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Abstract - In this paper, wedevote our efforts to tlie tech- 
niques or allocati~tg array elements of nested loops onto iiiulti- 
computers in a cornn~unication-free fasllion for parallelizi~~g com- 
pilers. The arrays can be partitioned under the commu~lication- 
free criteria w i t h  nowduplicate or duplicate data. In addition, 
the performance of the strategies with nowduplicate and duplii 
cate array data is compmd. 

For distributed memory multicon~puters, the nleluory a~cess 
time from a processor to its own local iilemory is nluch faster 
than the time to l o d  memory of the other processors. An eL 
fident p a d e l  executimg programs t l w  requires the goal of low 
communication overllead. To achieve this goal, various co~~~pi ler  
tedlluques lwve, therefore, beml developed to reduce colnmuni- 
cation traffic 011 multicomputers. The purpose of exploiting a 
large amount of parallelism in sequentid prograiils Itas been the 
previous focus of a nuiiiber of researchers 1131 1141. However, 
exploiting a large amount of pardelisrn in sequeotial programs 
nlay not pronuse that the pardlelized progranls for parallel ex+ 
cution can obtain more efficiency on ~nultiwmputers. The main 
reason is that those extracted parallelisnl may possibly cause 
Inore cormnwiication overl~ed during parallel execution. Un- 
der the above considerations, several researdhers developed par- 
allehzillg wn~pilers in which progammers must explicit1 y spec- 
ify data allocation and the codes could then be ger~erated with 
appropriate corrunmiication constructs [1] [6]. 

Achieving automatic data magenleut  io desigli~ig paral- 
lelizi~lg compilers is,  levert the less, difficult since tlie data nlwt 
be attentively distributed so tliat cormnluiicatioll traffic is n i ~ l -  
i~nized ill pard lel execution of progrmtis. Therefore, several re- 
searchers 131 (41 (71 (121 f- the data allwation problem on 
automatically allocating the data or mtructuri~lg the programs 
in order to inlprove tlre efficiency of usage of memory hierarcl~y 
or reduce the interprocessor conun~uucation overhead in par- 
allel nladGnes. For distributed nlelnory oiulkicomnputers, large 
anwrults of co~nnmirication overhead 11lay cause the poor perfor- 
maace during parallel execution of progralaw. Some researd~ers, 
such as King, Cllou and Ni [5] ,  Rauanaujaln and Saclayappen 
(91, and Sheu and Tai [l 11 , studied the problems of transfornling 
programs illto the pwallcl forin and reducing the u~terprocs  
sor co~iunrrrmication overhead. Fur themote, hnanaujanl  and 
Sdayappen [lo] focused on analyzing the For-ail loops and par- 
titioning these loops and the corresponding data such tlmt the 
partitioned prograins are executed without co~nmunication over- 
head in the distributed memory multicomputers. 

In this paper, we concentrate 011 auto~natically allocat- 
ing the array elenie~ats of nested loops with ~ulifor~~dy gen- 
erated references [3] on distributed rikelllory nlulticompute~. 
First, we analyze the patten1 of references among all arrays 
referenced by a nested loop, a id  derive the ssuRiieelat con- 
ditiolw for corm~luniation-free partitioni~lg of arrays. Two 
co~m~lunication-free partitioning strategies, non-duplicate data 
and duplicate data, will be proposed. Our nietlld can obtain 
more parallelism than the method p r o p 4  by Ranl~iaujain 
and Sadayapptn I101 in For-all loops wi tll uluromlly generated 
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refemccs. Finally, the performance of the data docation with 
non-duplicate and duplicate data strategies is discussed. 

2. Basic Concepts and Assumptions 

A norldized n-nated loop (141 is considered in this paper. 
Let and R denote the set of integers and the set of real 
~lullbers, rmpecti vely. The symbols 2" and R" represent t11e 
set of n- tuple of integers and the set of n- tuple of real numbers, 
respectively. The i teral ion *pace (141 of lul n-nested loop is a 
suhet  of Zn and is defined as In = { ( 1 1 , 1 2 ,  ..., 1,) I !,, < 
ij 5 u,, lor 1 5 j < n). The vector i = ( i l ,  i2, .. ., 1-5 , 

