1993 International Conference on Parallel Processing

Communication-Free Data Allocation Techniques for Parallelizing
Compilers on Multicomputers*

Tzung-Shi Chen and Jang-Ping Shen

Department of Electrical Engineering, National Ceuntral

University, Chung-Li 32054, Taiwan, R.O.C.
sheujp@ncuee.ncu.edu.tw

Abstract — In this paper, we devote our efforts to the tech-
niques of allocating array elements of nested loops onto multi-
computers in a communication-free fashion for parallelizing com-
pilers. The arrays can be partitioned under the communication-
{ree criteria with non-duplicate or duplicate data. In addition,
the performance of the strategies with non-duplicate and dupli-
cate array data is compared.

1. Introduction

For distributed memory multicomputers, the meinory access
time from a processor to its own local memory is much faster
than the time to local memory of the other processors. An el-
ficient parallel executing programs thus requires the goal of low
communication overhead, To achieve this goal, various compiler
techiiques have, thereflore, been developed to reduce communi-
cation traffic on multicomputers. The purpose of exploiting a
large amount of parallelism in sequential programs has been the
previous focus of a number of researchers [13] [14). However,
exploiting a large amount of parallelisin in sequential programs
may not promise that the parallelized programs for paralle] exe-
cution can obtain more efficiency on multicomputers. The main
reason is that those extracted parallelism may possibly cause
more cormmunication overhead during parallel execution. Un-
der the above considerations, several researchers developed par-
allelizing compilers in which programmers must explicitly spec-
ily data allocation and the codes could then be generated with
appropriate communication constructs [1] [6].

Achieving automatic data management in designing paral-
lelizing compilers is, nevertheless, difficult since the data must
be attentively distributed so that corununication traffic is nin-
imized in parallel execution of programs, Thervefore, several re-
searchers [3] [4] [7] [12] focus the data allocation problem on
automatically allocating the data or restructuring the programs
in order to improve the efficiency of usage of memory hierarchy
or reduce the interprocessor conununication overhead in par-
allel machines. For distributed memory multicomputers, large
amounts of communication overhead may cause the poor perfor-
mance during parallel execution of programs. Some researchers,
such as King, Chou and Ni [5], Ramanaujan and Sadayappen
[9}, and Sheu and Tai [11], studied the problems of transforming
programs into the parallel forin and reducing the interproces-
sor comumunication overhead. Furthermore, Ramanaujam and
Sadayappen [10] focused on analyzing the For-all loops and par-
titioning these loops and the corresponding data such that the
partitioned programs are executed without communication over-
head in the distributed memory multicomputers.

In this paper, we concentrate on automatically allocat-
ing the array elements of nested loops with uniformly gen-
erated references [3] on distributed memory multicomputers.
First, we analyze the pattern of references among all arrays
referenced by a nested loop, and derive the sufficient con-
ditions for comumunication-free partitioning of arrays. Two
communication-free partitioning sirategies, non-duplicate data
and duplicate data, will be proposed. Our method can obtain
more parallelism than the method proposed by Ramanaujain
and Sadayappen {10] in For-all loops with uniformly generated

* This work was supported by the National Science Council
of the Republic of China under grant NSC 82-0408-E-008-010.

references. Finally, the performance of the data allocation with
non-duplicate and duplicate data strategies is discussed.

2. Basic Concepis and Assumptions

A pormalized n-nested loop [14} is considered in this paper.
Let & and R denote the set of integers and the set of real
numbers, respectively. The symbols Z" and R" represent the
set of n-tuple of integers and the set of n-tuple of real numbers,
respectively. The iteration space [14] of an n-nested loop is a
subset of Zi® and is defined as I" = {ihBy....)} | ; £
Ij < uj,for 1 € 37 < n}. The vector 1 = (11, 12, ..., in
m " is represented as an iteration of the nested loop. In the
nested loop, there may exist inpul, oulpul, fow dependences or
antidependence [8] which are referred to as defe dependence in
the following discussions. Let the linear function A : L™ —
Z4 be defined as a refevence function A(Iy,.... Ja)y={s10h +
st ernln, ..y 8q301 + 4+ agnfn) and be represented by
the matrix

