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Abstract—The use of UAVs for logistics services has become a
highly regarded application in recent years. This paper studies
the package pickup and delivery problem with multi-commodity
and multi-visits. Due to the limited load, the UAV has to operate
within the load limit when performing package delivery services.
In addition, we allow the UAV to visit a location multiple
times during the mission. Our objective is to minimize the
total flying distance of the UAV. Since the problem is NP-
hard, we propose a two-phase heuristic algorithm to solve this
problem. First, the trajectory of the UAV to pick up or deliver
packages is constructed using a greedy algorithm. Second, we
optimize the previously built trajectory to obtain a shorter flying
distance for the UAV. The simulation results show that the
proposed algorithm outperforms the baselines regarding total
flight distance and execution time.

Index Terms—Unmanned aerial vehicle, pickup and delivery
problem, trajectory planning.

1. INTRODUCTION

In recent years, Unmanned Aerial Vehicles (UAVs) have
been widely used in various applications such as environ-
mental monitoring, search and rescue [1], data sensing [2],
and package delivery [3]. UAVs are more mobile, agile,
and flexible than traditional vehicles in package delivery to
remote and difficult-to-reach areas. UAVs do not have terrain
restrictions, such as crossing rivers or hills. In addition, the
labor costs associated with traditional vehicles in the package
delivery service are much higher. One advantage of UAVs
is that they can operate autonomously or remotely, allowing
efficient and cost-effective operations. Their small size and
maneuverability enable them to navigate tight spaces and
dense environments, providing valuable insights and services
in areas where human access is limited or impractical. With
the booming development of e-commerce, UAVs have be-
come increasingly important to the logistics industry and
play an important role in modern package delivery services.
In recent trends, Google and Amazon have used UAVs for
commercial package delivery services.

Recently, many researchers have investigated the package
delivery problem, which is also called the Pickup and De-
livery Problem (PDP) [4], [S]. The PDP aims to determine
the optimal route for the vehicle to transport packages or
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passengers from pickup to delivery locations. Furthermore,
because of the lightweight nature of UAVs, they have limited
load capacities. UAVs should keep the load within a safe
range. Otherwise, the package delivery mission may fail. In
[6], the authors considered a package delivery system that
cooperates with trucks and UAVs. This work assumed that the
UAV performs only one delivery task on each flight to meet
its capacity constraint. However, it results in longer delivery
time and energy wastage. We envision that there is no need to
impose restrictions on the number of delivery tasks per flight,
provided the load capacity of the UAV is not exceeded. This
approach is better aligned with the needs of a modern package
delivery system.

Several works have investigated the package delivery prob-
lem without restricting the number of delivery tasks [7]-[12].
In [7], the authors introduced a Selective Pick-up and Delivery
Problem (SPDP), a variant of the PDP. Instead of visiting all
pickup locations, the vehicle can select some of them to pick
up packages in this scenario. The objective was to minimize
the travel cost of the vehicle under load capacity constraints.
The authors in [8] considered a UAV-assisted package deliv-
ery system with the restriction of a no-fly zone. In [9] and
[10], the authors investigated the PDP with one commodity,
and the commodity needed at the delivery location could
be collected from any pickup location. Moreover, the multi-
commodity PDP was considered in [11] and [12]. Except for
multi-commodity, the authors also assumed that the pickup
and delivery locations in this scenario are paired, meaning
each request has a pair of source and destination locations.

Most previous work assumed only one type of commodity
in their systems, and each location could only be served
precisely once. However, in a realistic job, multiple visits
to a location to meet its demands can potentially lead to
cost savings in logistics. In addition, the realm of package
delivery services typically encompasses a variety of package
types. The proposed work differs from the existing research
in the following sense: this work considers a single UAV for
multi-commodity package delivery services. The UAV will
first pick up the packages at the source location and deliver
these packages to the corresponding destination locations.
During flight, the UAV can collect packages from different
locations at the source if the load limit does not exceed
its capacity. This is one of the uniqueness of the proposed
problem compared to the research in [10]-[16]. In addition,
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multiple visits are allowed to the same location, and a location
can request package pickup or delivery, which is a distinct
feature in the proposed problem scenario. Our main objective
is to determine the minimum distance trajectory of the UAV
under the load constraint throughout the mission.