ill I" is represeilted ao all iteration of the nested loop. In the 
nested loop, there may exist inpu t ,  ouiplrt, Pow dependences  or 
a n i i d e p e n d e ~ c e  [a] which are referred to da ta  deptudcnct in 
the following discussions. Let the linear function h : 2" - 
Zd be defined as a reference function h(Il ,. . . , I I I )  = ( a l , ,  Il + 
. + + a l , , I , ,  ..., ad, l I1  + + . . + ~ d , ~ l ~ )  and be represented by 
the matrix r u l , l  .. . a l , ,  1 

where a,,> E 2, for 1 5 i 5 d and 1 5 j 5 n. Zn the loop body, 
a d-ditnensional array element A [h( i l ,  :2,. . . , in) + .?I may be 
referenced by the reference function h at iteration (il , i 2 , .  . . , i,) 
in I", where E is known as ahe constant offset vector in Zd [121. 
The data spaec of array A is a subset or Zd and is defined over 
tlie user-defined array subscrip! index set. For array A, d l  s 
referenced array variables A[H,r + E 1, for 1 5 p 5 s, arc called 
rni fornaly  gcneraicd rrfercnces [3] b2] if HI = Ha = .++ = 
H, wlrere Hp is the linear transformation function from 2" t4 
Zd, i E In, and E p  is  the constant o k t  vector in Zd.  Sii~ce 
little exploitable data dependence exists between nonuufonnly 
generated references, we focus the data allocation to each array 
on the same reference function in a nested loop. The ditlcrent 
arrays may have diRerent reference functions. 
Example 1: Consider rr 2-nested loop L1. . 

for i = 1 to 4 
for j = 1 to 4 

$1 : A[Zi,jI := C[ i , j ]  * 7 ; 
$ : B [ j , i + l ] : = A [ 2 * - 2 , j - l ] + C [ i - 1 , j - 1 1 ;  

end 
end (L1) 

In tlus example, the iteration space is IZ = { (i, j) I 1 5 i ,  j 5 
4 ). In loop L1 with tliree arrays A, B, and C, the respective 
reference functions are 

A flow dependence exists between the variables A[2i, j] at state 
lllent S1 and A(2i - 2, j - I ]  at statemel~t S2 with the different 
ofiet vectors (0,O) and (-2, - I ) ,  respectively. For array C only 
read by loop L1, an input dependence exists between the vari- 
ables C[i, j ]  at statement S1 and C t - 1, j - 11 at statement S2 
with the diRerent &set vectors (O,O\ and (- 1, - 1). ~ ~ p e c t i ~ d y .  
The array variable B[9, i + 11 is only generated at  statement $2 
and its &set vector is (0 , l ) .  Loop L1 thus has the uniformly 
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0 1 2 3 4 5 6 7 8  

(a) Array A[0:8,0:4] 
I 

j 

0 1 2 3 4  0 1 2 3 4  

(b) Amy 8[1:4,2:5] (c) Array C[O:4,0:4] 

Figure 1. Partitioning arrays A, B and C of Imp L1 into 
their carresponding data blmks. 

generated rderences on m a y s  A, 13, m d  C. 

Definition 1: [Data referenced vector] 
bl an n-neated loop L with uniformly generated references, 

il there exisl two referenced w a y  variables A[Hi + e l ]  and 
A [ H i  + F Z ]  for array A, then the vecLor f = .?I - & is called 
data ~efeerenced w e t t o r  of array A.  - 

0 1 2 3 4  

Figure 2. Partitioning the iteration, space of loop '1 into 
the corresponding iteration blocks. 

partitioned along data refemnced vector (1,13 into their c- 
uponding data blocks, BC for 1 5 j 5 7, as shown in Figure 
1(c). It is easy to show tinat if the iteration space is partitioned 
along the direction (1,l) a. shown in Figure 2, no inter-blodt 
communication exists ior arrays A and C. Therefore, array B 
niust be partitioned along the direction (1,1) into the corre- 
sponding dah  blocks B:! 1 5 j < 7, = slxown in Figure l(b), 
such that the partitioned ~teration blocks B,, 1 5 j 5 7 ,  can be 
executed in parallel witl~out inter-block communication. 

3. Communication-free Array Partitioning 

3.1 Communication-free Array Partitioning with- 
out Duplicate Data 

In tlis subsection, we win discuss the communication-free 
array par t i t io~ng  without duplicate data: i-e., exactly one copy 
of each array element exists during extcution of program. 

