Proof: In the step 1, the operation of duplicating the sequence S[1,m/2] or
S'[1,m/2] between neighboring processors is reliable since the communication lines
and memories are reliable under our assumption. Transient faults possibly occur in
step 2. In the step 3, the reliable self-checking-routine((z,y), S([1,m/2],[1,m/2]))
function is applied to detect whether the error exist or not. Since that the commu-
nication lines and memories are reliable, the correct median-index pair (z,y) can be
successfully sent to neighboring processor for updating the invalid median-index pair
(Z,9). Hence, transient faults occurring in step 2 can be corrected by the reliable
operations of the step 3 and step 4. It can successfully split the sequence pair into
two subsequence pairs in step 5 because that the correct median-index pair has been
obtained. This completes the proof that the CEMS procedure is reliable since all steps
are reliable.

O

We now analyze the time complexity of the CEMS procedure. Let symbol ;.
denote the cost of sending or receiving an element between two neighboring processors
and symbol ¢, denote the time cost of a unit computation. In step 1, the time cost of
processors P and P’ respective sending its allocated sequences S[1,m/2] and S’[1,m/2]
to each other is O(m)t,;,. Akl proposed a two-sequence-median algorithm [1] to find
the indices of the median pair of sequences {ay, ag, ..., a.} and {by, by, ..., by} with
time complexity O(e; + czlog(min{r, s})). Thus, we need time O(log m/2)t. for each
processor to find a median-index pair (z,y) of S([1,m/2],[1,m/2]) in step 2. The time
cost of steps 3, 4-1, 4-2, and 5 is constant time. If the goto statement in step 4-3
of CEMS procedure performs r loops of steps 2, 3, 4-1, and 4-2, the total time cost
Terms of the compare-exchange operation with median-splitting technique is

Terms = O(m)ty),. + O(rlogm/2)t..
In the case that a constant number of transient faults occurs in total, the time com-
plexity of our reliable compare-exchange operation is O(m).

After applying the reliable compare-exchange operation between neighboring pro-

cessors P and P’, the smaller subsequence pair S([1, z],[1,y]) is located in processor P

and the larger subsequence pair S([z + 1, m/2], [y+ 1,m/2]) is located in processor P’.
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Continually, subsequence pairs S([1,z], [1,y]) and S([z + 1,m/2], [y + 1,m/2]) must
be respectively merged into sequential sequences S'[1,z + y] and S’[z + y — 1,m].
In the following, we describe our reliable merge-compare-exchange operation with
median-splitting technique. Initially, the sequence pair S([z, j], [¢/, j']) can be split into
S([t,z],[7,y]) and S([x 4+ 1,7],[y + 1,5']) by median-index pair (z,y) of sequence pair
S([z,7], 12, 5']). The smaller sequence pair S([z, z], [+, y]) will be recursively split into
two disjoint subsequence pairs S([¢, 2], [/, y']) and S([z" + 1,2],[y' + 1,y]) by a valid
median-index pair (z',y’). For the larger sequence pair S([z + 1,7],[y + 1,7]), if the
largest element g; in sequence {gi, ¢gi+1, - . ., g; } is equal to the g,, we move all elements
of {hyt1, ..., hj} onto the resultant sequence S’[z+y+1, j+;']. Similarly, if the largest
element hj in sequence {h;, hiy1, ..., hjy} is equal to the h,, all elements of {g,41,
..., gj} are moved onto the S’[z + y + 1,7 + j']. Otherwise, the larger sequence pair
S([x+1,4], [y +1,7']) will also be recursively split into two disjoint subsequence pairs
S([z+1,2"], [y+1,y"]) and S([z"+1,J], [y"+1,']) by a valid median-index pair (z",y").
Recursively applying the above median-splitting process on each new split subsequence
pair, in final, the length of each sequence of the split subsequence pair is equal to 1. Let
S([k, k], [l,]) be the final split subsequence pair, where: < k < jand ' <1 < j'. Then,
if condition g < hy is satisfied, we move {gx, hi} to S’k +1— 1,k + []; else move {h,,
gr } to S'[k+1—1,k+1]. The merge-compare-exchange operation with median-splitting
technique presented here is a divide-and-conquer scheme. We recursively partition the
original sequence pair into a number of disjoint subsequence pairs with high reliability
and then merge each subsequence pair successively and independently into a ascending
sequence. After recursively splitting and merging the subsequence pairs into ascending
subsequences, our reliable merge-compare-exchange operation will obtain different dis-
joint ascending subsequences. Note that, the operation of combining the subsequence
pairs into sequential subsequences is naturally finished because we place the merged
sequences into the suitable locations during the merging operation. Therefore, these
disjoint subsequences can constitute the final merging result.