41,1 21

H=

ag.a Ad.n dxn

where a;,; € Z, for1 <i<dand 1< 5 < n Inthe loop body,
a d-dimensional array element A[A{i1,12,...,in) + &) may be
referenced by the reference function A at iteration (iy,42,...,4n
in I, where Z is known as the constant offset vector in Zi4 [12].
The data spece of array A is a subset of Z4 and is defined over
the user-defined array subscript index set. For array A, all s
referenced arvay variables A[H 7 + &), for 1 < p < s, are called
uriformly generated references [3] ﬁ?] WHy = Hy = .- =
H, where Hp is the linear transformation function from YA
Zd, 3 e I, and &, is the constant offset vector in Z¢. Since
little exploitable data dependence exists between nonuniformly
generated references, we focus the data allocation to each array
on the same reference function in a nested loop. The different
arrays may have diflerent reference functions.
Example 1: Consider a 2Z-nested loop L1.
fori=1t04
forj=1to4
5 :A[zir.ﬂ = C[i,j]*?; h
Sy:Blj,i+1)=A2i-2,7-1]+Cli~-1,5-1];
end
end {(L1)

In this example, the iteration spaceis I = { (1,7} |1 < 1,5 €

4 }. In loop L1 with three arrays A, B, and C, the respective
1)

reference functions are
_[2 o n 1 _[1 o
HA—[U 1],”3—[1 0],andHc_[0 1].

A flow dependence exists between the variables A[21, 7] at state-
ment 5y and A2 — 2, 7 — 1] at statement $; with the different
oflzset vectors (0, 0) and (—2, —1), respectively. For array C' only
read by loop L1, an input dependence exists between the vari-
ables C[i, j] at statement 5 and Cgs' — 1,7 — 1] at statement 52
with the different offset vectors (0,0) and (—1, —1}, respectively.
The array variable B[j,i + 1] is only generated at statement S
and its offset vector is {0,1}). Loop L1 thus has the uniformly

I1-273

Proceedings of the International Conference on Parallel Processing (ICPP'93)
0-8493-8983-6/0-7 $20.00 © 19931EEE

IlIl-

COMPUTER

SOCIETY

1993 International Conference on Parallel Processing

(b) Array B[1:4, 2:5]

(c) Array C[0:4, 0:4]

Figure 1. Partitioning arrays A4, B and C of loop L1 into
their corresponding data blocks.

generated references on arrays A, B, and C.
]
Definition 1: [Data referenced vector]

In an n-nested loop L with uniformly generated references,
if there exist two referenced array variables A[Ht + ¢,] and
A[Ht + &3] for array A, then the vector ¥ = & — &3 is called
data referenced vector of array A.

a

The data referenced vector 7 represents the difference be-
tween two array elements A[Hi+ £;] and A[H{ + &) which are
referenced by an iteration i:. Note that any data dependence
in loop L exists between two distinct referenced array variables
A[Hi+&] and A[Hi+52), i.e., two iterations i) and 7 can refer-
ence the same array element, lf and only if Hi; + & = Hiz + &,
ie, Hiz—5) = 7. Cormnumcatwn overhead is therefore not
to be incurred if the iteration space is partitioned along the di-
rection iz — 1) into iteration blocks and the data space of array
A is partitioned along the dircction ¥ into data blocks.

Example 1 is considered here for illustrating the ideas of
communication-free data allocation strategy. The arrays A, B,
and C of loop L1 have the referenced array variables A[2i, 5],
A[2i—2,5-1], B[j,1+1), and C[i, 5], C[i — 1, § — 1], respectively.
The data referenced vectors of arrays A and C are 7} = (2,1)
and 72 = (1,1), respectively. However, only one referenced array
variable exists on array B; namely, no data referenced vector ex-
ists. All of the data spaces of arrays A, B, and C and their data
referenced vectors of each array element are shown in Figure
1(a), 1(b) and 1(c), respectively, where solid points represent
that array elements are used in loop L1 and, however, empty
points are not. At iteration (1,1), the array element A[‘Z,l] is
generated by S; and A[0,0] is used in S2. Then, at iteration
(2,2), the array element A[4,2] is generated by S, and A[2 1]
is used in S, and so on. Restated, two iterations 13 = (1, 1)
and 12 = (2,2) satisfying the ccmd:hon }fA(lg - 11) = 71 can
access the same array element A[2,1]. The data space of array
A is therefore partitioned along the data referenced vector (2,1}
into the data blocks Bf' for 1 € j € 7, enclosing the points
with lines, as shown in Figure 1(a). These used and generated
array elements grouped in the same data block are then to be
allocated to the same processor. Similarly, the array C is also

i

&
4
3
2
|

the base point of &,
|

] I 2 3 4

Figure 2. Partitioning the iteration space of loop 1.1 into
the corresponding iteration blocks.