This paper proposes a two-phase heuristic algorithm to
minimize the trajectory of the UAV. First, we use a greedy-
based algorithm to construct a UAV trajectory to pick up
or deliver packages, which will satisfy all package-delivery
requests. Since the UAV has a load limit, we must consider
the distance and weight of the package when finding a UAV
trajectory. After constructing the trajectory, we divide it into
multiple sub-trajectories. Each sub-trajectory consists of two
source locations and multiple destination locations, which are
located within the two source locations. By fixing two source
locations as the starting and end points, we need to find a
shortest trajectory for the destination locations, essentially
a Traveling Salesperson Problem (TSP). We can refine it
through a TSP approximation algorithm [13], shortening the
package delivery time.

The main contribution of our work can be summarized
as follows. Firstly, we propose a new and realistic prob-
lem in autonomous logistic scenarios, as applicable to PDP
with multi-commodity and multi-visits. A destination location
might have some package to return/exchange and act as a
source. Second, we design a heuristic algorithm to determine
the trajectory of the UAV under the load constraint. Here,
the trajectory of the UAV to pick up or deliver packages
is constructed using a greedy algorithm. In addition, we
optimize the previously built trajectory to obtain a shorter
flight distance for the UAV. Third, the simulation results
show that the proposed algorithm outperforms the baselines
regarding total flying distance and execution time.

The rest of this paper is organized as follows. In Section
II, we introduce our system model and the objective function
of this paper. Section III describes the proposed algorithm.
Then, Section IV shows the simulation result. Finally, the
conclusion of this article is in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. System Model

We consider a pickup and delivery network consisting
of one UAV to deliver packages, such as mail or official
documents, on campus. Our system has [ locations and
one depot lp. Let £L = {1,2,...,l} denote the set of I
locations. We assume that some locations are sources that
will deliver packages to some destination locations. The
UAV must go to the sources to pick up packages and then
deliver packages to the corresponding destinations. Note that
a destination may receive multiple packages from different
sources. Let S = {s1,82,...,8m} C L denote the set
of m source (pickup) locations. For each source i € S
and D; = {di1,di2,....,di 5, } C L denotes the set of k;
destination (delivery) locations for source ¢. Let D = UZZ1 D;
represent all destinations. Note that a location can be a source

and destination location and can be visited multiple times. In
addition, the UAV will depart from the depot and deliver all

packages. After completion of all tasks, the UAV will return
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Fig. 1: A scenario of the UAV for multi-commodity package
delivery service.

to the depot. Since we assume a UAV can recharge its battery
at any location, we do not consider energy constraints in our
problem. Thus, our work aims to find the shortest trajectory
of the UAV to minimize energy consumption and complete
its tasks.

As mentioned above, a source or destination can be visited
multiple times to complete its package pickup or delivery.
Moreover, if the UAV load does not exceed its limit, it can
continue to pick up more packages from different sources
until the limit is reached. Since a location may have multiple
packages that need to be picked up or dropped off, each
package has its source and destination location. By adding
dummy locations, the package requests from the same loca-
tion can be divided into multiple pairs of one-to-one source
and destination locations. Therefore, the original problem can
be transformed into the problem of a single visit to each
dummy location.

An example of a UAV to pick up and deliver packages is
shown in Fig. 1. We assume s; and s are 1 and 3, respec-
tively. The destinations of s; are D1 = {d11,d1,2,d13} =
{2,3,4}. The destinations of sy are D3 = {da1,d22} =
{2,4}. Since the source location 1 needs to deliver three
packages to three destination locations, we add three dummy
source locations s, s5, and s% corresponding to the three
dummy destinations dj, db, and df, respectively. Similarly,
the source location 3 has two destinations, so we add two
dummy source locations s/, and 3’5. On the other hand, two
packages need to be dropped off at each destination, 2 and 4,
so we add two dummy locations for each destination. Let d}
and d; be dummy locations of destination 2 and d4 and df be
dummy locations of destination 4. Note that location 3 serves
as both the source and destination locations. Therefore, we
use s and s} as the dummy source locations and d), as the
dummy destination location of location 3.

