
1 993 International Conference on Parallel Processing

Communication-Free Data Allocation Techniques for Paralbiizing
Compilers on Multicomputers*

Tzung-Shi Chen and Jang-Ping Sheu

Department of Electrical Engineering, National Cent ra l
University, Chung-Li 32054, Taiwan, R . 0 .C.

sheujp@ncuee.ncu.edu. t w

Abstract - In this paper, wedevote our efforts to tlie tech-
niques or allocati~tg array elements of nested loops onto iiiulti-
computers in a cornn~unication-free fasllion for parallelizi~~g com-
pilers. The arrays can be partitioned under the commu~lication-
free criteria w i t h nowduplicate or duplicate data. In addition,
the performance of the strategies with nowduplicate and duplii
cate array data is compmd.

For distributed memory multicon~puters, the nleluory a~cess
time from a processor to its own local iilemory is nluch faster
than the time to l o d memory of the other processors. An eL
fident p a d e l executimg programs t l w requires the goal of low
communication overllead. To achieve this goal, various co~~~pi ler
tedlluques lwve, therefore, beml developed to reduce colnmuni-
cation traffic 011 multicomputers. The purpose of exploiting a
large amount of parallelism in sequentid prograiils Itas been the
previous focus of a nuiiiber of researchers 1131 1141. However,
exploiting a large amount of pardelisrn in sequeotial programs
nlay not pronuse that the pardlelized progranls for parallel ex+
cution can obtain more efficiency on ~nultiwmputers. The main
reason is that those extracted parallelisnl may possibly cause
Inore cormnwiication overl~ed during parallel execution. Un-
der the above considerations, several researdhers developed par-
allehzillg wn~pilers in which progammers must explicit1 y spec-
ify data allocation and the codes could then be ger~erated with
appropriate corrunmiication constructs [1] [6].

Achieving automatic data magenleut io desigli~ig paral-
lelizi~lg compilers is, levert the less, difficult since tlie data nlwt
be attentively distributed so tliat cormnluiicatioll traffic is n i ~ l -
i~nized ill pard lel execution of progrmtis. Therefore, several re-
searchers 131 (41 (71 (121 f- the data allwation problem on
automatically allocating the data or mtructuri~lg the programs
in order to inlprove tlre efficiency of usage of memory hierarcl~y
or reduce the interprocessor conun~uucation overhead in par-
allel nladGnes. For distributed nlelnory oiulkicomnputers, large
anwrults of co~nnmirication overhead 11lay cause the poor perfor-
maace during parallel execution of progralaw. Some researd~ers,
such as King, Cllou and Ni [5] , Rauanaujaln and Saclayappen
(91, and Sheu and Tai [l 11 , studied the problems of transfornling
programs illto the pwallcl forin and reducing the u~terprocs
sor co~iunrrrmication overhead. Fur themote, hnanaujanl and
Sdayappen [lo] focused on analyzing the For-ail loops and par-
titioning these loops and the corresponding data such tlmt the
partitioned prograins are executed without co~nmunication over-
head in the distributed memory multicomputers.

In this paper, we concentrate 011 auto~natically allocat-
ing the array elenie~ats of nested loops with ~ulifor~~dy gen-
erated references [3] on distributed rikelllory nlulticompute~.
First, we analyze the patten1 of references among all arrays
referenced by a nested loop, a id derive the ssuRiieelat con-
ditiolw for corm~luniation-free partitioni~lg of arrays. Two
co~m~lunication-free partitioning strategies, non-duplicate data
and duplicate data, will be proposed. Our nietlld can obtain
more parallelism than the method p r o p 4 by Ranl~iaujain
and Sadayapptn I101 in For-all loops wi tll uluromlly generated

* This work was supported by tlie Netio~lal Science Coruicil
of the Republic of Cluna under grant NSC 82-04WE-OW-010.

refemccs. Finally, the performance of the data docation with
non-duplicate and duplicate data strategies is discussed.

