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Abstract—In recent years, mobile edge computing (MEC) has
become one of the most popular applications in the Internet of
Things (IoT). With the help of satellite communications, MEC can
be realized in remote areas. However, when transmitting directly
to satellites, the energy consumption of IoT devices remains a
challenge. This paper studies an unmanned aerial vehicle (UAV)
assisted MEC system in which the UAV and satellite are both
feasible MEC servers providing computation services. We aim to
minimize the total energy consumption among all IoT devices by
jointly determining the offloading decision and UAV’s trajectory
under the constraint of an energy budget. To tackle the problem,
we utilize an existing heuristic algorithm for solving the classic
Orienteering Problem and propose a dynamic programming
algorithm to reduce the hovering cost of the UAV to serve more
IoT devices. Simulation results show that the performance of the
proposed algorithm is better than the baselines.

Index Terms—Unmanned Aerial Vehicle (UAV), Mobile Edge
Computing (MEC), Satellites, Internet of Things (IoT).

I. INTRODUCTION

Over the past few years, there has been a significant increase
in the usage and development of IoT devices, resulting in the
creation of smart environments that necessitate extensive data
processing and analysis [1]. As a result, computing services
are becoming increasingly important in the IoT industry. It
should be noted that 5G and 6G systems have made great
strides recently, which has led to a trend of computing services
moving from the cloud to the edge, enabling real-time data
processing. However, a traditional cellular network may not
be capable of providing ubiquitous coverage and mobile
edge computing (MEC) services to all devices, specifically
in remote areas, due to the high infrastructure cost.

Fortunately, with the advance of wireless communications,
the space-air-ground integrated network (SAGIN) is getting
more attention. It can be seen as a system that combines
satellites, aircraft, and ground nodes to provide seamless
wireless communication coverage. With such properties, the
low earth orbit (LEO) satellite is a potential solution for
providing wireless communications in remote areas where
traditional communication infrastructure is unavailable. LEO
satellites orbit at altitudes between 160 to 2,000 kilometers and
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can offer lower latency and higher bandwidth communication
than geostationary satellites because they are closer to the
Earth [2]. Additionally, IoT devices are usually limited in
power and may not have a convenient way to recharge or
replace batteries; hence, using UAVs in a remote area can also
be an effective way to improve the performance of the MEC
system due to its proximity to the IoT devices.

UAVs can provide better flexibility and mobility than tra-
ditional MEC servers and provide on-demand and targeted
services to IoT devices in various locations, improving the
performance and energy efficiency of the system [3]. The
works in [4] [5] demonstrate how to utilize UAV to address
the latency-aware problem in the UAV-aided MEC network,
which aims to minimize the latency or total delay of all the
users.

A hybrid satellite-terrestrial network utilizing satellites as
MEC servers is an emerging area of research because they pro-
vide comprehensive coverage and seamless communications,
making them well-suited for IoT applications [6]. A satellite
with computing units onboard can serve as a MEC server for
the remote area or as a data relay that forwards computing
data between IoT devices and ground-based MEC servers
[7]. In [6], the authors proposed a computation offloading
scheme where ground users can compute their tasks locally,
at LEO satellites, or on a backhaul cloud server. However, the
transmission energy associated with satellite communications
can be high, affecting performance. Hence, using both UAVs
and satellites in remote areas could be more efficient than
using satellites alone [8].

Most prior research assumes that a UAV hovers in a fixed
location or follows a predetermined path without considering
the UAV’s energy limitations. This paper considers several IoT
devices with computation requirements deployed in a remote
area where a traditional cellular network is unavailable. A
UAV equipped with a MEC server can serve IoT tasks in
UAV flight and hovering time, and an LEO satellite can also
provide MEC services to IoT devices. We want to minimize
the total energy consumption among all the IoT devices while
ensuring that UAV or LEO satellites can adequately execute
all the computation tasks.

However, serving all IoT devices may not be feasible due
to the limited energy budget of the UAV. It is worth noting
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that choosing the served devices can significantly impact the
UAV’s trajectory and vice versa. To solve this problem, we first
mapped it to the Orienteering Problem (OP) [9], an NP-hard
optimization problem, and used a 4-phase heuristic algorithm
[10] to determine the data offloading devices and the UAV’s
trajectory. Secondly, we propose a dynamic programming (DP)
algorithm to optimize the task offloading in the UAV’s flying
and hovering time and reduce the UAV’s energy consumption.
Consequently, the saved energy on the UAV can be utilized to
serve some unvisited IoT devices. Maximizing the number of
IoT devices served by the UAV can result in significant energy
savings for these devices since the UAV is closer to them than
satellites, thereby minimizing the overall energy consumption
of the IoT devices. Our proposed algorithm exhibits the lowest
total energy consumption compared to other approaches based
on the simulation results.