partitioned along data referenced vector (1 1) into their corre-
sponding data blocks, BE for 1 < j < 7, as shown in Figure
1{c). It is easy to show that if the iteration space is partitioned
along the direction (1,1) as shown in Figure 2, no inter-block
communication exists for arrays A and C. Therefore, array B
must be partitioned along the direction (1,1) into the corre-
sponding data blocks Bf 1 € 7 € 7, as shown in Figure 1(b),
such that the partitioned iteration blocks B;,1 < 7 < 7, can be
executed in parallel without inter-block communication.

3. Communication-free Array Partitioning

3.1 Communication-free Array Partitioning with-
out Duplicate Data

In this subsection, we will discuss the communication-free
array partitioning without duplicate data; i.e., exactly one copy
of each array element exists during execution of program.

Given an m-nested loop L, the problem is how to partition
the data referenced in loop L such that not only the communica-
tion overhead is not necessary but also the degree of parallelism
can be extracted as large as possible. We first analyze the re-
lations among all array variables of loop L and then partition
the iteration space into iteration blocks such that no inter-block
communication exists. For each partitioned iteration block, all
data, referenced by those iterations, must be grouped into their
corresponding data block for each array. Our methods proposed
in this paper can make the size of partitioned iteration blocks as
small as possible so as to achieve higher degree of parallelism.

From the definition of a vector space, an n-dimensional vec-
tor space V over R can be generated using exactly n linearly
independent vectors. Let X be a set of p linearly independent
vectors, where p € n. These p vectors form a basis of a p-
dimensional subspace, denoted by span{X), of V over R. The
dimension of a vector space V is denoted by dim(V). In the
following, a formal definition of partitioning of iteration space
is given.

Definition 2: [Iteration partition)

The iteration partition of an n-nested loop L partitioned by
the space ¥ = span({{1, f2, ..., fu}) where f; € R™", 1 <{ <
u, denoted as Py (I™), is to partition the iteration space I
into disjoint iteration blocks B, B, ..., By where g is the total
number of partitioned blocks. For ea.ch iteration block Bj, 1 <
7 < g, a base point b € R™ exists and

Bi={iei™i= bJ+am tazte+ - tautu,ar ER,1 <1 < u}
=U1$JS?BJ

Definition 3: [Data partition]

Given an iteration partition Py (™), the data partition of
array A with all s referenced array variables A[H a1 + 7], -
A[H 47 + ¢,), denoted as Py (A), is the partmon of data spaoe
of array A into ¢ data blocks B ,B2 T Bq For each data
block B“‘ corresponding to one iteration block B; of Pg(I™),
1<% q,

where I™
u]

B;“ = {A&]la = Hati+&,1 € B;,1 <1 <s).

II-274

COMPUTER
SOCIETY

Proceedings of the International Conference on Parallel Processing (ICPP'93)
0-8493-8983-6/0-7 $20.00 © 19931EEE

1993 International Conference on Parallel Processing

a
Counsider Example 1. [f ¥ = span{{(1,1}}) is chosen as
the space of the iteration partition Py {I’) in loop L1, the
iteration space can be partitioned into seven iteration blocks
as shown in Figure 2. The points enclosed by a line are
shown in Figure 2 to form an iteration block and those dotted
points represent the base points of the corresponding iteration
blocks. For example, the base point &; of jteration block By =
{t € Pli =5 +a(1,1),0 < a £ 2} is (2,1). Based on the iter-
ation partition Py (f2), the arrays A, B, and C are partitioned
into the corresponding data blocks by using the respective data
partition Py (4), Py (B}, and Py {C) as shown in Figure 1.
Example 2: Consider a 2-nested loop L2.
fart=1to 4
for j =1tad
S Ali+ 5,04 7] = B2, /] s Ali+ 7 - 1,i + j) ;
Sy Ali4i—1i4+i—-1):=B2i—1,j-1]/3;
end
end (L)
In loop L2, the respective reference functions of arrays A and