After adding dummy locations, the set of source locations
S can be rewritten as S’ = {s{,sh,...,s,,, }. For each
source location, s, € &', d} is its corresponding destina-
tion location, i.e., the source and destination locations of
the package i, and w] is the weight of the package. Let
D' ={dj,ds,...,d,, } represent all destination locations and
W' = {w],wh,...,w.,, } be the set of package weights. Due
to the addition of dummy locations, each location will be
visited only once. Therefore, the total trajectory length of the
UAV is 2m’ + 2, including the departure of the UAV from the
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depot and its final return to the depot. Note that each source
location corresponds to only one destination location with a
package. For the load limit, let y; be the sum of the weight
of the UAV when it is landed at location 7, and the maximum
load capacity of the UAV is denoted by W. Then, the load
constraint of the UAV is y; < W.

B. Problem Formulation

In our system, we aim to minimize the total flight distance
of the UAV under the constraint of the limited load of the
UAV to deliver all packages. Let m = [my, o, ..., Tom/+2]
denote the trajectory of the UAV, where m; represents the ¢-
th visiting location in the trajectory. The distance between
location 4 and location j is denoted as dis; ;. Therefore, we
can formulate our problem as follows:

2m’+1

min > disgx,., (1a)

i=1

St Ym T W = Ymyy, VT €8 (1b)
Ym; — w;Hl = Ynip1, Vg1 €T, (1c)
Yu, < W, v, € STUD, (1d)
Yr, =0, (le)
T = lo, (lf)
Tom/42 = lo. (1g)

Constraints (1b) and (1c) ensure the current load of the UAV
in each location. Constraints (1d) and (le) ensure the UAV’s
load limit. Constraints (1f) and (1g) enforce that the UAV
must depart from the depot [y and return to ly.

Recall our problem. We consider a pickup and delivery
network where the UAV aims to minimize the total flight
distance under the load limit constraint. This problem coin-
cides with the well-known TSP when the load of the UAV
is large enough, and both aim to find the trajectory with the
minimal total distance. Therefore, the TSP is a special case
of our problem. Since the TSP has been proven to be an
NP-hard problem, our problem is also an NP-hard problem.

III. MINIMIZING PACKAGES DELIVERY DISTANCE
(MPDD) ALGORITHM

In this section, we describe the proposed trajectory opti-
mization algorithm to minimize the total flying distance of
the UAV in the package pickup and delivery system. This
problem involves planning the UAV’s trajectory to complete
all package delivery tasks. Hence, we propose a two-phase
heuristic algorithm to minimize the package delivery distance
(MPDD) to solve this problem.

In the first phase, we use a greedy strategy to construct a
UAV trajectory. After the first phase, we further reduce the
trajectory distance in the next phase. In the second phase, we
label all source locations s} in the trajectory =, including the
return of the UAV to the depot [y. Every two source locations
can form a sub-trajectory. By fixing two source locations
as the starting and end points, we aim to find the shortest
trajectory that covers all locations, effectively turning the

problem into a TSP. Afterward, we refine each sub-trajectory
through a TSP approximation algorithm to get a better visiting
order for the UAV.

A. UAV Trajectory Construction

We adopt a greedy method since finding an optimal tra-
jectory for our problem is NP-hard. First, the UAV takes
off from the depot [ly. After that, we iteratively assign the
location with the highest fitness as the next location until
all package delivery tasks are completed. Due to the UAV’s
limited load capacity, the trajectory can consider not only the
distances among locations but also the package weights at
each location. Therefore, we consider a fitness metric that
includes distance and package weight.

Because we first add dummy locations to split the pack-
ages for the original locations with multiple packages, each
dummy location will only handle one package. An original lo-
cation may have pickup and delivery requirements. A dummy
source location is a better choice for the UAV if it can drop
off more packages simultaneously. Let d,; denote the package
weight that can be picked up at the source location s}, and
da; denote the package weight that can be dropped off at the
destination location dj. Since a dummy source location may
have several dummy destinations in the same place, we can
deliver packages to these dummy destinations simultaneously.
Let K; € D’ be the set of dummy destinations with the same
locations as a source s, and the corresponding packages have
already been picked up. Therefore, the package weight to be
dropped off at the dummy destinations can be added to the
source s; and can be expressed as follows:

b =wi+ Y by, ®)
Jer;
b4 = . 3)

In other words, when the UAV arrives at the source location
%, it can drop the package from the destination location d;
at the same time. For example, if the source location s has a
destination location d; with zero distance, that is, dissé,d; =
0, and the package should be dropped off at the destination
location d} after picking up, the package weight 6d; must be
added to the package weight of the source location d:.