Given an n-nested loop L, the problem is how to partition 
tlie data refemnced in Imp L such t11& not only the communica- 
tion overhead is not necessary but also the degree of parallelism 
can be extracted as large a possible. We first d y z e  the r e  
lations among all array variables of loop L and then partition 
the iteration s m e  into iteration bIocks such bhat no inter-block 

U 

The data sderenCed wctor tile be- cornmu"icatio~ exists. For each partitioned iteration Modt, all 

tween two m a y  elements AJH;+ cl] and A [ H ~  + F2] whch are data, referenced by those iterations, must be grouped into their 

refemc& by an iteration f ,  Note tlIst any data depm,delIce cOmes~Onding data b2d for each array. Our nletllods proposed 

in lo_op exists two djsti,lct referenced arr_aY variables in this paper can make the size of partitioned iteration blocks m 

A[Hi  + E , ]  zrnd A [ H t  f EZ], i.e., two iterations il and ia can rde- 
small as possible so 89 to achieve lugher degree of parallelism. 

ence the m a y  dement, if and only il Hi l  + El = H i 2  + ~, From the defmition of a vector space, an n-dimensional v e e  

i.=., H(T2 - i,) = f- Communication overhead is therefore not sme Over can bt generated using linearly 

to be n-mm- if the iteration spaEe is partitiond along the di- independent vectors. Let X be a set of p linearly independent 

re&on i* - il into iteration bloAs ilnd the da& space of YmEOm, where P I Th-e P a basis of a P 

A is p t i t i o n c d  dong t1lc direction F into dnto blocks. dimensional subsme, denoted by span(X), of Y over 8. The 

Exanlple 1 is llere for illUstIgtillg ille ideu Df a 'pace is denoted b the 

commu~calion-free data docat ion lrat T~~ A, 8, following, a formal defuiition of parLiLioning of iteration space 

and C of loop L1 have the referenced array variables R[2 i ,  j ] ,  is given' 

A[Zi - 2, j - I], Blj, f +  11, and Cfi, j j ,  - 1, j - 11, respectjvely, 2: [Iteratian pmbitionl 
The data reIerenwd vectors of arrays A and C are f 1 = (2, r ) The ateration partition of an n-nested loop L partition4 by 
m d ~ = ~ l , ~ ) , m p K t j v ~ y , ~ o w t v e r , o n l y o ~ ~ r e f e F e n C e ~ - ~ y  t l ~ " S ~ a c e ' = ~ ( ' ~ ~ ' ~ * . . . * ' ~ ? ) w h e r e ~ E R " * 1 1 [ 5  
variable exists on array B ;  namely, no data referenced vector ex- u, denoted M Pv(ln\ i s  to partllron the iteration spare I' 
jsts. AH of data spaces of mays A,  8, and c and data into djsjoint iteration b l o d s  Bi, B2,. . . , Bg where (I is the t o t 4  

referenced vectors of each array element sre show11 in Figure number of partition+ blocks. For each iteration block R,, 1 5 
I (a), E(b) and l(c), respectively, where solid points represent j 5 9' " base point b~ Rn exist* and 

that array elenlents are used in loop L1 and, however, empty B, = {i f In]i = Gj  + a l  il +oztz +. . .+au[,, , at E R, 1 5 I 5 u) 
poinks =re not. At iteration (1, I ) ,  the array element .4[2,1] is 

wll- In = Ulsllr BJ - 
0 

is used in S2, and so on. Restated, two iterakions i l  = (Ill) Ileanition ': IData partition] 

and i l  = (2,2) satisfying the condition kIA(T2 - ; I )  = f l  c a t  Given an iteration partition Pq (I"), the daiu parlition of 

a~cess the s-e m a y  element ,4[2,1]. TIle daba space of may m a y  A with 811 s referenced array variablw A[HAT + E I ] ,  . . ., 
A is therefore partitioned ahg the data refeEncd wchr ( 2 , l )  A [ H A ~  + ES], denoted as P* ( A ) ,  is the  arti it ion of data space 
into the data blo&s 8: for 1 5 j 5 7, eirlming the paints A into q B?.Bt , . -  - , B 6 -  For data 
wit11 lines, as sirown in Figure T1b-e used galerated B;' wmsponding to one iteration block B, of P* ( I " ) ,  