B are
1 1 2 0
Mo [Jwame=[2).
The data referenced vectors ¥y, belween Afi + j,¢ 4 7] and Afi +
J=1,i43—1], 7z, between A[i+;7-1,¢+5-1} and A[i+;-1,:i+5},
and 73, between A[i +j — 1,1+ ;] and A[i + ;.4 + j], of array A
are (1,1}, (@, —1}, and (— 1,0}, respectively. The data referenced
vector 7y of array B is (1,1). Consider the equation H 4T = #5.
Two iterations 4; and iz can access the sane element of array
A il the equation 32 — {3 = 1 is satisfied. Because no solution
exists in the equation Haty = 5y, no data dependence exists
between A[{ + 7~ 1,i+ 7 — 1] and Ay + 7 — 1,1 + j]. However,
solving the equation Hgly = 74 can exactly obtain a solulion
Iy = {%‘1). It is impossible for 1he data dependence vector fy
between two iterations since I does not belong to Z2. Also no
data dependence exists on array B. Let the symbo) 0¥ ¢ Z9
be denoted as a zero-vector where each component js equal to
0. Consider the equation Ht = . In Lhe special case, when
7 = 0%, the set of solutions ¥ of equation HT = 09 is Ker(H}).
the null space of H. The vector t indicates the difference of
two iterations accessing the same element of a certain array
variable. For example, Ker(H 4) is span({(1,—1)}} in loop LZ.
On variable A}i+j, i+ j], the array element A[4, 4], referenced by
the iteration (1,3), can be referenced again by iterations (1,3)
+ span{{(1,-1}}), i.e., (2,2) and (3,1), of loop L2.
D

In the following, how to thoose the better space to partition
the iteration space and data spaces without duplicate data is
discussed.
Definition 4: [Reference space]

In an n-nested loop L, il a reference function H 4 and s vari-
ables A[H 47+ &1], ..., A[Hal + &,} for array A exist, and the
data referenced vectors are fp = ¢; — ¢t forall 1 < j <k <

and1<p< i%l, then the reference apace of array A is
q’ﬂ = Sp&l‘l[ﬁl_l {ﬁ;i:h-- - silll—li}}
F)

where [is the basis of Ker(H) and f, e R", 1 < 5 < ﬂii_—l-l,
must satisfly the following conditions
1} t; is a particular solution of equation H 4f = 7, and
12 a solution T' € {5+ Ker(H) exists such that ¥ € 2" and
t' = i3 — %1 where 13, 12 € 1™,
a

The reference apace used here is siwmilar to the groxp-temparal
reuse vector space previously defined by Wolf and Lam [12]. The
reference space vepresents the relations of all data references
between iteralions. For array A, no data dependence exists be-
tween iteration blocks when the iteration space I™ is partitioned
with the reference space ¥,4. This is because all data depen-
dences are considered in P 4 such that data accesses do not
need between iteration blocks. In each iteration block, itera-
tions according to the lericographical order [14] are executed so
as to preserve the dependency in loop. In loop L2, the reference

space ¥ 4 of array A is span{{(1,-1), (%, %)}) because Ker{H 4)

= span({(1,~1)}) and only a particular solution #; = (, % of
equation H f = 71 exists which satisfies the conditions (1) and
{2) in Definition 4. The reference space ¥ g of array B is span(é)
because Ker(Hg) = {0%} and the only solution #; = (3,1) &
22 not satisfying the condition (2) in Definition 4.

Theorem 1:

Given an n-nested loop L with &k array variables, let the ref-
erence spece W 4 be span(X;) of each array 4, for 1 < j < k.
K ¥ =span{X,UXoU---UX.), then ¥ is the partitioning space
for communication-free partitioning of arrays A; for 1 < 7 < k
without duplicate data by using the iteration partition Py {I?).

Proof: The proof of this theorem can refer to [2].