2. Basic Concepts and Assumptions

A norldized n-nated loop (141 is considered in this paper.
Let and R denote the set of integers and the set of real
~lullbers, rmpecti vely. The symbols 2" and R" represent t11e
set of n- tuple of integers and the set of n- tuple of real numbers,
respectively. The i teral ion *pace (141 of lul n-nested loop is a
suhet of Zn and is defined as In = { (1 1 , 1 2 , ..., 1,) I !,, <
ij 5 u,, lor 1 5 j < n). The vector i = (i l , i2, .. ., 1-5 ,

ill I" is represeilted ao all iteration of the nested loop. In the
nested loop, there may exist inpu t , ouiplrt, Pow dependences or
a n i i d e p e n d e ~ c e [a] which are referred to da ta deptudcnct in
the following discussions. Let the linear function h : 2" -
Zd be defined as a reference function h(Il ,. . . , I I I) = (a l , , Il +
. + + a l , , I , , ..., ad, l I1 + + . . + ~ d , ~ l ~) and be represented by
the matrix r u l , l .. . a l , , 1

where a,,> E 2, for 1 5 i 5 d and 1 5 j 5 n. Zn the loop body,
a d-ditnensional array element A [h(i l , :2,. . . , in) + .?I may be
referenced by the reference function h at iteration (il , i 2 , . . . , i,)
in I", where E is known as ahe constant offset vector in Zd [121.
The data spaec of array A is a subset or Zd and is defined over
tlie user-defined array subscrip! index set. For array A, d l s
referenced array variables A[H,r + E 1, for 1 5 p 5 s, arc called
rni fornaly gcneraicd rrfercnces [3] b2] if HI = Ha = .++ =
H, wlrere Hp is the linear transformation function from 2" t4
Zd, i E In, and E p is the constant o k t vector in Zd. Sii~ce
little exploitable data dependence exists between nonuufonnly
generated references, we focus the data allocation to each array
on the same reference function in a nested loop. The ditlcrent
arrays may have diRerent reference functions.
Example 1: Consider rr 2-nested loop L1. .

for i = 1 to 4
for j = 1 to 4

$1 : A[Zi,jI := C[i , j] * 7 ;
$: B [j , i + l] : = A [2 * - 2 , j - l] + C [i - 1 , j - 1 1 ;

end
end (L1)

In tlus example, the iteration space is IZ = { (i, j) I 1 5 i , j 5
4). In loop L1 with tliree arrays A, B, and C, the respective
reference functions are

A flow dependence exists between the variables A[2i, j] at state
lllent S1 and A(2i - 2, j - I] at statemel~t S2 with the different
ofiet vectors (0,O) and (-2, - I) , respectively. For array C only
read by loop L1, an input dependence exists between the vari-
ables C[i, j] at statement S1 and C t - 1, j - 11 at statement S2
with the diRerent &set vectors (O,O\ and (- 1, - 1). ~ ~ p e c t i ~ d y .
The array variable B[9, i + 11 is only generated at statement $2
and its &set vector is (0 , l) . Loop L1 thus has the uniformly

Proceedings of the International Conference on Parallel Processing (ICPP'93)
0-8493-8983-6/0-7 $20.00 © 1993

1993 International Conference on Parallel Processino

0 1 2 3 4 5 6 7 8

(a) Array A[0:8,0:4]
I

j

0 1 2 3 4 0 1 2 3 4

(b) Amy 8[1:4,2:5] (c) Array C[O:4,0:4]

Figure 1. Partitioning arrays A, B and C of Imp L1 into
their carresponding data blmks.

generated rderences on m a y s A, 13, m d C.

Definition 1: [Data referenced vector]
bl an n-neated loop L with uniformly generated references,

il there exisl two referenced w a y variables A[Hi + e l] and
A [H i + F Z] for array A, then the vecLor f = .?I - & is called
data ~efeerenced w e t t o r of array A. -

0 1 2 3 4

Figure 2. Partitioning the iteration, space of loop '1 into
the corresponding iteration blocks.

partitioned along data refemnced vector (1,13 into their c-
uponding data blocks, BC for 1 5 j 5 7, as shown in Figure
1(c). It is easy to show tinat if the iteration space is partitioned
along the direction (1,l) a. shown in Figure 2, no inter-blodt
communication exists ior arrays A and C. Therefore, array B
niust be partitioned along the direction (1,1) into the corre-
sponding dah blocks B:! 1 5 j < 7, = slxown in Figure l(b),
such that the partitioned ~teration blocks B,, 1 5 j 5 7 , can be
executed in parallel witl~out inter-block communication.

3. Communication-free Array Partitioning

3.1 Communication-free Array Partitioning with-
out Duplicate Data

In tlis subsection, we win discuss the communication-free
array par t i t io~ng without duplicate data: i-e., exactly one copy
of each array element exists during extcution of program.