array elenbents grouped in t l ~ e  same data block are t l l ~ n  to be 5 3 5 q? 
allocated to tile same prwesaor. Si~uularly, the array C is also B ~ = { A [ E ] ] E = H ~ ~ + E ~ ~ T E B ~ , ~ < I < S ) .  
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0 
Consider Example I. F O = span(((1 , 1))) i s  cl~ose~l as 

the spece of the iteration partition Pq (12) in loop L1, i1le 
iteration space can be into seven iteration blocks 
aa shown in Figure 2. The ~ o i n t s  enclosed by a line are 
shown in Figure 2 to form an iteration block artd those dotted 
poitits mpresot~t the base points of the wrrespondi~lg iteration 
bl&. For example, the base point b5 of iteration block Bs = 
{;E 1 ' 1 ; = 6 ~ + a ( 1 , 1 ) , 0 ~ ~ < 2 ) i s ( 2 , 1 ) .  Basedontl~ei ter-  
a t is t~ partition Pq (12 1, the arrays A, 8, a~bd C are partitioned 
into the carrespunding data blocks by using the respective data 
partition P+ ( A ) ,  Pu (B), and Pq (C) as slhown in Figure 1. 
Example 2: Consider a 2-nested loop L2. 

for i = 1 to 4 
far 3 = 1 to 4 

SI: A [ i t p , i + 3 1 : =  B[2i ,31*A[i+ j-  l , P +  j]; 
sj: A [ i + j  - l , i + j - l ] : = B [ Z t - 1 , j - 1 ] / 3 ;  

end 
end (&,I) 

In loop L2, the respective reference fui~ctions of arrays A and 
B are 

The data referenced vectors P1 , between A [i + j ,  i + j] and A [i + 
j-1, i+j-I], f z ,  between A[;+ j-l , i+j-11 and A[i+j-1, i + j ] ,  
andf.3, bbs tweenA[ i+ j -1 , i t j )a id  A [ i + j . i + j ] , o f a r r a y  A 
are ( 1 ,  I ) ,  (0, - I ) ,  and (- 1,0), respectively. Tlre data referenced 
vector f4 of array B is [I ,  1). Consider I lie equation HAT2 = f2. 
Two iterations -aid g can-access the sane ctetrien~ of array 
A if the equation iz - il = 12 is satisfied. Because no solution 
exists in the equation HAiZ = f2 ,  no data depm~rle~im exisls 
between A [ i + j - l , i + j - -  l ]and A l t t j -  I , i + j ] .  However, 
solving the equation HBtr  = Fa cahr e~ac t ly  obtain a soluiinn 
l4 = (i, 1). It is inlpossible for tlrt data dtptlldence vector i, 
between two iterations since f4 does not belong l o  Z 2 .  Also no 
data dependence exists on array B. Let the symbol D* E zd 
be denoted as a mrwvector wllere each conrphrtni is equd to 
0. Consider the equation H t  = F. b~ lire special case, when 
F = o*, the set of solutions i d  tquaiiohr H i  = O* is Iier(H). 
the null s p x e  of H. The v w t m  I i n d i c a t ~  the diHerwmre of 
two iterations a~cessing the same eltmelrt of a certain array 
variable. For example, Ker(HA ) is tpan(-( (1, - 1 ) 1 ) in loop L2. 
On variable A i + j, i+ j], the array eelenlent A [4,4), referenced by 
the iteration 1 1,3), can be reielvnced again by iieratiohrs ( I , > )  
+ span(((1, -1 ))), i.e., (2,2) and ( 3 , l )  , of loop L2. - 

U 

In tho following, how to choose tlre better apace to partition 
tire iteration space and data spat- wirliout dupliate data is 
discussed. 
Definition Q: [Reference space] 

Lr a11 m~iested loop L, it a reference Cwrciioll H A  and vari- 
ables A [ H A i  + E l ] ,  . . ., A[HA;  + E , ]  lor array A exist, ahhd tllt 
data referenced vectors are Fp = E ,  - E L  lor dl 1 5 j < k 5 t 
and 1 < p 5 *, then the rtjtrtncr s p a  cr of array A is 

where 0 is the h i s  of Ka(HA) and i, I? in, 1 5 j 5 w, 
must satisfy the followi~rg cwrditiwm 