Our reliable merge-compare-exchange operation presented here has the capabilities
of automatic detecting and correcting the transient faults. The operation of automatic
detecting transient faults is achieved by the self-checking routine. Then, the strategy of
correcting the fault is to recalculate the routine of finding the median-index pair (x,y)
again when an invalid median-index pair (z,7y) is detected. A formal procedure for the
reliable merge-compare-exchange operation with median-splitting technique (MCEMS)

is given as follows.

Procedure MCEMS(S([7, /], [, 7]))
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Input:

Output:

Step 1:

Sequence pair S([z, ], [+, J']) = ({9i, Gi+1, - 9i}s {hirs hirgr, o, hjr}).

A merged sequential sequence S[i + 4" — 1, 7 + j'] from the sequence
pair S([1, 5], [i', 5')-

(a) /* The length of each sequence of current sequence pair S([z,j], [/, 5']) is

equal to 1 */

If (1 =7 and j =) and (' = j' and ;' =')) then
if ((gZ S hzl) and (hZ/ Z gz)) then S/[l + 1 — 1,] —|—]l] = {gi, hi/};
else S/[Z + ' = 17.] —I_.]/] = {hilv 92}7
return;

(b) /* Alternative retry statements */

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

If (¢ #7 or j#1)or (i # 35 or j/ #1')) then goto Step 2,
else goto Step 1.

/* Finding median-index pair */

Find the median-index pair (z,y) of sequence pair S([z, 7], ¢/, 7']).

/* Detecting faults */

Check its own median-index pair (x,y) is valid or invalid by performing the
self-checking-routine((z, y), S([¢, 7], [¢/, 7'])). If the median-index pair (x,y) is
invalid then goto Step 2.

/* Merging for the smaller subsequence pair */
Recursively perform procedure MCEMS(S([z, x], [#/,y])) for the smaller sub-
sequence pair S([¢, z], [/, y]).

/* Manipulating for the case when the largest element in sequences {g;, gi+1,
o gitor {hi, higq, ..., hji} is smaller than or equal to the median element
of sequence pair S([¢, 7], [¢, 7']) */

If (=75 and j=2z) then S'[e+y+ 1,54+ '] = {hys1, ..., hj}; return;
If (y=7"and j' =y) then S"[z +y+ 1,5 + j'| = {gs+1, - -, gj}; return;
/* Merging for the larger subsequence pair */

If ((# #jand j # z) and (y # j' and ;' # y)) then

Recursively perform procedure MCEMS(S([z + 1, 7], [y + 1,5])) for the
larger subsequence pair S([z +1,4], [y + 1, 7]),