Given an n-nested loop L, the problem is how to partition
tlie data refemnced in Imp L such t11& not only the communica-
tion overhead is not necessary but also the degree of parallelism
can be extracted as large a possible. We first d y z e the r e
lations among all array variables of loop L and then partition
the iteration s m e into iteration bIocks such bhat no inter-block

U

The data sderenCed wctor tile be- cornmu"icatio~ exists. For each partitioned iteration Modt, all

tween two m a y elements AJH;+ cl] and A [H ~ + F2] whch are data, referenced by those iterations, must be grouped into their

refemc& by an iteration f , Note tlIst any data depm,delIce cOmes~Onding data b2d for each array. Our nletllods proposed

in lo_op exists two djsti,lct referenced arr_aY variables in this paper can make the size of partitioned iteration blocks m

A[Hi + E ,] zrnd A [H t f EZ], i.e., two iterations il and ia can rde-
small as possible so 89 to achieve lugher degree of parallelism.

ence the m a y dement, if and only il Hi l + El = H i 2 + ~, From the defmition of a vector space, an n-dimensional v e e

i.=., H(T2 - i,) = f- Communication overhead is therefore not sme Over can bt generated using linearly

to be n-mm- if the iteration spaEe is partitiond along the di- independent vectors. Let X be a set of p linearly independent

re&on i* - il into iteration bloAs ilnd the da& space of YmEOm, where P I Th-e P a basis of a P

A is p t i t i o n c d dong t1lc direction F into dnto blocks. dimensional subsme, denoted by span(X), of Y over 8. The

Exanlple 1 is llere for illUstIgtillg ille ideu Df a 'pace is denoted b the

commu~calion-free data docat ion lrat T~~ A, 8, following, a formal defuiition of parLiLioning of iteration space

and C of loop L1 have the referenced array variables R[2 i , j] , is given'

A[Zi - 2, j - I], Blj, f + 11, and Cfi, j j , - 1, j - 11, respectjvely, 2: [Iteratian pmbitionl
The data reIerenwd vectors of arrays A and C are f 1 = (2, r) The ateration partition of an n-nested loop L partition4 by
m d ~ = ~ l , ~) , m p K t j v ~ y , ~ o w t v e r , o n l y o ~ ~ r e f e F e n C e ~ - ~ y t l ~ " S ~ a c e ' = ~ (' ~ ~ ' ~ * . . . * ' ~ ?) w h e r e ~ E R " * 1 1 [5
variable exists on array B ; namely, no data referenced vector ex- u, denoted M Pv(ln\ i s to partllron the iteration spare I'
jsts. AH of data spaces of mays A, 8, and c and data into djsjoint iteration b l o d s Bi, B2,. . . , Bg where (I is the t o t 4

referenced vectors of each array element sre show11 in Figure number of partition+ blocks. For each iteration block R,, 1 5
I (a), E(b) and l(c), respectively, where solid points represent j 5 9' " base point b~ Rn exist* and

that array elenlents are used in loop L1 and, however, empty B, = {i f In]i = Gj + a l il +oztz +. . .+au[,, , at E R, 1 5 I 5 u)
poinks =re not. At iteration (1, I) , the array element .4[2,1] is

wll- In = Ulsllr BJ -
0

is used in S2, and so on. Restated, two iterakions i l = (Ill) Ileanition ': IData partition]

and i l = (2,2) satisfying the condition kIA(T2 - ; I) = f l c a t Given an iteration partition Pq (I"), the daiu parlition of

a~cess the s-e m a y element ,4[2,1]. TIle daba space of may m a y A with 811 s referenced array variablw A[HAT + E I] , . . .,
A is therefore partitioned ahg the data refeEncd wchr (2 , l) A [H A ~ + ES], denoted as P* (A) , is the arti it ion of data space
into the data blo&s 8: for 1 5 j 5 7, eirlming the paints A into q B?.Bt , . - - , B 6 - For data
wit11 lines, as sirown in Figure T1b-e used galerated B;' wmsponding to one iteration block B, of P* (I ") ,

array elenbents grouped in t l ~ e same data block are t l l ~ n to be 5 3 5 q?
allocated to tile same prwesaor. Si~uularly, the array C is also B ~ = { A [E]] E = H ~ ~ + E ~ ~ T E B ~ , ~ < I < S) .