By Theorem 1, when dim(¥) < n, this means that the it-
eration partition Py (I™) exists more parallelism in loop L. By
Definition 2, the smaller the value of dim(¥) is, the higher the
degree of parallelism has. In general, when dim(¥%) < n -1,
ouwr method can exploit more parallelism than Ramanaujam and
Sadayappen’s method [10] in For-all loops with uniformly gen-
erated references. This is because Ramanaujam and Sadayap-
pen’s method only uses (n — 1)-dimensional hyperplanes Lo par-
tition the arrays in For-all loops. Consider loop L1. The rgf-
erence spaces are ¥4 = W = span({{1,1}}), and ¥ g = {0}
for respective arrays A, C, and B. Therefore, by Theorem 1
the partitioning space is ¥ = span({{1,1)} v {(1,1)} U ¢} for
communication-free iteration partition Pg{I?) of loop L1. Due
to dim(¥) = 1 (< 2), large amounts of parallelism exists in loop
L1. The overall results of partitioned data and jteration blocks
in loop L1 have been respectively shown in Figure 1 and Fig-
ure 2. Since loop L1 is not a For-all loop, Ramanaujam and
Sadayappen’s method can not solve it.

3.2 Communication-free Array Partitioning with
Duplicate Data

In this subsection, we consider the comumunication-lree ar-
ray parlitioning with duplicate data; i.e., there may exist pwre
than one copy of an array element allocated onta local mem-
ory of processors. Due to communication overliead being most
time-consuming in parallel executing programs, it is worthwhile
to doplicate referenced dala onto processars such that high de-
gree of parallelsin can be exploited and meanwhile the com-
putations should Le correctly performed in a communication-
free fashion. Duplicale data strategy, in comparison with non-
duplicate one, may extract more parallelism of programs based
on conununication-fres array partitioning. In the following def-
njtion, 1two kinds of arrays are classified.

Definition $: [Fully and partially duplicable arrays)

I any How dependence does not exist on an array A4, then
the array A is called fully dypliceble arrey; otherwise, the array
A is called partielly duplicable array.

m]

Far the two kinds of arrays, how to choase the better space
to partition the iteration space and arrays with duplicate data
such that no inter-block comanurnication exists is discussed as
fallows,

First, we examine the [ully duplicable arrays. Because no
flow dependence exists on array A, any iteration will not use
the elements of array A generated by other iterations; therefore,
the data can be arbitrarily distributed onto various processors
with duplicating the elements of array A and the semantic of
ariginal loop can be retained. Therefore, the reference spece
¥, can be reduced into span{$) denoted as the reduced refer-
ence apace W7 That is, ¥, is the subspace of ¥ 4. Next, the
partiatly dupﬂCable arrays are (o be examined. Assume there
exist p flow dependences on a partially duplicable array 4 in
laop L. The reference space W 4 of array A can be reduced into
the reduced reference space ¥, = (B U {{i, 2, ..., Tp}) where 8
is the basis of Ker(H 4) and I}, 1 < j < p, which lead to flow de-
pendences are particular solutians satisfying the conditions (1)
and (2} in Definitian 4. The reducible reason for the reference
space is that only the flow dependences can actually cause the
data transfer between execution of iterations. That is, only flow
dependence is necessary to be considered during execution of

I1-275

Proceedings of the International Conference on Parallel Processing (ICPP'93)
0-8493-8983-6/0-7 $20.00 © 19931EEE

IlIl-

COMPUTER

SOCIETY

1993 International Conference on Parallel Processing

¥
F
8 O 4 0 0 O 0 —
B!,
7 a 0o 0o o o ot
B AR,
6 o o o o rn Sa s
PR I
8 8,8
3 o o o (g3l R il
B8, 8,81,
4 o O] [a] fw]
B\ 81 B,
3 Q o a
2 ©C 0 0 0
1 o 0 0 ©
> i
0 1 2 3 4 5 6 71T 8

() Partition of data space of array A[1:8, 1:8].

a 1 2 3 4 5 6 7 3
(b) Pantition of data space of array B[1:8, 0:4).

Figure 3. Partition of arrays 4 and B in loop L2 using the data
partition £,.(A4) and P, (B), respectively

programs; however, input, output dependences and antidepen-
dence merely determine the precedence of executing iterations
so that they can not make any data transfer.