6 is a particular solution of equation H A  l = ?,-and 
a solttion P f _i, f Ker(HA) exists such that 1' E Zn and 

i ' = T 2  - i1 where il, t 2  E I " .  
- 

The referenct spact used here is situular to the group-temporal  
reuse sector  spatt previously defiuied by Wolf and Latt~ [ l l ] .  The 
reference spa t t  represents the relatio~ls at d l  data refrrrtlces 
between i ter~t ioi~s.  For array A. nil data ciepe~udence exists b+ 
tween iteration blocks wllell tihe iteration space In is partitioned 
wit11 the reference space + A .  This is because all data dcptn- 
dences are co~lsidered in IY A such that data accesses do not 
need between iteration blocks. In eadl iteration block, itera- 
tions according to the lexicographical order  1141 are executed so 
m to preserve the dependency in Iwp. In loop L2, the reference 
rpace * A  of array A i s  span({(l, - l ) ,  (!j, i))) because Ker(HA) 

= span(((1, -1))) and a l l y  a particular solution = (1 i) of 
equation H A t  = "1 exists wllich satisfies the conditions i);fand 
(2) LL Definition 4.  The reference space + B  of array B is s y n ( 4 )  
because Ker(Hjg) = {02} a ~ l d  the only solution t4 = ( T ,  1) 
Za not satisfy in^ the condition ( 2 )  in Defmition 4. . , 
Tileorern 1: - 

Ci ven an n-nested loop L with k array variables, let the ref- 
erence space @*, be span(x,) of eadi array A, for I < j < k. 
If Q = span(X1 UX2 U. + .uXn), then Q is the partit ioning space 
for communication-free partitioning of arrays A, for 1 5 j 5 k 
without duplicate data b y  using the iteration partition Pq (I"). 

Proof: The proof of this theorem can refer to (21. 
a 

By Theorem 1, when dim(@) < n, tlus means that the i t  
eration partition Pu (In)  exists more parallelism in loop L. By 
Definition 2,  the smaller the value of dim(*) is, the higher the 
degree of parallelism has. In general, when dink(*) < n - 1, 
our method can exploit Inore parallelism than Rarnanaujam and 
Sadayappen's method [lo] ill For-all loops with uniformly gen- 
erated referencw. This is because Ran-ujam and Sdayap 
pen's method only uses (n - 1)-dimensional hyperplanes to par- 
tition the arrays in For-all loops. Consider loop Ll. The re 4- erence apscea  are V A  = W C  = span({(l, I ) ) ) ,  and %B = ( 0  } 
for respective arrays A, C, and 8. Therefore, by Theorem 1 
the porlidioniag space is = span(((1, I)} U ( (1 , l ) )  U 4) for 
co~n~nunicstion-free iteration partition P* (12) of loop L1. Due 
to diln(~P) = 1 (< Z), large an~ounts of parallelism exists in loop 
L1. The overall results of partitioned data m d  iteration blocks 
in loop L1 have been respectively sl~own in Figure 1 and Fig- 
ure 2. Since loop L1 is not a For-all loop, Fhnm~aujarn and 
Sadayappen's method can not solve i t .  

3.2 Co~nmunicatioii-free Array Partitioning with 
Duplicate Data 

In tlua subeclion, we consider the mmmuniratjon-ire ar- 
ray ppartitiwling with duplicalc dais; i.e., 4 Iiwe nLay exist nmre 
illan one copy of an array element d n c a t t d  onto local mem- 
ory ol p l o c w r s .  Due to communication overl~ead behg mart 
t ime-co~uu~ni~~g in parallel executing programs, it i s  wortl~while 
to duplicale refere~~ced dale onto prorxssora  such that high de- 
gree 01 parallelis~n can be exploited and n~eanwl~il+ the corn- 
putatiollc dlould be wrrecrly peifnr~ned ill a co~nmunication- 
free laslliwi. Duplica~e data strategy, in comparison with Ikon- 
duwlicate one. znav extract more varallelism of ororrams based , . . v 

on c o ~ ~ u n u n i c a t i o ~ f  array partitio~ung. In the toflowing def- 
illil ion, ~ w o  kinds of arrays are classified. 
PeRlli tion 5: [Fully and partially duplicable arrays] 

If m y  flow depe~tdetlce do- not exist on an array A,  then 
the array A is cdled fully duplicable array; ntl~erwjse, the mray 
A is called partially duplicable array. 