Proceedings of the International Conference on Parallel Processing (ICPP'93)
0-8493-8983-6/0-7 $20.00 © 1993

1 993 International Conference on Parallel Processing

0
Consider Example I. F O = span(((1 , 1))) i s cl~ose~l as

the spece of the iteration partition Pq (12) in loop L1, i1le
iteration space can be into seven iteration blocks
aa shown in Figure 2. The ~ o i n t s enclosed by a line are
shown in Figure 2 to form an iteration block artd those dotted
poitits mpresot~t the base points of the wrrespondi~lg iteration
bl&. For example, the base point b5 of iteration block Bs =
{;E 1 ' 1 ; = 6 ~ + a (1 , 1) , 0 ~ ~ < 2) i s (2 , 1) . Basedontl~ei ter-
a t is t~ partition Pq (12 1, the arrays A, 8, a~bd C are partitioned
into the carrespunding data blocks by using the respective data
partition P+ (A) , Pu (B), and Pq (C) as slhown in Figure 1.
Example 2: Consider a 2-nested loop L2.

for i = 1 to 4
far 3 = 1 to 4

SI: A [i t p , i + 3 1 : = B[2i ,31*A[i+ j- l , P + j];
sj: A [i + j - l , i + j - l] : = B [Z t - 1 , j - 1] / 3 ;

end
end (&,I)

In loop L2, the respective reference fui~ctions of arrays A and
B are

The data referenced vectors P1 , between A [i + j , i + j] and A [i +
j-1, i+j-I], f z , between A[;+ j-l , i+j-11 and A[i+j-1, i + j] ,
andf.3, bbs tweenA[i+ j -1 , i t j)a id A [i + j . i + j] , o f a r r a y A
are (1 , I) , (0, - I) , and (- 1,0), respectively. Tlre data referenced
vector f4 of array B is [I , 1). Consider I lie equation HAT2 = f2.
Two iterations -aid g can-access the sane ctetrien~ of array
A if the equation iz - il = 12 is satisfied. Because no solution
exists in the equation HAiZ = f2 , no data depm~rle~im exisls
between A [i + j - l , i + j - - l]and A l t t j - I , i + j] . However,
solving the equation HBtr = Fa cahr e~ac t ly obtain a soluiinn
l4 = (i, 1). It is inlpossible for tlrt data dtptlldence vector i,
between two iterations since f4 does not belong l o Z 2 . Also no
data dependence exists on array B. Let the symbol D* E zd
be denoted as a mrwvector wllere each conrphrtni is equd to
0. Consider the equation H t = F. b~ lire special case, when
F = o*, the set of solutions i d tquaiiohr H i = O* is Iier(H).
the null s p x e of H. The v w t m I i n d i c a t ~ the diHerwmre of
two iterations a~cessing the same eltmelrt of a certain array
variable. For example, Ker(HA) is tpan(-((1, - 1) 1) in loop L2.
On variable A i + j, i+ j], the array eelenlent A [4,4), referenced by
the iteration 1 1,3), can be reielvnced again by iieratiohrs (I , >)
+ span(((1, -1))), i.e., (2,2) and (3 , l) , of loop L2. -

U

In tho following, how to choose tlre better apace to partition
tire iteration space and data spat- wirliout dupliate data is
discussed.
Definition Q: [Reference space]

Lr a11 m~iested loop L, it a reference Cwrciioll H A and vari-
ables A [H A i + E l] , . . ., A[HA; + E ,] lor array A exist, ahhd tllt
data referenced vectors are Fp = E , - E L lor dl 1 5 j < k 5 t
and 1 < p 5 *, then the rtjtrtncr s p a cr of array A is

where 0 is the h i s of Ka(HA) and i, I? in, 1 5 j 5 w,
must satisfy the followi~rg cwrditiwm

6 is a particular solution of equation H A l = ?,-and
a solttion P f _i, f Ker(HA) exists such that 1' E Zn and

i ' = T 2 - i1 where il, t 2 E I " .
-

The referenct spact used here is situular to the group-temporal
reuse sector spatt previously defiuied by Wolf and Latt~ [l l] . The
reference spa t t represents the relatio~ls at d l data refrrrtlces
between i ter~t ioi~s. For array A. nil data ciepe~udence exists b+
tween iteration blocks wllell tihe iteration space In is partitioned
wit11 the reference space + A . This is because all data dcptn-
dences are co~lsidered in IY A such that data accesses do not
need between iteration blocks. In eadl iteration block, itera-
tions according to the lexicographical order 1141 are executed so
m to preserve the dependency in Iwp. In loop L2, the reference
rpace * A of array A i s span({(l, - l) , (!j, i))) because Ker(HA)

= span(((1, -1))) and a l l y a particular solution = (1 i) of
equation H A t = "1 exists wllich satisfies the conditions i);fand
(2) LL Definition 4. The reference space + B of array B is s y n (4)
because Ker(Hjg) = {02} a ~ l d the only solution t4 = (T , 1)
Za not satisfy in^ the condition (2) in Defmition 4. . ,
Tileorern 1: -

Ci ven an n-nested loop L with k array variables, let the ref-
erence space @*, be span(x,) of eadi array A, for I < j < k.
If Q = span(X1 UX2 U. + .uXn), then Q is the partit ioning space
for communication-free partitioning of arrays A, for 1 5 j 5 k
without duplicate data b y using the iteration partition Pq (I").