else goto Step 5.
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Example 2 illustrates the operation of the procedure MCEMS(S([1,5], [1,6])). Let
sequences G = {q1, g2, g3, g1, g5} = {1, 3, 5, 6, 10} and H = {hy, hq, h3, ha, hs,
he} = {2, 4, 7, 8, 9, 11}. First, we can find the correct median-index pair (3,2)
of S([1,5],[1,6]) such that S([1,5], [1,6]) can be split into smaller subsequence pair
S([1,3],[1,2]) and larger subsequence pair S([4,5],[3,6]). Recursively perform proce-
dure MCEMS(S([1,3],[1,2])) for the smaller subsequence pair such that sequence pair
S([1,3],[1,2]) can be split again into S([1,2],[1,1]) and S([3,3],[2,2]). Finally, we can
reliably merge each subsequence pair S([1,1],[1,1]), S([2,2],[1,1]), and S([3,3],[2,2])
into sequential sequence and locate in S'[1,2] = {S;,5,} = {1,2}, S[3,3] = {55} =
{3}, and S'[4,5] = {5,,5:} = {4,5}, respectively. Similarly, S’[6,7] = {S;, S;} =
6,7}, S'[8,8] = {Sg} = {8}, 5[9,10] = {S,, S} = {9,10}, and S'[11,11] = {S},}
= {11} can be also obtained. Consequently, all of the disjoint subsequences S'[1, 2],
S'[3,3], S'[4,5], S[6, 7], S'[8, 8], S’[9, 10], and S’[11, 11] constitute a sequential sequence
S'[1,11] = {1,2,3,4,5,6,7,8,9,10, 11}

The following lemma states that the proposed MCEMS procedure is reliable.

Lemma 2 : The procedure of the merge-compare-exchange operation with median-
splitting technique (MCEMS) is reliable.

Proof: In the step 1 of MCEMS(S([z, 7], [/, 5])), if the length of sequences S|z, j]
and S'[', 7] is equal to 1, we can reliably decide the smaller element of S[i, j] and
S’[¢',5'] by the replicated calculation statement. Transient faults occurring in step
2, if exist, can be detected and corrected by the reliable operations of the step 3.
In the step 3, the reliable self-checking routine is applied to detect whether the er-
ror exist or not. Hence, steps 2 and 3 assure that median-index pair (z,y) of the
sequence pair S([¢, 7], [¢,7']) is valid. If the condition in the step 5 is satisfied, all
elements of the larger subsequence pair need to move to the suitable locations. Since
the communication channels are reliable, the operations of data movements can be
done successfully. Otherwise, procedure MCEMS still need to recursively merge the
larger subsequence pair S([z + 1,7],[y + 1,J']) into the sequential sequence. Next,
we prove that the steps 4 and 6 are reliable by the induction. The expansion of the
MCEMS(S([¢, 7], [, 7'])) procedure is a binary tree, which is called the expansion tree of
the original MCEMS(S([z, 7], [/, '])) procedure. Let n denote the level of the expansion
tree.

Basis n = 1 : Leaves in level 1 of the expansion tree will obtain a sequential
subsequence by reliable merging the sequence pair S([¢, 7], [¢, 5']) since the length of
each sequence of S([t, 7], [/, 7]) is equal to 1.

- 12 -



Hypothesis n = k — 1 : The MCEMS(S([7, z], [¢,y])) and MCEMS(S([z + 1, /], [y +
1,7'])) are hypothesized reliable in the level k — 1 of the expansion tree, where (z,y) is
the valid median-index pair of sequence pair S([¢, 7], [/, 7])-

Induction n = k : In level k of the expansion tree, we claim that MCEMS(S([¢, j],
[+, 5'])) is reliable. MCEMS(S([z, 4], [¢/,j])) is reliable by the hypothesis step. This is
because that the MCEMS (S([¢, z], [¢,y])) and MCEMS(S([z + 1,7],[y + 1,5])) are
the only two subtrees of MCEMS(S([, 7], [/, 7])) in level k of the expansion tree.

We conclude that the merge-compare-exchange operation with median-splitting
technique (MCEMS) is reliable. Hence, the Lemma 3 is proved by the induction hy-
pothesis.