To calculate location fitness, it is necessary to normalize
dis; j» and §;: to ensure fairness. To do this, we first compute
the candidate location closest to the current location 7’ and the
candidate location with the heaviest package weight among
the candidates, which can be computed as in equations (4)
and (5).

dmin =  min disy j, 4)
j'€candidate
Wae =  Max 0. 5)
mae j’€candidate J
o ,
fijr=a == 4 (1-a) ——, ©6)
disy g’ Wmazx

Then, the location fitness for a dummy location ¢’ to its
candidate location j’ is calculated as the ratio of the minimum
distance d,;, to disy j, denoted as % The weighted
fitness of the package is calculated as the ratio of dj to
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. . 6‘/
the maximum weight w,,.,, denoted —-—. Note that each

candidate location must satisfy the load %ﬁf)acity constraint.

As a result, when the UAV is at dummy location ¢’, the
fitness of each candidate location j' can be calculated as
in (6), where 0,/ can be calculated with equation (2) or (3)
depending on the location j' is the source or destination. In
addition, « is a parameter of the two terms of the equation to
adjust the balance between distance and package weight in the
fitness calculation. Note that if there is some dummy source
location j' with the same coordinates as the current location
i, that is, dis; j; = 0, we select j' as the next location. If
there is more than one dummy source location with the same
coordinates as the current location, the source location with
the heaviest package weight will be first picked up.

After evaluating the fitness of all possible candidates, we
select the candidate with the greatest fitness as the next
location, which can be formulated as:

Jj* 4+ argmax fy . @)

j' €candidate
When all package delivery requests are fulfilled, the depot [
is added to the trajectory as the UAV needs to return to it, thus
obtaining the result of the first phase. Since both the source
location set S’ and the destination location set D’ have sizes

m/, the total time complexity of the first phase algorithm is
o).

B. Trajectory Refinement

Algorithm 1 Trajectory Refinement Algorithm

Input: UAV’s trajectory m, the indices of source locations s[]
Output: UAV’s trajectory 7’

i+ 1

2: while i <m’ + 1 do

3 if s[i + 1] — s[i] > 2 then

4: for j=i+1tom +1do

5: start + sli

6: end + s[j]

7: Let traf] be an array of {m;}¢"d, .

8: Solve the TSP of tra[] and obtain new_tral]

9: Let d and d,,¢,, be the distances of tral]
and new_tral], respectively.

10: if dyey < d and new_tral] is feasible then

1 Replace tral] with new_tral]

12: else

13: i+ max(i+1,7—1)

14: break

15: end if

16: end for

17: else

18: 141+ 1

19: end if

20: end while
21: return UAV’s trajectory 7’

After the first phase, we will reorder the trajectory 7 to
shorten the total flying distance of the UAV. Because we need

to consider the trajectory’s feasibility, i.e., the load capacity
constraint, we cannot arbitrarily change the visiting order of
the source and destination locations. For example, changing
the visiting order of a source location can violate the UAV
load capacity restriction. However, we can divide the first
phase trajectory into multiple sub-trajectories based on the
sequences of source locations and refine the sub-trajectories in
order. Let s[i] (1 < ¢ < m’) denote the i-th source location on
the trajectory 7. Furthermore, s[m’ + 1] represents the return
of the UAV to the depot /. Each sub-trajectory consists of two
source locations (s[i| and s[i 4 1]) serving as the starting and
end points, respectively. The locations between the two source
locations are destination locations only. Thus, the order of
visit of destination locations between the two source locations
can be changed while satisfying the load capacity constraint.