Proof: The proof of this theorem can refer to (21.
a

By Theorem 1, when dim(@) < n, tlus means that the i t
eration partition Pu (In) exists more parallelism in loop L. By
Definition 2, the smaller the value of dim(*) is, the higher the
degree of parallelism has. In general, when dink(*) < n - 1,
our method can exploit Inore parallelism than Rarnanaujam and
Sadayappen's method [lo] ill For-all loops with uniformly gen-
erated referencw. This is because Ran-ujam and Sdayap
pen's method only uses (n - 1)-dimensional hyperplanes to par-
tition the arrays in For-all loops. Consider loop Ll. The re 4- erence apscea are V A = W C = span({(l, I))) , and %B = (0 }
for respective arrays A, C, and 8. Therefore, by Theorem 1
the porlidioniag space is = span(((1, I)} U ((1 , l)) U 4) for
co~n~nunicstion-free iteration partition P* (12) of loop L1. Due
to diln(~P) = 1 (< Z), large an~ounts of parallelism exists in loop
L1. The overall results of partitioned data m d iteration blocks
in loop L1 have been respectively sl~own in Figure 1 and Fig-
ure 2. Since loop L1 is not a For-all loop, Fhnm~aujarn and
Sadayappen's method can not solve i t .

3.2 Co~nmunicatioii-free Array Partitioning with
Duplicate Data

In tlua subeclion, we consider the mmmuniratjon-ire ar-
ray ppartitiwling with duplicalc dais; i.e., 4 Iiwe nLay exist nmre
illan one copy of an array element d n c a t t d onto local mem-
ory ol p l o c w r s . Due to communication overl~ead behg mart
t ime-co~uu~ni~~g in parallel executing programs, it i s wortl~while
to duplicale refere~~ced dale onto prorxssora such that high de-
gree 01 parallelis~n can be exploited and n~eanwl~il+ the corn-
putatiollc dlould be wrrecrly peifnr~ned ill a co~nmunication-
free laslliwi. Duplica~e data strategy, in comparison with Ikon-
duwlicate one. znav extract more varallelism of ororrams based , . . v

on c o ~ ~ u n u n i c a t i o ~ f array partitio~ung. In the toflowing def-
illil ion, ~ w o kinds of arrays are classified.
PeRlli tion 5: [Fully and partially duplicable arrays]

If m y flow depe~tdetlce do- not exist on an array A, then
the array A is cdled fully duplicable array; ntl~erwjse, the mray
A is called partially duplicable array.

For the two kin& of arrays, how to chow the better space
to partition the iteration a p m a l ~ d arrays with duplicate data
sudl tliat 110 it~ttr-Liock colnntunication exists is discussed as
follows.

First, we cxamine the I d l y duplicable m a y s . Because no
flow depcnderle exists on array A , a~yr iteration wiU not use
the elements of array A generatd by other iterations; therefore,
tlu data can be arbitrarily distributed onto various processors
with duplicating the elements uf array A and the semantic of
original Imp cat1 be retained. Therefore, the reference space

cruh be reduced into spas(+) denoted 8s the redaced refer.
cnce a p d r e rCIr . That is, W > is the subspace of BA. Next, the
partially dupkable arrays are to be examined. Assume there
exist p flow depel~derlccs on 4 partidly duplicable m a y A in
loop L. The rcferrnrc apace ' P A of array A F I ~ be reduced into
c11e r e d e c ~ d rcfcr<ncc spat< Q> = (0 u {[I, t2, . . ., tP}) wl~ere P
is due b&s of Ker(HA) and T,, I 5 j 5 p , which lead to flow d+
pendethce are particular solutions satisfying the conditions ((1)
and (2) in Ddni t i a~ t 1. The reducible r e s o n lor the wjerence
space is that only the flow dependences can actually cause the
data transfer between execution of iterations. That is, only flow
dependence is mxmsary to be eonsidered duri~rg e x a t i o n of

Proceedings of the International Conference on Parallel Processing (ICPP'93)
0-8493-8983-6/0-7 $20.00 © 1993

- - I 993 International Con f ercrlce on Parallel Processing

- -

0 1 2 3 4 5 6 7 8
(a) Partition of data space of array A[1:8, 1 :8].

j

0 1 2 3 4 5 6 7 8

(b) Partition of data space of array B[1:8, 0:4].