O

We now analyze the time complexity of the MCEMS procedure. The time cost of
steps 1 and 3 is constant. In step 2, we need time O(c¢; + ¢z log (m/2)) for finding a
median-index pair (z,y) of S([t,7],[¢,5]) since m/2 = ¢ — 14 j' — j + 2. Sequence
pairs S([7, 2], [7,y]) and S([x 4+ 1,¢],[y + 1,7']) of steps 4 and 6 respectively need time
O(c1 + colog(min{z’,y'})) and O(c1 + colog(min{z”,y"})) to find median-index pairs
(z',y") and (2”,y"). 1t is obvious that both time cost are smaller or equal to O(¢; +
¢z log (m/2?%)) since m/2* = 2’ +y' = 2" + y”. Repeatedly split the new sequence pairs
until the number of disjoint subsequence pairs is 2'°¢("/2)=1 During the execution of
our algorithm, if condition in step 5 holds, the execution time of step 5 is bounded in
O(m/2). Thus, the total time cost Tarcrms can be measured by the following equation.
Trvcrms< O(log (m/2) + 2log (m/2%) + -+ + 2log (m/2)=1 o9 (m/210g(m/2))) + O(m/2)

< O{(m/2)log (m/2) — log (m/2) — (m/2)log (m/2) + m) + O(m/2)
< O(m — log (m/2)) + O(m/2)
= O(m)
If constant number of transient faults occurs in total, the time complexity of our reliable

merge-compare-exchange operation with median-splitting technique is O(m).
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3. Reliable Sorting Algorithm

In this section, we will describe our reliable sorting algorithm with median-splitting
technique on the hypercube @),,. The reliable compare-exchange and merge-compare-
exchange operations with median-splitting technique have been developed in Section
2.2. The key concept of our reliable sorting algorithm proposed here is based on
recursively performing these two reliable operations.

We now explain how the reliable sorting algorithm performs on the n-dimensional
hypercube @,, with 2" processors. Assume each processor has m/2 = [ M /2" ] unsorted
elements, where M is the number of total unsorted elements. First, each processor
sorts its allocated elements independently to be sequential sequence S[1,m/2] by using
merge-sort algorithm. To prevent the transient fault occurring, each merge stage is
achieved by performing the reliable MCEMS procedure. Next, each pair of neighboring
processors P and P’ recursively performs the compare-exchange and merge-compare-
exchange operations with median-splitting technique along dimension £ in hypercube
@, where 0 < £ < n — 1. The reliable compare-exchange operation is achieved by
performing the CEMS(P, P, k) procedure. After applying the CEMS procedure, each
processor can successfully split the current sequence pair S[1,m/2],[1,m/2]) into two
subsequence pairs S([1,z], [1,y]) and S([z 4+ 1,m/2], [y + 1, m/2]) by the valid median-
index pair (x,y). In addition, processors P and P’ respective perform the procedures
MCEMS(S([1,],[1,y])) and MCEMS(S([z+1,m/2], [y+1,m/2]). The reliable merge-
compare-exchange operation is thus achieved. Therefore, each processor can obtain
the sequential sequence in the ascending order. These two reliable operations can be
recursively applied and, in final, we obtain the sorted elements located on hypercube
(), in the the processors’ address order.

Our reliable sorting algorithm on hypercube (RSH) is introduced as follows.

Reliable Sorting Algorithm on Hypercube:

Input: A hypercube (), contains M unsorted elements. Each processor of @), has
m/2 = [M/2"] elements. The address of each processor is b,_1b,_2. .. bo.

Output: Elements are sorted in ascending order and located on processors of @), by

the processors’ address order.

Step 1: /* Reliable merging-sort operation */
Each processor of @), sorts its elements to a sequential sequence S[1,m/2] in
ascending order by applying the merging-sort algorithm, which is based on
the reliable MCEMS procedure.
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Step 2: For: =0,1,..., n—1 do Steps 3 through 5.

Step 3: /* Assume b, =0 */
For each processor, let variable mask be equal to the value of bit b,y of the
processor’s address.
If (mask # b;41 or b1 # mask) then goto Step 3.

Step 4: Fork=1:,72 —1,...,0 do Step 5.
Step 5: For each pair of neighboring processors P and P’ along dimension k:

(a) /* Reliable compare-exchange operation */
If (processor P satisfies the condition (mask = vy and vy = mask) and
processor P’ satisfies the condition (mask # vy and vy # mask)) then per-
form procedure CEMS(P, P’, k) such that processor P reserves the smaller
sequence pair S([1, z],[1,y]) and processor P’ reserves the larger subsequence
pair S([z+1,m/2], [y+1,m/2]), where the (z,y) is a valid median-index pair;
else goto Step 5(a).

