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Abstract—Recently, Federated Learning (FL) has realized Arti-
ficial Intelligence of Things (AIoT) applications to train a shared
model while preserving user privacy collectively. However, the
legacy FL framework performance is fundamentally threatened
by scale limitation, non-independent and identically distributed
(non-IID) data, and communication costs. Therefore, we propose
VIrtual-targeted Sequentlal Training with Hierarchical Federated
Learning (VISIT), a novel framework to systematically distribute
clients to suitable clusters for balancing data distributions among
all FL subgroups. To the best of our knowledge, this work is the
first attempt to introduce a Virtual Target concept along with a
key metric, Virtual Target Similarity (VTS), to quantify the data
harmonization in the whole HFL system. Based on our insightful
Client Set arranging strategy, VISIT can wisely select each FL
subgroup member to optimize diversity within each Client Set and
similarity across different clusters while preserving user privacy.
Numerical results demonstrate that VISIT improves accuracy by
41% and reduces total communication rounds by 82% compared
to other state-of-the-art baselines with non-IID data on EMNIST
and CIFAR-10 datasets.

Index Terms—Hierarchical Federated Learning, Sequential
Training, Clustering, non-IID.

I. INTRODUCTION

Recently, Deep Learning (DL) has gained popularity in
boosting various AloT applications by training on high-
performance computing platforms in the cloud with centralized
repositories of vast datasets [1]. However, this remote training
procedure involves sending the raw data generated by end
devices to the cloud server, inevitably raising privacy concerns.
To tackle this issue, Federated Learning (FL), a decentralized
learning framework, has emerged as a privacy-preserving solu-
tion for the existing centralized training [2]. Nevertheless, FL.
naturally needs to face the following challenges at the cost of
obtaining privacy: 1) Performance bottleneck: a legacy single-
server layout fundamentally restricts the global model’s per-
formance due to training scale limitation. 2) non-independent
and identically distributed (non-1ID) issue: raw data kept at
each client side to ensure user’s privacy, potentially leading
to significant model accuracy degradation and extending the
convergence time. 3) Communication overhead: an intuitive
strategy to mitigate non-IID effects, mostly triggering addi-
tional communication costs between the edge server and clients
for improving model convergence.

To tackle the above problems, Zhong et al. [3] introduced a
parallelizable FL algorithm that leverages multiple parameter
servers (PSes) to boost convergence rates and communication
efficiency within resource-constrained FL scenarios. Besides,
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Fig. 1: VISIT architecture. The color patterns on the clients
indicate the data distribution over each client.

Liu et al. [4] introduced a client-edge-cloud Hierarchical Feder-
ated Learning (HFL) framework enabling multiple edge servers
to engage in partial model aggregation. The HFL system
accommodates many clients owing to its hierarchical design,
handling a tradeoff between communication and computation.
Additionally, Mhaisen et al. [5] further improved HFL perfor-
mance by employing synchronization algorithms customized to
the communication characteristics of different layers. Based on
the multi-layer design, HFL with a solitary central server fun-
damentally circumvents performance bottlenecks and reduces
communication costs compared with legacy FL architecture.
However, the side effect of multi-layer design exacerbates
the non-IID issue instead. After the model aggregation at the
bottom layer of each sub-FL group, those diverse models will
amplify the non-IID chain effect to the topper-layer cloud
server and make the global model merging hard to converge.
Therefore, HFL must carefully address the non-IID issue with
multi-layer structures.

Several FL research [6]-[13] have proposed clustering and
different aggregation mechanisms to consider non-IID data in
model training. Sattler et al. [10] proposed the concept of
Clustered Federated Learning (CFL) to iteratively divide clients
into small clusters based on the similarity observed in their
model updates to improve the global model merging. Briggs
et al. [11] designed a hierarchical clustering algorithm based on
clients’ cosine distance from the global model. Such a cluster-
ing approach improved the training performance of each cluster
with its local aggregated model; however, they lacked aware-
ness of the global model. Besides, other researchers [12], [13]
studied clustering techniques to group clients with disparate
data distributions for accumulating uniform distribution within
each cluster with a better global model performance. Wang
et al. [12] proposed a method that intelligently selects client
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devices in each FL round to counteract the bias introduced by
non-IID data and accelerate convergence. Zaccone et al. [13]
introduced FedSeq, an algorithm crafted to tackle statistical
heterogeneity by employing sequential training among all FL.
subgroups. Clients with distinct data patterns are grouped to
simulate the appearance of a larger and more uniform dataset
while preserving privacy. However, the above strategy fails
to achieve a balanced and diversified distribution in all FL
subgroups, potentially leading to model bias and eventually
dropping global model performance.