Figure 3 . Padtion of arrays A and B in loop L2 using the data
panition P,.(A) and Py,(B), respectively

programs; however, input, output dependen- m d antidepel)-
dence merely determine the pprecede~lce of executing iterations
so that they can not make any data transfer.

Wllile parkitioning the iterati011 space, data referencts wllidr
occur among all arrays in a nested loop must be consid~cd.
Gimn an n-nested loop L with k array variables, assunle the
rcdrecd reference space lyr = span(X;) of each either fully
or partially duplicable array A exists, 1 <_ j 5 k. Then,
Qr = span(Xr u Xz u . . + u x!) is the podiiioninp #pact Cot
communication-free partitioni~lg with duplicate data by using
the iteration partition Pq- (In).

Consider Example 2. By Theorem 1, while applying t l~c it-
eration partition Pq (p) to loop L2 where O = spa~i({(l , -l),
(L, $)I), loop L2 needs to be executed sequentially based on
t ie non-duplicate data strategy. Due to both arrays A and 3 in
loop LZ being fuUy dupljcable arrays, the pariitioaing a p r r e U r
is span(&). Whik applying the iteration partition Py-(I2) to
loop L2, Imp LZ tau be executed in fully parallel. Clearly, usimg
duplicate d d a strategy can obtain more parallelism than using
non-duplicate one in loop L2, By duplicate data strategy, the
ovcrdl results o l partitioned data and iteration blwks in loop
L2 are respectively sl~own in Figure 3 and Figure 4 where the
relations of output dependence are onlitted.

4. Performa~lce Evaluation

In t I~ section, we compare the ~edormance of non-duplicate
and duplicate data strategies. Consider the matrix multiplica-
tion dgoritlun.

f o r i = l t o M
forj = 1 b M

I o r k = l t u M
C[a, j] := C[i, j] + A[i, k] *B[k , j l ; (L3)

0 1 2 3 4
Figure 4. Partition of iteration space of Imp L2 using the

iteration partition Py,(I1).

end
end

end

For arrays A, B, and C, the respective reference rpaces
* A = span (0,1,0))), * B = sp=({(l,?,?))!, m d *c =
*pm({(O.O, 1 \ h . By Tlleorem 1, the porhltonmng rporr @ is
span[{(O, 1 0)) u {(l, 0, 0)) u {(O, 0, I)}). That is, the matrix
mul~i~llcat~nn algontlun needs to be executed sequentially while
using the non-duplicate data strategv.

N e x i wnrided i s that ir only snme of fully or partially dupli-
cable m a y s nre duplicated, tlberc nlay sacrifice little parallelism
ihan all of them. Note that boil1 arrays A md B are fully dupli-
A l e arrays and array C is a partially duplicable arru. Thus,
~ h t r tdutcd ~ c J t n n c c *paces lYL = spa"(+)# 4b = spa"(&)'
and @: = *pan({(O, 0 , l))) for mpectrvc arrays A, 3, and C.
Demonstrated in the following is tbat ordy the array B is dupli-
cated in lwp L3. Due lo nor replicating deb of =ray A , let 9'
= span({(?, 1,0)] U ((0,0,1)5) sucl~ thal the communi=atiom
Crse lteratlm parlition P*t(I) can be obtained. Consider a
pj x ~3 nl-h ntuliicomputer as the target machine where the
niunbtr of processom i s p = pl x pl . Assume fi = p1 = p 2 , and
M ik a multiple of p. The proc-r PE. for 0 5 o 5 p - 1 will
execute the following I m p L3' by our program trannfomation
and pmcessar ugignment stratrgiw [2].

forall t = (1 + (a - 1) mod to M step p
f o r j = l t o M

for t = 1 to hi
C [i , j] : = C [i . 5] + A [~ , k] * B [k , j] ; (L3')

end
end

end-iarall

Because we do not repliurte the data oI array A to each prw
cessor, the whok array B n u t be duplicated to each processor
for parallel execution without inter-promor communication.
Because the processor PE, , 0 5 a < p - I , requires m c d n g
the m a y elenlents

A[or , l : hq, ford= (1 + (a - l) n l o d p) + I p , I f Z,1 < a < M,
 he 11ost proc-r n u t send these data to the corresponding
processor in a pipelined Idlion. Ln addition, bsause all proc~-
sors mquire a ~ e s s i n g the satnc array elements 811 : M, 1 : MI,
the host processor must broadcast tile wl~ole array B to each
node processor. Nevertheless, il only the array A, not array B,
is duplicated, the similar rrsul~s can be obtained.