The second phase algorithm involves refining multiple sub-
trajectories within the original trajectory m. The proposed
algorithm will start from the first source location s[1] in
the trajectory and examine each sub-trajectory step by step
until the entire trajectory is traversed. After identifying a
sub-trajectory, the minimum distance of the sub-trajectory is
found in the TSP. Since the TSP is an NP-hard problem, we
use an approximation algorithm [13] to solve this problem in
polynomial-time complexity. The algorithm first constructs
a minimum spanning tree (MST) for all locations in the
sub-trajectory with the starting point s[i] set as the root.
Subsequently, the desired visiting order can be obtained by
traversing this MST using a preorder traversal approach.
However, unlike traditional TSP, the sub-trajectory will end
at the end point s[¢ + 1] rather than returning to the starting
point s[¢]. After obtaining the new sub-trajectory, to ensure the
feasibility of the trajectory, it is necessary to confirm whether
the new sub-trajectory satisfies the load capacity constraint
and whether the distance is shorter than the original one. If
both conditions are met, replace the original sub-trajectory
with the new sub-trajectory.

Additionally, we will keep the current starting point s[i]
fixed and change the endpoint s[i + 1] to the next source
location s[i + 2]. In other words, we can extend the length
of the current sub-trajectory to enable the algorithm to find
the TSP trajectory that includes more locations. This further
shortens the overall trajectory distance. However, when we
change the visit order of the source locations, we must satisfy
the load capacity constraint. Therefore, extending the sub-
trajectory should be terminated when the new sub-trajectory
violates the load capacity constraint or has a longer distance
than before. When we terminate extending a sub-trajectory
at endpoint s[i + k], we change the starting point s[i] to
sli+k—1], for 1 <k <m’—i+ 1. This is because the sub-
trajectory from s[i] to s[i+k—1] has already been refined, but
the subsequent sub-trajectory starting from s[i + k — 1] has
not been refined yet. We continue to execute the trajectory
refinement algorithm until the starting point is s[m’ + 1].
The details of the second phase algorithm are summarized in
Algorithm 1. An example of trajectory refinement is shown
in Fig. 2. The algorithm starts from s[1] to s[2]. Since
there are no destination locations between them, this sub-
trajectory is skipped. Then, it tries from s[2] to s[3] and
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Fig. 2: An example of refining the trajectory.

checks whether the new sub-trajectory is shorter than the
original one and the solution is feasible. If not, it attempts
the sub-trajectory from s[3] to s[4]. Conversely, if the new
sub-trajectory is feasible and shorter than before, it tries the
sub-trajectory from s[2] to s[4]. Subsequently, if the sub-
trajectory is feasible and shorter than before, we will try the
sub-trajectory from s[2] to s[5]. Otherwise, we will try the
sub-trajectory from s[4] to s[5]. The second phase algorithm
refines the trajectory. The refined algorithm starts from the
sub-trajectory between the first and second source locations,
i.e., s[1] and s[2]. It repeatedly attempts to enlarge a sub-
trajectory to include more locations as long as possible. In line
2, it executes at most m’ times. Additionally, since the length
of the sub-trajectory can be up to 2m/, the complexity of
the TSP approximation algorithm used in line 8 is O((m/)?).
Therefore, the time complexity of the second phase algorithm
is O((m’)?). Finally, the time complexity of the proposed
algorithm MPDD is O(m/) + O((m’)?) = O((m’)?).

IV. SIMULATIONS
A. Simulation Settings

In our experiments, 30 locations are randomly distributed
over a 1000 m x 1000 m square area. The depot [y is in the
bottom-left corner, at coordinates (0,0). We assume that only
some locations require package delivery; that is, the number
of source locations accounts for 20% of all locations. The
number of destination locations is randomly selected within
[3, 4, 5] for each source location. Besides, the weight of each
package is set in the range of [0.6, 0.7, 0.8] kg. The maximum
load capacity of the UAV is 3 kg [3]. In the first phase of
MPDD, according to our experiments, the parameter o of
the fitness equation is set to 0.7 to achieve relatively better
performance.

For performance comparison, we implement three existing
algorithms as baselines, which are the Genetic Algorithm
(GA) [14], Ant Colony Optimization (ACO) [15], and Nearest
Neighbor (NN). We assume that all algorithms will split mul-
tiple packages by adding dummy locations before determining
the visiting order of the UAV. The NN is a greedy-based
approach that involves adding the nearest location to the
current trajectory at each step until all locations are included.
Additionally, only feasible locations that satisfy the constraint
are added when inserting a new location. Each simulation
result is an average of 20 simulations.