For the two kin& of arrays, how to chow the better space 
to partition the iteration a p m  a l ~ d  arrays with duplicate data 
sudl tliat 110 it~ttr-Liock colnntunication exists is discussed as 
follows. 

First, we cxamine the I d l y  duplicable m a y s .  Because no 
flow depcnderle exists on array A ,  a~yr iteration wiU not use 
the elements of array A generatd by other iterations; therefore, 
tlu data can be arbitrarily distributed onto various processors 
with duplicating the elements uf array A and the semantic of 
original Imp cat1 be retained. Therefore, the reference space 

cruh be reduced into spas(+) denoted 8s the redaced refer.  
cnce a p d r e  rCIr . That is, W >  is the subspace of BA.  Next, the 
partially dupkable arrays are to be examined. Assume there 
exist p flow depel~derlccs on 4 partidly duplicable m a y  A in 
loop L. The rcferrnrc apace ' P A  of array A F I ~  be reduced into 
c11e r e d e c ~ d  rcfcr<ncc spat< Q> = (0 u {[I, t2, . . ., tP}) wl~ere P 
is due b&s of Ker(HA) and T,, I 5 j 5 p ,  which lead to flow d+ 
pendethce are particular solutions satisfying the conditions ((1) 
and (2) in Ddni t i a~ t  1. The reducible r e s o n  lor the wjerence 
space is that only the flow dependences can actually cause the 
data transfer between execution of iterations. That is, only flow 
dependence is mxmsary to be eonsidered duri~rg e x a t i o n  of 
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0 1 2 3 4 5 6 7 8  
(a) Partition of data space of array A[1:8, 1 :8]. 

j 

0 1 2 3 4 5 6 7 8  

(b) Partition of data space of array B[ 1:8, 0:4]. 

Figure 3 .  Padtion of arrays A and B in loop L2 using the data 
panition P,.(A) and Py,(B), respectively 

programs; however, input, output dependen- m d  antidepel)- 
dence merely determine the pprecede~lce of executing iterations 
so that they can not make any data transfer. 

Wllile parkitioning the iterati011 space, data referencts wllidr 
occur among all arrays in a nested loop must be consid~cd.  
Gimn an n-nested loop L with k array variables, assunle the 
rcdrecd reference space lyr = span(X;) of each either fully 
or partially duplicable array A exists, 1 <_ j 5 k. Then, 
Qr  = span(Xr u Xz u . . + u x!) is the podiiioninp #pact  Cot 
communication-free partitioni~lg with  duplicate data by using 
the iteration partition Pq- (In). 

Consider Example 2. By Theorem 1, while applying t l~c  it- 
eration partition Pq (p) to loop L2 where O = spa~i({(l ,  -l),  
( L, $)I), loop L2 needs to be executed sequentially based on 
t ie  non-duplicate data strategy. Due to both arrays A and 3 in 
loop LZ being fuUy dupljcable arrays, the pariitioaing a p r r e  U r  
is span(&). Whik applying the iteration partition Py-(I2) to 
loop L2, Imp LZ tau be executed in fully parallel. Clearly, usimg 
duplicate d d a  strategy can obtain more parallelism than using 
non-duplicate one in loop L2, By duplicate data strategy, the 
ovcrdl results o l  partitioned data and iteration blwks in loop 
L2 are respectively sl~own in Figure 3 and Figure 4 where the 
relations of output dependence are onlitted. 

4. Performa~lce Evaluation 

In t I~ section, we compare the ~edormance of non-duplicate 
and duplicate data strategies. Consider the matrix multiplica- 
tion dgoritlun. 

f o r i = l  t o M  
forj  = 1  b M  

I o r k = l t u M  
C[a, j] := C[i, j] + A[i, k] *B[k , j l  ; (L3)  

0 1 2 3 4  
Figure 4. Partition of iteration space of Imp L2 using the 

iteration partition Py,(I1). 

end 
end 

end 

For arrays A, B, and C, the respective reference rpaces  
* A  = span ( 0,1,0))),  * B  = sp=({(l,?,?))!, m d  *c = 
*pm({(O.O, 1 \ h .  By Tlleorem 1, the porhltonmng rporr @ is 
span[{(O, 1 0)) u {(l, 0, 0 ) )  u {(O, 0, I)}). That is, the matrix 
mul~i~llcat~nn algontlun needs to be executed sequentially while 
using the non-duplicate data strategv. 