(b) /* Reliable merge-compare-exchange operation */
Processors P and P’ respectively perform procedures MCEMS(S([1, 2], [1,y]))
and MCEMS (S([x+ 1,m/2], [y +1,m/2])) to obtain an ascending sequence.

Example 3 is considered here to illustrate the operations of the reliable sorting algo-
rithm running on the hypercube (J5. The host evenly distribute 32 unsorted elements
to 8 processors of (3. By applying step 1 of the proposed algorithm, each processor
sorts the assigned 4 unsorted elements to sequential sequence S[1,4] in ascending order
by the reliable merge-sort algorithm as shown in Fig. 3(a). In Fig. 3(b), each processor
duplicates 4 elements to its neighboring processor along dimension 0. Then, both the
neighboring processors have the same sequence pair S([1,4],[1,4]). Processors 0, 1,
3, and 4 find the valid median-index pairs (2,2), (2,2), (2,2), and (3, 1), respectively.
Processors 2, 5, 6, and 7 find the invalid median-index pairs (2,1), (2,3), (1,3), and
(2,3), respectively. Then, processors 0, 1, 3, and 4 respectively send its valid median-
index pair to its neighboring processors 1, 0, 2, and 5 along dimension 0. Similarly,
processors 2, 5. 6, and 7 send the "Invalid” message to its neighboring processors along
dimension 0. Processors 2 and 5 thus respective mask its invalid median-index pairs
(2,3) and (2,1) by the valid median-index pair (2,2) and (1,3) as shown Fig 3(c).
Fig. 3(d) depicts that processors 0, 3, 4, and 7 (1, 2, 5, and 6) reserve the smaller
(larger) subsequence pair. Finally, each processor merges its subsequence pair into one
sequence as shown in Fig. 3(e). Repeatedly performing the step 2 through step 5, all

the elements can be reliably sorted in an ascending order according to the processor’s
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address order as shown in Fig. 3(f).

Theorem 1 : The sorting algorithm on hypercube (RSH) is reliable.

Proof: The merge-sorting algorithm of step 1 is reliable because that each merging
step is reliable proved in the Lemma 2. The For statements in steps 2 and 4 are reli-
able. There exist register store operation and register addition operations in the For
statements. The register addition operation can be achieved reliable by the alternative
retry method and the register store operation is reliable by the previous assumption.
Thus, the step 3 is correct after performing the alternative retry statements. Lemma
1 proves the procedure of the compare-exchange operation with median-splitting tech-
nique (CEMS) of step 5(a) is reliable. Similarly, Lemma 2 shows the procedure of the
merge-compare-exchange operation with median-splitting technique (MCEMS) of step
5(b) is reliable. Consequently, the sorting algorithm on hypercube is reliable since all
steps of the algorithm are reliable.

O

The derivation of total time cost Trsy of the proposed reliable sorting algorithm is
described as follows. The worst case of time cost for reliable merging-sort operations in
step 1is O(mlog[m/2])t.. The total time cost of step 5(a) for performing the CEMS( P,
P', k) procedure is O(m)ty;, + O(logm/2)t.. The time cost of step 5(b) in the worst
case for performing the procedure MCEMS(S([1,m/2], [1,m/2])) is O(m)t.. Steps 2
and 4 of the proposed algorithm perform @ loops of steps 5(a) and 5(b). The total
time cost Trsy of the proposed reliable sorting algorithm without fault occurring in
the worst case is

Trsuy = O((mlog[m/2]) t. + w (O(m)tsr + O(logm/2)t. + O(m)t.)
= O(max(mlogm, n*m)).