In this paper, we advocate HFL framework and adopt
sequential training technique to optimize global model perfor-
mance, especially under non-IID data distributions. We need to
address the following key issues: 1) Estimating each client’s
distribution to form the cluster while preserving privacy. 2)
Organizing Client Set to mitigate performance degradation
influenced by non-IID data 3) Balancing the tradeoff be-
tween the global model performance and communication cost
in the HFL system. Therefore, we propose VIrtual-targeted
Sequentlal Training with HFL (VISIT), a novel framework
to systematically distribute clients to suitable clusters for bal-
ancing data distributions among all FLL subgroups. Our design
strategy is to minimize the Intra Client Set Similarity (Intra-CS)
among all clients in the same cluster (i.e., increase intra-cluster
diversity) while enlarging Inter Client Set Similarity (Inter-
CS) between different FL. subgroups (i.e., preserve more IID
subgroups). We adopt sequential training within each Client
Set to mitigate the negative impact of non-IID on FL. To
alleviate the potential model bias towards certain outliers, we
introduce Virtual Target, a predefined uniform target, to assist
Client Set forming while realizing the above design strategy.
Besides, apart from Intra-CS and Inter-CS, we propose a key
metric, Virtual Target Similarity (VTS), as the mean similarity
between Client Set and Virtual Target to quantify the data
harmonization in the whole HFL system. The optimized VTS
policy wisely chooses each FL subgroup member to balance
diversity within each Client Set and similarity across different
clusters to achieve better global model accuracy. For example,
as Fig. 1 shows, clients are arranged to each FL subgroup
to maximize the similarity between each edge server and the
Virtual Target. In the experiments, our evaluation results justify
the superior performance of VISIT in mitigating non-IID
conditions compared to existing HFL frameworks, achieving
a maximum improvement of 41% accuracy and reducing total
communication rounds to 82%. We also observed an insightful
phenomenon that VISIT arranging each FL subgroup with a
small number of clients strikes a good balance between global
model performance and communication costs.

II. SYSTEM MODEL

This section first provides HFL architecture, which delin-
eates a client-edge-cloud hierarchy that distributes learning
across multiple computational layers. This indicates scalabil-
ity and efficiency benefits that typical centralized FL cannot
accomplish. Subsequently, we advocate sequential training as
a promising approach to address non-IID by balancing the
accumulation of all clients’ data distribution within each sub-
FL group.

A. Hierarchical Federated Learning

The objective of the FL framework is to acquire a global
model parameterized by w by utilizing data distributed across
N clients while ensuring each local data’s privacy. Every
device, denoted as n € [IN], can access samples from its local
dataset D,,. The loss function evaluates the variation between
the model’s prediction and the actual value for the m-th data
sample, represented as fy, (w).

The Federated Averaging (FedAvg) algorithm [2] adopts an
iterative methodology to minimize the overall loss function
F(w), which can be derived as a weighted average of the local
loss functions F,(w) on local datasets D,,. F(w) and F, (w)
are specified as follows:

ij:l |D7L|Fn(w) F (w) _ ZmEDn fm(w)

D C |Dal '
To accommodate more clients at a significantly reduced cost
of communication, we consider the HFL system [4], which
consists of one cloud server, L edge servers indexed by /,
with disjoint Client Set {C*}L_,, and N clients indexed by n.
Let D’ represent the aggregated dataset under edge /. Alone in
the HFL system, following every ¢ local update performed on
each client, each edge server conducts the aggregation for the
models of its respective clients. After each iteration of j edge
model aggregations, the cloud server aggregates the models
from all edge servers. This implies that communication with the
cloud occurs every 45 local update. w?, (k) represents the local
model parameters after the k-th local update. The progression

of local model parameters wf,(k) can be described as follows:
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B. Sequential Training