While partitioning the iteration space, data references which
occur among all arrays in a nested loop must be considered.
Given an n-nested loop L with k array variables, assume the
reduced reference space "l‘r.a_,- = span(X;} of each either fully

or partially duplicable array A,J exists, 1 < 7 < & Then,
W' = span(XJ W XJU---U Xk) is the pariitioning space for
communication-free partitioning with duplicate data by using
the iteration partition Pyr(J7).

Consider Example 2. By Theorem 1, while applying the it-
eration partition Py (1?) to loop L2 where ¥ = span{{{1,-1},
(L, %)}], loop L2 needs to be executed sequentially based on
the non-duplicate data strategy. Due to hoth arrays A and B in
loop L2 being fully duplicable arrays, the partitioning space W*
is span{#}. While applying the iteration partition Pgr{f?) to
loop L2, loop L2 can be executed in fully parallel. Clearly, using
duplicate dala strategy can obtain more parallelisin than using
non-duplicate one in loop L2. By duplicate data strategy, the
overall results of partitioned data and iteration blocks in loop
L2 are respectively shown in Figure 3 and Figure 4 where the
relations of output dependence are omitted.

4. Performance Evaluation
In this section, we compare the performance of non-duplicate

and duplicate data strategies. Consider the matrix multiplica-
tion algoritlun.

fori=1to M
forj=1to M
fork=1to M

C[i'j] = C[“r.?-] + A[i, k] "B[ku.j] H (L3)

J

F 3
4 @Bu @Bu @BlJ@BM

B, B, B, B,
3 (ORONONO)]
| St
l @'BI.‘ @Bll @Bl.l @BA_I
e |

/] 1 2 34

Figure 4. Partition of iteration space of loop L2 using the
iteration partition P,,(1%).

end
end
end

For arrays A, B, and ', the respective reference spaces
¥4 = span {80!1=0}}}| ¥p = SPM({{I!OIO)}L and Vo =
span({(0,0,1)}). By Theorem 1, the partitioning space ¥ is
epan({{0,1,0}} v {(1,0,0)} U {(0,0,1}}). That is, the matrix
multiplication algorithm needs to be executed sequentially while
using the non-duplicate data strategy.

Next considered is that if only some of fully or partially dupli-
cable arrays are duplicated, there may sacrifice little parallelism
than all of them. Note that both arrays .4 and B are fully dupli-
cable arrays and array C is a partially duplicable array. Thus,
the reduced reference spaces W7, = span(¢), ¥ = span(¢),
and ¥7. = span({(0,0,1)}) for respective arrays A, B, and (.
Dermonstrated in the following is that only the array 5 is dupli
cated in loop L3. Due to not replicating data of array 4, let ¥/
= span({(0,1,0)} U {(D,O.l)l) such that the comununication-
free ileration partition Py:({J”) can be obtained. Consider a
r1 X pa mesh multicomputer as the target machine where the
number of processors is p = p; X pz. Assume /7 = p| = pz, and
M ie a multiple of p. The processor PE; for 0< e < p — 1 will
execute the following loop L3’ by our program transformation
and processor assignment sirategies [2].

forall 1 = (1 + (2 — 1) mod p) to M step p
for j =1 to M
for k=1 to Af
Cli,j] == Cli.j] + A[i. k] » Blk.5] ;. (L)
end
end
end-farall

Because we do not replicate the data of array A to each pro-
cessar, the whole array B nwst be duplicated to each processor
for paraliel execution without inter-processor communication.
Because the processar PE,, ¢ € a < p — 1, requires accessing
the array elements
Ala,1: M), fora={1+(a—-1)mod p)+ip.l € Z,1 < o < M,
the host processor must send these data to the corresponding
processor in a pipelined fashion. In addition, because all proces-
sors require accessing the same array elements B[l : M, 1 : M],
the host processor must broadcast the wlole array B to each
node processor. Nevertheless, if only the array A, not array B,
is duplicated, the similar results can be obtained.