In the following, both arrays A and B in Loop L3 are to
be duplicated. Thus the ~mniunicatian-free iteration partition
Pqrr 1 3) can be obtained, where the partitioning space Q" =
S P M i { (O , O , 1))). By our program tr-farmation and pmocr
sor asigument strategies [2], the following mults can thus be
obtained. The pro~tssor PEa,,a, for 0 < a, 5 pi - 1 and
0 5 a2 5 pa - 1 i s to execute the following?oop L3".

forall i = (I + (a1 - 1) mod p l) to M step pl
forall j = (1 + (a2 - 1) mod p z) to M step p2

for k = 1 to M
c [i , j] : = C [i , j] + A [i , k J * B [k , j] ; (L3")

Proceedings of the International Conference on Parallel Processing (ICPP'93)
0-8493-8983-6/0-7 $20.00 © 1993

1993 International Conference on Parallel Processing

5. Conclusions
Table I. Execution time of loops L3. L3'. and L3".

(unit: second) T w o auto~natic array partitioning strategies. non.duplicate
and duplicate data, have been proposed in this paper such that
no data t r a d e r during parallel execution is incurred and the
parallelism of nested IMPS can be exploited as large as porsi-
ble. Under lhe duplicate data strategy, more parallelism can
be extracted than non-duplicate one. By ille matrix multipli-
cation algoritlun, the performance of the strategies with now
duplicate and duplicate data i s discussed, and the overall resdts
are simulated on Trahsputer multicomputers. By our analysis
of perfor~nance, obtaining the bebter eRiciency of executing prw
grams i s dependent on the extracted pmallelisrn and the co~ll-
rnunication overhead of distributing tire initid d d a under the
communication-free criteria.

Table [I . Speedup of loops W' and L?".
References

[I] D. Cdlahan and K. Kennedy, "Compiling Prngrams for
Distributed-Mrrnorv Multiprocessors, Thr J v u m a t of Su-
percomprrfiag, 4'01. 1, pp. 151-169, Oct. 1988.

[2] T. S. Cllen and J. P. Sheu, "Communicatiun-free Data AE
l a t i o n Tech~ur ues lor Parallelizi~r g Catl~pilers on Multi-
computers." ~ ~ d l ~ n i ~ ~ ~ Report Department of Electrical
Englneerin National Central finivemity, Taiwan, R.O.C.,
Octvbcr l&2.

end
end-forall

cud-forall

Assume M i s A nlultiple of 6. Because tlrt prilcessors
PE,, ,,, , 0 5 a, 5 fi - 1, require afcessing the sane array
elenlen ts

f : MI, for a = (1 f (a2 - I) mod a+ I&,
I E Z , l < a s M ,

for 0 < a j 5 6 - 1, the host proc-or must send tlie same
data to ihe corresponding row prMessors by nlul t ic~t ing in A

pipelined lahion. Similarly, because the processors PEa, .02 ,

[3] D. Gannan, W. Jalby and J. Gallivan. "Strategiw for Cache
and h a 1 Manary Maria enlent by Global Pro anl Tr-
formaiions," Jotlmal of Barailcl and ~ i s t r i b u f i Complut-
tng, V d . 5 , No. 5, pp. 587-616, Oct. 1988.

141 M. Gupta and P. Banerjee, "Demonstration of Automatic - .
Data Fzwtitionin Techni ues for Pardelizing Compilers on
~ulticomnuterr! IEEE %r*nsactions on Parallel a n d Dir-
iributed System;, ~ o l r 3, No. 2, pp. 174193, March 1992.

IS] C. T. Kin , W. H. Chtu aid L. M. Ni, "Pipelined Data-
f arallel AV ori t1111~: Part 11-Design," IEEE Transactions
o n ~ a r a l l e f a n d D ~ ~ t n b t r f c d Systems, Vol. 1, No. 4, pp. 4 8 6
499, Oct . 1m.