In a realistic scenario, we cannot guarantee that individual
datasets obtained from different clients were sampled inde-
pendently from an identical underneath distribution: P(D,) #
P(D,) for every pair of clients « and y. Therefore, we advocate
sequential training [13] to address the non-IID issue by reorga-
nizing the accumulated clients’ data distribution among Client
Set within each edge server. That is, the disjoint Client Set C"*
of each edge server consists of clients observing distinct data;
thereby, each set should approximate the identical underneath
distribution among every « class, ,i.e., U, cce Dn ~ Uy VL.
Through conducting sequential training instead of the con-
ventional FedAvg under each edge server, local models can
intuitively gather information regarding the more significant
number of classes, even in cases where individual clients show
substantial heterogeneity. Previous research hasn’t attempted
integrating HFL with sequential training. The adoption of
HFL addresses the performance constraint experienced by a
single server. In fact, a well-arranged Client Set combined
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with sequential training allows the local model to accumulate
a diverse and balanced data distribution during the training
process, which in turn mitigates the impact of non-IID data.
As a result, it is essential to have a diverse but balanced Client
Set to achieve quick and effective convergence to high accuracy
in the HFL system under non-I1ID conditions. Once all Client
Set include a wide variety of clients, the similarity between Dt
will increase, representing the degree of non-iid issue mitigated
at the edge-cloud layer.

C. Design Objectives

In general, applying Client Set with lower Intra-CS and
higher Inter-CS can accelerate convergence and improve the
accuracy of HFL systems under non-IID situations. A lower
Intra-CS implies greater variety under an edge server. In
contrast, a higher Inter-CS indicates a reduced level of non-
IID across edge servers. However, merely minimizing Intra-CS
may result in a favor to the outlier clients instead. Furthermore,
maximizing Inter-CS between every Client Set consisting of
similar outlier clients would yield incomprehensive global
model training results. Therefore, we design a Virtual Target
by approximating a uniformly distributed dataset for organizing
the Client Set. In fact, this target could infer the performance of
the model obtained through centralized learning, which enables
us to minimize the Intra-CS and maximize the Inter-CS by
maximizing the average similarity between each Client Set and
the Virtual Target (VTS). This indicates that the Client Set
composition must be diverse and balanced, with no preference
given to any particular client; otherwise, the VTS will decrease.

In our target framework, grouping clients with diverse data
distributions can enhance the performance of each global
model and improve its resilience against non-1ID with se-
quential training [13]. Intuitively, increasing the number of
clients assigned to each edge server can improve its resilience
against non-IID challenges. However, this inevitably leads to
longer sequential training durations because training processes
cannot be parallelized with more clients in the same FL
subgroup [14]. Therefore, to mitigate the impact of sequential
training on the effectiveness of FL training, it is challenging to
propose a Client Set arranging strategy that maintains model
performance, communication costs, and non-IID issues jointly.
Accordingly, the design objectives for our proposed system are
as follows:

1) Privacy Conserving: To obtain Client Set, the system
must estimate the client’s distribution while following FL
privacy standards. Consequently, the system must include client
estimation techniques, including estimating the Virtual Target
above, without compromising privacy.

2) Balancing Diversity in Client Set: We intend to establish
a Virtual Target for arranging each Client Set to improve the
accuracy of the global model. The primary goal is to maximize
the model’s accuracy by maximizing the similarity between
each Client Set and the Virtual Target.

3) Limited Number of Clients per Edge: The proposed sys-
tem should sustain its efficacy in addressing non-IID scenarios
and minimize the adverse consequences of sequential training
while arranging fewer clients at an edge.

III. VIRTUAL-TARGETED SEQUENTIAL TRAINING WITH
HIERARCHICAL FEDERATED LEARNING

In this section, we present VIrtual-targeted Sequentlal
Training with Hierarchical Federated Learning (VISIT), a
framework for organizing Client Set to achieve balanced data
distributions while upholding privacy. We aim to accumulate
diverse clients inside the local model of each FL subgroup
through the sequential training phase, mitigating the non-1ID
impact. The objective is to obtain the Client Set that maximizes
the similarity between different Client Set and minimizes it
inside each individual Client Set by maximizing the simi-
larity between Client Set and Virtual Target. The procedure
involves four main steps: estimating clients, defining arranging
indicators, formulating Virtual Target, and arranging Client
Set without accessing client data. First, we design a novel
approach to estimating clients’ data distributions using secure
signature vectors derived from local models tested on public
data. After that, we develop an arranging strategy that harnesses
these signature vectors in conjunction with a Virtual Target to
organize each Client Set systematically.