In the following, both arrays A and B in loop L3 are to
be duplicated. Thus the communication-free iteration partition
Pgn(1?) can be obtained, where the partitioning space W =
span%{(ﬂ,o, 1}}}. By our program transfarmation and proces-
sor assignment strategies [2], the following results can thus be
obtained. The processor PEs ,q, for 0 < a3 € p; — 1 and
0 < a2 € p2 ~ 1is to execute the following loop L3,

forall i= (1 + (a1 — 1) mod p1) to M step ;1
forall § = (1 + (a2 — 1) mod p;) to M step pp
fork=1to M
OF.4) = Clius) + Al M« Bl ; (L37)

I1-276

IlIl-

COMPUTER
SOCIETY

Proceedings of the International Conference on Parallel Processing (ICPP'93)
0-8493-8983-6/0-7 $20.00 © 19931EEE

1993 International Conference on Parallet Processing

Table 1. Execution time of loops L3, L3", and L3
{unit: second)

Pombecat], Problem size {M)
P 16 1 64 [PL 256
p=1 |13 k00399 [03162 | 2.524) | 20.1691[161.2546
L3'H 00144 | 00956 | 0.6961 5.2895 4I.3DSB]
P=4 (I3[oon | oosss | 0667 | 5.1405| 40.71988]
=16 L3 00135 | 0.0543 | 02869 | 17908 123584
L3l 0.0080 | 00326 | 62043 | 1.4326] 106513
Table . Speedup of loops L3’ and L3,
Number o o Problem size {Af)
L3 L& 31 64 128 1%
L3 2 131 3.63 kR:1] 389
P L3 314 370 190 392 3.95
Lyl 298 581 880 | 1126 | 1308
pe16 L3"|| 4.9% 970 1215 14.08 1514
end
end-forall

end-farall

Assumme M is a multiple of \/p. Because the processors
PEg4 a3, 0 € 23 € /7 — 1, require accessing the sane array
elements

Alor,1: M], for o = (1 4 (e3 — 1) mod J/p) + L,/7,
leZ,1<a <M,

for 0 < a2 € /P — 1, the host processar must send the same
data to the corresponding row processors by multicasting in a
pipelined fashjon. Similarly, because the processors PE,, a5,
0 < a2 € ./p - 1, require accessing the same array elenents

Bl : M,qa), for a = {1 + (a1 -~ 1) mod /P) + {, /P,

) (e 2,1 <a< M, vr vF

for 0 € a; £ /7 — 1, the host processor must send the same
data to the corresponding column processors by multicasting in
a pipelined fashion. Because of only replicating the partial data
of both arrays A and B to processors lor loop L3, the commu-
nication cost of distributing the initial data to each processor is
less than that of loop L3'.

The averall execution results for loops L3, L3', and L3" are
simulated on Transputer multicomputers with 16 processors are
shown in Table [and Table II. The execution time of loops L3,
L3’, and L3 are illustrated in Table I with problem sizes M =
16, 32, 64, 128 and 256. The speedup derived from Table [is
illusirated in Table II. When the number of processors is equal
ta 1, we only consider the computation time not including the
time of allocating arrays A and B. Although duplicating data
seeins to waste the time of allocating initial data, it can increase
great amounts of parallelism and incur no conununication over-
head during parallel execution of programs. Therefore, the time
of parallel execution is less than that of sequential execution as
shown in Table [. However, because data locality in loop 1.3 is
not exploited during sequential execution, the speedup becomes
more and more better whenever the problem size becomes more
and more larger as shown in Table 11, This implies that exploit-
ing data Jocality is also important during program execution in
each processor [12]. Due to existing large amounts of communi-
cation overhead in loop L3’ as distributing whole array B, the
speedup of loop L3" is more efficient than that of loop L3', By
the above analysis, the communication time of distributing the
initial referenced elements of arrays must be as small as possible
in order to obtain better efficiency during parallel execution. In
addition, which kind of duplication of arrays is suitable for repli-
cating their referenced data can be appropristely estiniated such
that parallelized programs can gain better perforniance during
parallel execution.