If the constant number, in total, of transient faults occur during running the RSH
algorithm, the time complexities of the reliable compare-exchange and merge-compare-
exchange operations are O(m)t,;, + O(rlogm/2)t. and O(m)t., respectively. Thus,
the time cost of our reliable sorting algorithm is still O(max(mlogm, n*m)). The time
complexity of our reliable sorting algorithm is the same as the time complexity of the
bitonic sorting algorithm on hypercube [10] [16].

Note that, some modifications are needed to apply this reliable algorithm to the
PRAM model. Each processor of the PRAM model can read the m/2 elements simul-
taneously and avoid the operation of the duplicating data in the CEMS procedure.
Thus, we can omit the operation of duplicating data in the CMES procedure. The
time cost of the CEMS and MCEMS procedures are thus O(r logm/2)t. and O(m)t.,
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respectively. Therefore, the time complexity of the reliable sorting algorithm on the

PRAM model is also O(max(mlogm, n*m)).

4. Experimental Results

In this section, we describe the implementation of the proposed reliable sorting
algorithm on an NCUBE/ 7 MIMD hypercube machine with 64 processors each contains
512 K bytes of local memory. Simulation here mainly compares the execution time of
our sorting algorithms with and without fault tolerance.

The sorting algorithm without fault tolerance can be achieved by omitting steps 3
and 4 of the CEMS procedure, step 3 of the MCEMS procedure, and the replicated
statements in alternate-retry scheme. Our proposed sorting algorithm without fault
tolerance is an novel algorithm and is simulated on the 6-dimensional hypercubes.
In our simulation, the number of data elements is ranging from 2048 to 20480. The
execution result of our algorithm without fault tolerance is depicted in Fig. 4 by thick
line with solid points. The reliable sorting algorithm has been simulated on the 6-
dimensional hypercubes. For illustrating the capability of fault tolerance, we assume
that the number of repeatedly executing the steps 3 and 4 of CEMS procedure and
step 3 of MCEMS procedure presents the degree of occurring transient faults. Here,
we denote the number of recalculation by r. The larger value r is, the more times
occurring transient faults will be. In our simulation, we estimate the extra execution
time under the value of r are 1, 2, 3, and 4. The simulation results of our reliable
sorting algorithm with different value of r, ranging from 1 to 4, are depicted in Fig. 4
by thin lines. In Fig. 4, the execution time of our reliable algorithm with r =1, r = 2,
r = 3, and r = 4 is shown to be slightly larger than sorting algorithm without fault
tolerance running on the QJs. The percentage overhead of the execution time in Fig. 5.
is used to illustrate the degree of extra execution time of our reliable sorting algorithm.
Let the execution time of our reliable sorting algorithm be A. Let the execution time of
our sorting algorithm without fault tolerance be B. Then, the value of the percentage
overhead is evaluated by (A— B)/A. The percentage overhead of our reliable algorithm
with r = 1, r = 2, r = 3, and r = 4 is illustrated in Fig. 5. As a result, more the
number of data elements have been sorted, the lower percentage overhead is obtained
by our reliable sorting algorithm with fixed value of r. For example, when the number
of data elements is 20480, the percentage overhead of our reliable algorithm with r =1
is near 20%. This concludes that our method is a truly low overhead reliable sorting

algorithm.
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5. Conclusions

In this paper, an algorithm-based fault-tolerant technique, namely the median-
splitting strategy, is presented for designing a reliable sorting algorithm. Based on
the median-splitting strategy, the reliable compare-exchange /merge-compare-exchange
operations with median-splitting technique are proposed for the purpose of tolerating
the transient faults. Combining these two reliable operations with the bitonic sorting
algorithm, a reliable sorting algorithm is then proposed on the hypercube multicom-
puters. The algorithm presented here has the capabilities of detecting transient faults,
correcting incorrect values, and preventing error propagation. The reliable algorithm
can be easily extended to apply to other distributed memory systems such as the mesh
multiprocessors or the PRAM model. Besides, we present experimental results on
NCUBE/7 MIMD hypercube machines with 64 processors indicating that our fault-

tolerant sorting algorithm has low extra-overhead.
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