A. Estimating Clients

The approach employed in [8], [10], [11] is applied in this
study, where locally trained models are utilized to estimate the
distribution of the clients’ data. We employ a pre-training phase
for predicting the distribution of each client’s local dataset,
in which every individual client, denoted as m, generates a
model 6, with an output layer using the softmax function
by conducting training on its respective local dataset for a
specified number of epochs, e, commencing with an identical
random initialization point, wy. We then present an approach
that leverages local models 6,,, n € [N] to devise effective
strategies following the pre-training phase. Such an approach
is formulated based on the predictions obtained from the
individual client’s local model 6,,, on a publicly available

Ne.
dataset Dypyp = |J De, in which D, comprises M, data for

class ¢ € [k], ho(;teld on the server. After conducting tests on
each local model 6,, with D,,;, we calculate the average
prediction score of each local model for every data point
{z;, yi}i]\icl = D. on the corresponding label ¢, which can be

expressed as v, = 7 > wep, Ow, (). After all, we could
describe the n-th client’s signature vector as:
Up = [Un1,---,Unk] €[0,1]°

Given that the predictions of the n-th model are biased into
the greater number of classes observed in D,, [15], it can be
concluded that v,, serves as a suitable secure illustration of D,,.

B. Arranging Indicator

Next, we use the client n’s estimation v,, to construct similar
Client Set among clients with various distributions. To achieve
this goal, assuming we have v; and v;, an indicator ¢(v;, v;)
must be devised for evaluating the degree of similarity between
the two given distribution estimations. In this paper, we adopt
cosine similarity as the metric for measuring signature vec-
tor of the clients’ predictions; however, other indicators are
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Algorithm 1 Arranging Client Set

Input: N, L, k,v®@et
1: function ESTIMATESIGNATURES(N, Dpyp, €)

2. forn<+ 1to N do
3: 0y, < train model on D, for e epochs from wg
4: for c <+ 1 to x do
1
5: Un,c — e ZIEDC Gwn ("E)
6: end for
7: U, 4= [Un,1s- o Unos)
8: end for
9:

return {v,}V_;

10: end function

11: {v, })_, +EstimateSignatures(IN, Dyyp, €)

12: for £ < 1 to L do

13: Cte10)

14:  C* < C* U {i} where i is chosen randomly from [N]

ct 1
150 0% 4 7 Y nect Un
16: for j< 1tok—1do
= . . AL aro,
17: C! QZU{j} where j =argmax; ¢y L(v©, vtareet
18: Cf et
. c* 1 -
19: v < Rﬁﬂ'E:ne(ﬂ,Un
20:  end for
21: end for

22: return {C*}L |

available. Meanwhile, more advanced methodologies, includ-
ing capturing feature representations and cluster assignment,
could further take into consideration [16]. Due to the inherent
privacy-preserving nature of FL, getting the precise amount of
data held by any individual client is forbidden. Therefore, we
advocate an angle-oriented strategy to derive angular separation
between two vectors rather than the magnitude of the vectors.

C. Formulating Virtual Target

To achieve a higher degree of similarity across the balance
Client Set, an overall aim is needed for assigning each set
during the arranging phase. Nevertheless, due to the inability
to gather data from all clients to get comprehensive training
data, we expand the concept of the signature vector from the
client estimation phase by using the same approach to estimate
the overall aim’s signature vector, called Virtual Target v¥479¢,
In brief, our goal is to get a higher prediction score for all labels
inside each set of clients, which means that the overall aim’s
signature vector can be described as v'"9¢ = [1,...,1] €
[1]*. Specifically, maximizing the similarity between a Client
Set and vte"9¢t indicates that this Client Set consists of diverse,
well-balanced clients with data of varying labels. When we set
up such a unified v?*"9¢! as a target for arranging each Client
Set, the similarity between the Client Set will be maximized.

D. Arranging Client Set

Initially, we introduce the accumulated Client Set signature
vector, which consists of clients’ signature vector v,,, and those
clients belong to the Client Set C*. This accumulated signature
vector could be described as vC' = ﬁ > nect Un - Given L
edge servers, each of which can connect with k clients, our
objective is to find members of each edge server that maximize

the similarity between vC" and v?@r9¢t. This entails finding L
Client Set, each containing k clients. In Algorithm 1, we show
how to approximate the maximization problem by utilizing the
signature vector of each client and the Virtual Target. We start
by arranging a client ¢ € [N], which is randomly chosen, to the
current Client Set. Afterward, we could derive the signature
vector of the current Client Set vC" (line 15). Then choose
the next client j that could take the vC* closest to the vtarset
(maximizing VTS), i.e. max;e |yt (0057 vt”get) Ot = Ctuj
(line 17). Repeating the processes above for each Client Set
until there are k clients in the L Client Set while continuously
maximizing ¢ (% Znecf’«u ;j Uns U . The behavior of
putting maximizing VTS first makes it tend to choose less
diverse clients for balance, even if more diverse clients exist.