5. <Conclusions

Two sutcinatic array partitioning strategies, non-duplicate
and duplicate data, have been proposed in this paper such that
no data transler during parallel execution is incurred and the
parallelism of nested loops can be exploited as large as possi-
ble. Under Lhe duplicate data strategy, more parallelism can
be extracted than non-duplicate one. By the maitrix multiph-
cation algorithm, the performance of the sirategies with non
duplicate and duplicate data is discussed, and the overall results
are simulated on Transputer multicomputers, By our analysis
of performance, ebtaining the beiter efficiency of executing pro-
grams is dependent on the extracted parallelism and the com-
munication overhead of distributing the initial data under the
commumunication-free criteria.

References

. [1] D. Callahan and K. Kennedy, "Compiling Programs for

Distributed-Memary Multiprocessors,” The Journal of Su-
percempuirng, Vol. 2, pp. 151-169, Oct. 1988.

[2] T.S.Chen and J. P. Sheu, "Communication-free Data Al-
location Techniques for Parallelizing Compilers on Multi-
computers,” Technique Report, Department of Electrical
gngugeerin .2National Central University, Taiwan, R.0.C.,

ctober 1 .

[3] D.Gannan, W. Jalby and J. Gallivan, "Strategies for Cache
and Local Memory Management by Global Program Trans-
formations,” Journal of Parailel and Distributed Comput-
g, Vol. 5, No. 5, pp. 587-616, Oct. 1088,

[4] M. Gupta and P. Bauerjee, "Demonstration of Automatic
Data Partitionjnﬁ Techniques for Parallelizing Compilers on
Multicomputers,” JEEE Transactions on Parallel and Dis-
tributed Systems, Vol. 3, No. 2, pp. 179-193, March 1992,

5] €. T. King, W. H. Chou and L. M. Nj, "Pipelined Data-
Parallel Af orithms: Part IJ-Design,” IEEE Transaciions
on Parailel and Distribuied Systems, Vol. 1, No. 4, pp. 486-
499, Oct. 19940,

[6] C. Koelbel and P. Mehrotra, "Compiling Global Name-
Space Parallel Loops for Distributed Execution,” [IEEE
vansocttons on Parallel and Distriduied Systems, Vol. 2,

No. 4, pp. 440-451, Oct. 1991,

[F] M. Luand J. Z. Fang, " A Solution of the Cache Ping-Pong
Problem in Mu]i&i"procmor Systems,” Jouwrnal of Farellei
and Distribuied Computing, pp. 158-171, October 1992,

[8] D. A. Padua and M. J. Wolle, " Advanced Compiler Opti-
mizations for Supercomputers,” Communication of ACM,
pp- 1184-1201, Dec, 1986,

[#] J. Ramauujam and P. Sadayﬂ)pan, "A Methodology for
Paralle[iziﬁg Programs for Multicomputers and Complex
Memorg‘ ultiprocessors,” Proceedings of AC RieTng-
tionel Conference on Supercompuling, pp. 637-646, 1989,

[10] J. Ramanujam and P. Sadayappan, *Compile-Time Tech-
nigues for Data Distribution in Distributed Memory Ma-
chines,” fE. Transactions on Pareflel and Distribuled
Systems, Vol. 2, No. 4, pp. 472-482, Oct. 1991,

[13) 1. P. Sheun and T. H. Tai, "Pm.il.ioninf and Mapping Nested
Loops on Multiprocessor Systems,” JEEE Transactions on
gmuc: and Distribuied Systemos, Vol. 2, No. 4, pp- 430-439,

ct. Y991.

[12] M. E. Wolf and M. $. Lam, "A Data Locality Optimizing
Algorithin,” Procecdings of the ACM SIGPLAN'St Con.
ference on Programming Language Design and Implemen-
tation, pp. 30-44, June 1991,

[13] M. E. Wolf and M. S. Lam, A Loop Transformation Theory
and an Algorithon 1o Maximize Pavallelism,” JEEE Trans-
actions on Parellel and Disiribuled Systems, Vol. 2, No. 4,
pp. 452-471, Oct. 1991.

[14] M. J. Wolle, " Optimizing Supercompilers for Supercomput-
i;.rs." L;)élé}aon and Cambridge, MA: Pitman and the MIT
ress, .

11-277

IlIl-

COMPUTER
SOCIETY

Proceedings of the International Conference on Parallel Processing (ICPP'93)
0-8493-8983-6/0-7 $20.00 © 19931EEE