N e x i  wnrided i s  that ir only snme of fully or partially dupli- 
cable m a y s  nre duplicated, tlberc nlay sacrifice little parallelism 
ihan all of them. Note that boil1 arrays A md B are fully dupli- 
A l e  arrays and array C is a partially duplicable arru. Thus, 
~ h t  r tdutcd ~ c J t n n c c  *paces  lYL = spa"(+)#  4b = spa"(&)' 
and @: = *pan({(O, 0 , l ) ) )  for mpectrvc arrays A, 3, and C. 
Demonstrated in the following is tbat ordy the array B is dupli- 
cated in lwp L3. Due lo  nor replicating deb  of =ray A ,  let 9' 
= span({(?, 1,0)] U ((0,0,1)5) sucl~ thal the communi=atiom 
Crse lteratlm parlition P*t(I ) can be obtained. Consider a 
pj x ~3 nl-h ntuliicomputer as the target machine where the 
niunbtr of processom i s  p = pl x pl .  Assume fi = p1 = p 2 ,  and 
M ik  a multiple of p. The proc-r PE. for 0 5 o 5 p - 1 will 
execute the following I m p  L3' by our program trannfomation 
and pmcessar ugignment stratrgiw [2]. 

forall t = (1 + ( a  - 1) mod to M step p 
f o r j = l  t o M  

for t = 1 to hi 
C [ i , j ] : = C [ i . 5 ] + A [ ~ , k ] * B [ k , j ] ;  (L3') 

end 
end 

end-iarall 

Because we do not repliurte the data oI array A to each prw 
cessor, the whok array B n u t  be duplicated to each processor 
for parallel execution without inter-promor communication. 
Because the processor PE, ,  0 5 a < p - I ,  requires m c d n g  
the m a y  elenlents 

A[or , l :  hq, ford= (1 + ( a - l ) n l o d p ) + I p , I f  Z,1 < a <  M, 
 he 11ost proc-r n u t  send these data to the corresponding 
processor in a pipelined Idlion. Ln addition, bsause all proc~-  
sors mquire a ~ e s s i n g  the satnc array elements 811 : M, 1 : MI, 
the host processor must broadcast tile wl~ole array B to each 
node processor. Nevertheless, il only the array A, not array B, 
is duplicated, the similar rrsul~s can be obtained. 

In the following, both arrays A and B in Loop L3 are to 
be duplicated. Thus the ~mniunicatian-free iteration partition 
Pqrr 1 3 )  can be obtained, where the partitioning space Q" = 
S P M i { ( O , O ,  1))). By our program tr-farmation and pmocr 
sor asigument strategies [2], the following mults can thus be 
obtained. The pro~tssor PEa,,a,  for 0 < a, 5 pi - 1 and 
0 5 a2 5 pa - 1 i s  to execute the following?oop L3". 

forall i = (I + (a1 - 1) mod p l )  to M step pl 
forall j = (1 + (a2 - 1) mod p z )  to M step p2 

for k = 1 to M 
c [ i , j ] : = C [ i , j ] + A [ i , k J * B [ k , j ] ;  (L3") 
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5. Conclusions 
Table I. Execution time of loops L3. L3'. and L3". 

(unit: second) T w o  auto~natic array partitioning strategies. non.duplicate 
and duplicate data, have been proposed in this paper such that 
no data  t r a d e r  during parallel execution is incurred and the 
parallelism of  nested IMPS can be exploited as large as porsi- 
ble. Under lhe duplicate data strategy, more parallelism can 
be extracted than non-duplicate one. By ille matrix multipli- 
cation algoritlun, the performance of the strategies with now 
duplicate and duplicate data i s  discussed, and the overall resdts 
are simulated on Trahsputer multicomputers. By our analysis 
of perfor~nance, obtaining the bebter eRiciency of executing prw 
grams i s  dependent on the extracted pmallelisrn and the co~ll- 
rnunication overhead of distributing tire initid d d a  under the 
communication-free criteria. 
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