target

IV. PERFORMANCE EVALUATION
A. Simulation Settings

We conducted the experiments using two widely used
datasets, EMNIST and CIFAR-10. Both datasets are trained
using the convolutional neural network (CNN). We use the
Dirichlet distribution [17], a continuous multivariate probabil-
ity distribution, to test different non-IID scenarios. We evaluate
different non-IID scenarios with o € {1,0.5,0.25,0.1,0.05}.
(As the parameter « decreases, the nodes’ data distributions
become increasingly non-IID). Three distinct model similarities
can be calculated using the arranging indicator ¢ to evaluate
the degree to which the non-IID problem is alleviated. 1)
Intra-CS: The mean similarity between two clients within
each Client Set, denoted as 7 dorer) 2oqijrect Ui v5), 2)
Inter-CS: The mean similarity between each set of clients,
denoted as £ 3", syeppy (09, 09"), and 3) VTS: The mean
similarity between each set of clients and the v**79¢t  de-
noted as 7 > pc () (v, vtaraet) We compare VISIT with the
conventional FedAvg [2], HierCluster [11] and FedSeq [13].
As previously shown, HierCluster and FedSeq didn’t consider
the HFL design. Therefore, in the subsequent simulations,
we apply the same HFL architecture and sequential training
strategy for HierCluster and FedSeq without modifying their
fundamental principles. The key idea of HierCluster involves
the grouping of similar clients together. For HierCluster, hier-
archical clustering was used to split the clientele into a total
of L clusters; inside each Client Set, the clients were arranged
based on their respective cluster membership. For FedSeq, the
authors suggest choosing clients to arrange into the Client
Set based on their dissimilarity to the current Client Set. Two
metrics are adopted to evaluate performance: 1) test accuracy
and 2) Client Set similarity metrics. Considering Client Set
similarity metrics, a lower value of Intra-CS indicates a higher
level of diversity among the clients included in the Client Set.
Conversely, a higher value of Inter-CS suggests a lesser degree
of non-IID issues between the edge servers in the middle tier.
Lastly, a higher value of VTS signifies a more comprehensive
representation of class information for each Client Set. Note
that each result is averaged over ten trials. For the EMNIST
dataset, the chosen target accuracy, denoted as (, is specified
at 60% (¢ = 50% for CIFAR-10).
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Fig. 3: Effect of different number of client arranged to a edge
server on accuracy and similarity (CIFAR-10).

B. Effects of non-1ID Level on Client Set Similarity and Model
Performance

We conduct a comparative analysis of each approach, test-
ing various data distributions within the context of the HFL
framework of {L,k} = {9,4}. About the FedAvg, we per-
form a standard FL configuration, selecting L x k clients for
each round. Fig. 2 and Fig. 4 show that, in various non-
IID situations, VISIT exhibits an improved ability to decrease
the Intra-CS and raise the Inter-CS by maintaining a higher
VTS compared to other methods. The concept of FedSeq
enables it to achieve the lowest level of Intra-CS. However, its
performance in terms of Inter-CS is less effective than VISIT.
On the other hand, HierCluster succeeds in grouping similar
clients within the same Client Set, leading to the highest Intra-
CS. Consequently, this results in a lower Inter-CS. Notably,

and similarity (EMNIST).
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Fig. 5: Effect of different number of client arranged to a edge
server on accuracy and similarity (EMNIST).

when the non-IID situation is severe, HierCluster’s Inter-CS
may be less than FedAvg impacting the VTS. Lastly, FedAvg
does not employ sequential training. As a result, the L x k
clients chosen in each round are treated as L X k Client Set,
each containing only one member. Furthermore, since FedAvg
does not utilize an arbitrary arranging method to determine
the selection of these Client Set, it generally exhibits lower
values for Inter-CS and VTS compared to other approaches. In
contrast, both FedSeq and VISIT obtained high Inter-CS and
VTS, VISIT performed even better than FedSeq, particularly
in CIFAR-10, as demonstrated in Fig. 2(b) and Fig. 4(b). The
reason is that using CIFAR-10, which has only 10 classes,
causes clients to have fewer classes on average, and VISIT is
more likely to select clients with more classes to balance the
Client Set. In contrast, FedSeq will select clients with fewer
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TABLE I: Improvement in Accuracy