B. Simulation Results

In Fig. 3, we show the total flight distance of the UAV
with different numbers of locations. We can see that as
the number of locations increases, the distance obtained
by all algorithms increases. However, when the number of
locations is small, the NN approach results in the longest
distance, as once it goes to the nearest location, it may find
subsequent locations too far and need longer backtracking.
Similarly, ACO makes initial pheromone trails with poor
choices, leading to premature suboptimal paths that cannot
improve due to limited points. MPDD can find the shortest
trajectory to achieve better performance when more locations
are in the system. Although GA and ACO search for solutions
through an iterative process, in GA, due to increased location
mutations, swapping, or segment reversal of a path during the
search may still lead to trajectories with longer distances.
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—— GA —=— GA
12000 N 11000 W
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Fig. 3: Total flight distance vs. Fig. 4: Total flight distance vs.
number of locations. average weight of packages.

Fig. 4 shows the total flight distance for different package
weights. In this experiment, the weight of each package is
set at £ 0.1 kg of the average weight. The average weight
of the package varies from 0.5 kg to 1 kg. We can observe
that the flight distance of all algorithms increases as the
package weight increases. This is because as the weight of
the package increases, the number of packages that the UAV
can carry decreases, requiring an increase in the number
of flights. MPDD consistently outperforms other comparison
algorithms in all cases, with the NN approach showing the
worst performance. The reason is that the NN only considers
the distance between locations and ignores the weight of the
packages.

We show the total flight distance for different numbers
of destination locations in Fig. 5. In this simulation, the
number of destination locations for each source location is
randomly chosen within a range of £+ 1 from the average
number of destination locations. As the number of destination
locations increases, the UAV must spend more time and cover
a longer distance to complete the tasks. When there are
fewer destination locations, i.e., when each source location
has to deliver a small number of packages, the performance
differences among the other three algorithms are insignificant
except for the NN approach. In contrast, when the number
of destination locations increases, indicating an increase in
the number of packages to be delivered for each source
location, MPDD exhibits better performance, and GA and
ACO performance decreases as the number of destination
locations increases. This is because more locations must be
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planned on the trajectory, making it difficult for GA and ACO
to find better results.
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Fig. 5: Total flight distance vs. Fig. 6: Total flight distance vs.
average number of destination the ratio of source locations.
locations.

In Fig. 6, we show the total flight distance for different
ratios of source locations. When the ratio of the source
locations increases, it indicates an increase in both the source
and destination locations in the system, thereby expanding the
scope of UAV service. This leads to a longer total flight dis-
tance. We can observe that when the ratio of source location
is small, the performance among all algorithms is similar.
This is because fewer packages result in a less significant
impact on flight distance regardless of the algorithm used for
trajectory planning. However, when the ratio of the source
location is high, each location may need to handle a large
number of packages simultaneously. In this complex scenario,
the performance of the NN approach is the worst. MPDD
performs similarly to the GA in this case.
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Fig. 7: Execution time vs. number of locations.

In Fig. 7, we compared the execution time of all algorithms
for different numbers of locations. We can see that the
execution time of all algorithms increases as the number of
locations grows. The NN approach requires minimal execu-
tion time because it employs a greedy method to find the
trajectory. The GA and the ACO require significant execution
time as they iteratively update solutions to converge. As for
MPDD, the main computational time is spent on solving the
TSP. As the number of locations increases, the approximate
algorithm used to solve the TSP requires more time, making
the execution time slightly longer than that of the NN. Al-
though MPDD shows performance comparable to that of GA
and ACO in terms of distance in some cases, it significantly
outperforms their execution time.

V. CONCLUSION

In this paper, we study the problem of using UAVs for
package delivery services and minimize the total flying dis-
tance. We propose a two-phase heuristic algorithm to address
this problem, which is subject to the load capacity constraint
of the UAV. First, we construct a trajectory through a greedy-
based algorithm. Second, a TSP approximation algorithm
optimizes the previously built trajectory to find a shorter
flying distance trajectory. The simulation results show that
our proposed algorithm outperforms the other algorithms
regarding total flying distance. In particular, in the scenario
with a large number of package delivery requests, the pro-
posed algorithm performs well and requires significantly less
execution time compared to the baselines.
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