0 3 a, 5 fi - 1, require a&esaiilg the sari= m a y elemtl~ti' - 161 C. Koelbel 811d P. Melmtra, "Compiling Global Nane-
B[1 : M , a] , for a = (1 + (a l - 1) mod fi) + I&, SF Pa~allrl Loops for Distributed E~ecu~ion," IEEE

l E Z , l < c u S M , No. ransacftons 4. DD. 44&451. o n Parallel Oct. 1991. and D i ~ t t r d u i c d Systemr, Vol. 2 ,
-. m m

for O 5 a1 5 ,,$ - 1, the host processor must srnd tJrt S ~ I I I ~

data to the correspo~tdirtg colunm processors by nlulticastilrg i l l [7] M. LU and J. 2. Fang, "A Solution of the Cacl~e Pin P o x
a pipeLiued fasliion. B e c a w ol only replicati~lg the partial data Problem ap Multi rocessor Systcmo," Journal of k r u l l r l
of both arrays A and B to processors for loop L3", the collm~u- a d Dtstrrbasded C!mgulras, pp. 158-171, October 1992.

nication cost of distributing the initial data i o eadl processor is
less than that of loop L3'.

The overall execution results for loop W, L3', a d L3" are
simulated on Transputer multico~npuiers wi th 16 processors are
slwwn in Table I and Table TI. The execut i~~l time of loops L3,
L3', and L3" are illustrated in Table 1 w i d problenl sizes M =
16, 32. a, 128 and 256. The speedup derived fro~n Table I is
illustrated in Table 11. When the numbw of p r m s s w s is equal
to 1, we only consider the computation time not including tllc
tilute of allocating arrays A aid B. Although duplicating data
smm to waste the time of dlocating initial data, it wi i~iuease
great aniow~ts of parallelism m>d incur ~w conu~luniration over-
head during parallel execulian of progranu. Therefore, tlle time
of prallel execution is less t l m that of seque~itial execution
shown in Table f . However, because date locdity ill loop L3 is
not exploited during sequential execution, the speedup bew111es

[81 0. A. P d u a and M. J. W o k , "Advanced Con~piler Opti-
nlizations for Supercorn uters," Csmmunicaiion of ACM,
pp. 1184-1201, Dec. 1988.

[9] J. Rmnauujarn and P. Sadaya pan, " A hletl~odology for
Paralleliz? Programs for ~ $ i c o m ~ u t e n and Complex
Menlor ult~pnrcessors,~ Proceedings o j ACM In tcma-
lional 6or r f rTcner crn Saapercompuling, pp. 637-646, 1989.

11 01 J . Ranlanujam and P. Sadayappan, " Compile-Time Trdl- . .
niques ,,for Dbta Distribution in' Diafribut&l Memory Ma-
chnes IEEE Tranarrcftonr a n Parollel and Dis f r ibr l cd - - - -. - - - - . -
Syptemr, Va.3, No. 47 pp. 472482, Oct. 1991.

11 1) .I. P. Slieu and T. H. Tai, "PM itio~? and Mapping Nested
W p s on Multiprocessor Systems ~ E E E Transactioaa on
Parallet and Diririb~rted S y s t c m ~ , $01. 2, No. 4, pp. 430-439,
oct. 1991.

more and more better whenever the probleli~ siw becomes Illore
~1d~norelarga~showninTable1I.Tl~~impliesthatexploit- [12lM+E.Wol~,an~M.S.Lam*"AData~~litvOti~zing
i~ lg data lwality i s also important during program execution ia fercnce Algorithm, o n Ps~gmrnwrtn Procecdingr Language of t h e ACM Desrgn S I G P L A ~ ~ I and Impternen- Con+
each processor [12]. Due to existing large amounts of comn~u~u- talion, pp. W 4 4 , J U I ~ f-1.
cation overlkead in loo^ L3' as distributing wlide arrav 3. the --- - - - c - - - --- - -* - . - - speedup of loop L3" is more efficieitt tlt&~-!,ltllat i f I& L3'. By 1131 M, E. Wolf a ~ l d M. S. L ~ I , "A Loop Transforaatjon Theory
the above analysis, the comn~ur~icatio~l time or distributing the and an Algoritllru to Maxinuza Paralleli~rn," IEEE Trans-
iiutial referenced elen~ents d m a y s must be as small as pmible act ions on Parallel and Diairibuled Spriams, Vol. 2 , No. 4,
in order to obtain better efficie~icv durina ~aral lel execution. In pp. 452-471, Oct. 1991.

addition, which kind of dupliratio;i ui or&s is suitable for ~ p l i - 1141 M. I. Wdde, .Oplinliri,y Supran,,ilen Im Supram ut
caling their referenced data can be appropriately estimated such
lhat pardelized programs cam gain better p r r f o r n ~ a ~ ~ c e during

w,'' Lorld011 and Cambridge, Jbl A: Pi thilan and the i61f
Press. 1989.

Proceedings of the International Conference on Parallel Processing (ICPP'93)
0-8493-8983-6/0-7 $20.00 © 1993