Method | non-IID | EMNIST (200 rounds) | CIFAR-10 (300 rounds)
FedAvg 61.851% (1.0x) 50.470% (1.0x)
HierCluster a=01 61.271% (0.991x) 62.749% (1.243x)
FedSeq - 75.888% (1.226x) 67.419% (1.335x)
VISIT 81.650% (1.320x) 71.348% (1.414x)

TABLE II: Rounds to Achieve the Target Accuracy

Method | non-TID [ EMNIST (¢ = 60%) [ CIFAR-10 (¢ = 50%)
FedAvg 132 (1.0x) 284 (1.0x)
HierCluster a=01 140 (1.06x) 107 (0.38x)
FedSeq - 60 (0.45x) 63 (0.22x)
VISIT 32 (0.24x) 51 (0.18x)

classes by choosing the least similar clients. Overall, it can be
indicated with Fig. 2(a) and Fig. 4(a) that the accuracy of the
approaches above fluctuates with the variations in similarities.
As Table I and Table II show, while VISIT mitigates the
non-IID problem as well as the other methods, it pays extra
attention to the balancing of Client Set, thus having Client Set
capture a more complete distribution of clients for converging
faster and improving accuracy. In Fig. 2(c) and Fig. 4(c), Fed-
Seq prioritizes the objective of minimizing Intra-CS, leading to
a relatively smaller impact than the other similarities. Although
VISIT has slightly lower performance than FedSeq in terms of
Intra-CS, it demonstrates an increased level of dominance in
both Inter-CS and VTS. Such result shows that FedSeq tends
to optimize Intra-CS, which triggers additional bias towards
selecting a specific least-similar set of clients, thus sacrificing
Inter-CS without arranging a well-balanced Client Set.

C. Effect of Number of Clients per Edge Server on Client Set
Similarity and Model Performance

We examine different combinations for the capacity of
clients that can be accommodated by each edge server, i.e.,
{L,k} € {{4,9},{6,6},{9,4},{12,3},{18,2}}. Meanwhile,
we set o to 0.05 for every combination. Specifically, the per-
formance of FedAvg remains constant regardless of the value
of k due to using parameters equivalent to {L,k} = {36,1}.
Fig. 3 and Fig. 5 show that when the k value is reduced, VISIT
consistently exhibits superior accuracy compared to other ap-
proaches. In Figs. 3(c) and 5(c), although FedSeq outperforms
other methods in Intra-CS, VISIT’s accuracy still outperforms
FedSeq, indicating that pursuing diversity in each FL subgroup
is insufficient. Besides, the lower accuracy of HierCluster, es-
pecially on EMNIST dataset (with more categories) compared
to FedAvg, is primarily because the richer client distribution
makes the clusters distinguished by hierarchical clustering
more distinct from one another, resulting in each edge server
being more specialized in their particular model. Therefore,
HierCluster yields poorer outcomes on Inter-CS and VTS than
FedAvg, as shown in Figs. 5(b) and 5(d). As for FedSeq, when
k is relatively large, the bias towards a minority of clients
will be eased, and the performance will be comparable to that
of VISIT. However, when k is lower, FedSeq fails to attain
balance by consistently selecting the least similar clients. In
contrast, VISIT can arrange balanced Client Set by approaching
v?eT9¢t g5 the first priority, slightly sacrificing Intra-CS to select
clients with more classes to achieve higher VTS, and wisely
select clients with fewer classes if £ is large enough to gain
diversity.

V. CONCLUSION

In this paper, we propose VlIrtual-targeted Sequentlal
Training with HFL (VISIT) framework to address existing
FL research issues. However, VISIT faces design challenges
such as preserving privacy during distribution estimation and
balancing Client Set diversity without additional communica-
tion costs. Therefore, we introduce Virtual Target Similarity
(VTS) metric to arrange Client Set by maximizing the average
similarity between each Client Set and the Virtual target.
This strategy indicates that the composition of the Client Set
among FL subgroups must be diverse and balanced jointly. The
performance evaluation on EMNIST and CIFAR-10 datasets
shows that VISIT can reduce training rounds by 82% and
improve model accuracy by 41% compared to other state-
of-the-art baselines. Specifically, the results emphasize the
negative effect that unbalanced Client Ser exhibits on the
VTS, which in turn lowers model performance. Instead, VISIT
slightly compromises Intra-CS for higher Inter-CS and VTS
indicates its success in harmonizing the client distribution of
FL subgroups to improve global model performance with non-
IID data. Prioritizing maximum VTS allows VISIT to lessen
non-IID impact under fewer clients per Client Set, which
strikes a balanced tradeoff between model performance and

communication cost.
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