The rest of the paper is organized as follows. Section II
presents our UAV-assisted satellite MEC system model and
the objective of this paper. Then, we describe our proposed
algorithm in Section III. In Section IV, the performance of
the proposed method is evaluated by simulations. Finally, we
conclude our work in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

The UAV-assisted satellite MEC model consists of a large
number of IoT devices with computation requirements, de-
noted as a set of I = {1, 2, ..., I}, and πi = (xi, yi) denotes
the location of device i ∈ I in the 2D coordinate system. The
UAV flies at altitude h over the area following a determined
trajectory with a constant speed v to provide MEC service for
IoT devices. The IoT devices are either served by the UAV
or LEO satellite as a MEC server. The task of the IoT device
i ∈ I is represented as Ti = {di, ci}, where di and ci denote
the data size and required CPU cycle per bit of the IoT device,
respectively. Let ri denote the communication radius of the
IoT device i. The IoT device can offload its task to the UAV as
it enters its communication radius. Let qu(t) , (xu(t), yu(t))
denote the horizontal location of the UAV at time t. The
UAV starts from an initial location π0 = (x0u, y

0
u), flies across

multiple IoT devices, then returns to its initial location (x0u, y
0
u)

at the end of its mission. The UAV’s trajectory is determined
by our algorithm for selecting the IoT devices to visit. If
there are n IoT devices selected for offloading their tasks
to UAV, we relabel the n IoT devices in the trajectory as
{1, 2, ..., n} according to their visiting sequence. The unserved
IoT devices are relabeled as {n+ 1, n+ 2, ..., I}. We present
our system model’s communication and energy consumption
in the following.

1) Communication Model: We assume that line-of-sight
(LoS) links dominate the communication between IoT devices
and UAVs. Let the distance between the IoT device and UAV
at time t be represented as di,u(t). We calculate the data
rate of IoT devices to UAV and satellite links as follows.

The transmission rate between IoT device i and UAV can be
calculated as

Rui (t) = Bu · log2(1 +
Pi,uβ0

di,u(t)2σ2
), (1)

where Bu denotes the bandwidth for the IoT device to UAV
link, Pi,u, β0, and σ2 represent the transmission power from
the IoT device i to UAV, the channel power gain at a
reference distance d = 1m, and the noise power at the UAV
receiver, respectively [11]. In satellite transmission links, the
IoT devices transmit data to the satellite using a line-of-sight
(LoS) connection. We can calculate the channel capacity from
an IoT device to the satellite by

Rs = Bs · log2(1 +
PsGtxGrxc

2

(4πdsfs)2kBTsBs
), (2)

where Bs is the bandwidth between the IoT device and
satellite, Ps represents the transmit power of the device to
the satellite, Gtx and Grx are the transmitter and receiver
antenna gains of the IoT device and satellite, respectively, and
c is the speed of light. fs, ds, kB and Ts denote the carrier
frequency, transmission distance between device and satellite,
Boltzmann’s constant, and the system noise temperature, re-
spectively [12]. Note that the device offloading indicator is a
critical aspect of the system that determines which IoT devices
can be served by the UAV. It can be expressed as a binary
variable oui ∈ {0, 1}, where a value of 1 means that the UAV
serves device i and a value of 0 indicates that the satellite
serves the device.

2) Energy Consumption: Our model’s energy consumption
comprises two parts: (i) the energy consumed by the UAV
and (ii) the energy consumed by the IoT devices. The energy
consumption of the UAV includes flying energy Euf , hovering
energy Euh , and computing energy Euic . The IoT device
includes the energy needed to transmit computation tasks to
the UAV or satellite, i.e., Ei. Based on [13], the overall energy
consumption of the UAV can be represented as

Eut = Euf + Euh +

n∑
i=1

Eu,ic , (3)

where Euf , Euh , and Eu,ic denote UAV’s flying, hovering,
and computing energy consumption for serving IoT device i,
respectively.

For the energy consumption of IoT devices, transmission
energy is the only term considered in our model. The IoT
devices can offload data to the UAV while flying or hovering.
Hence, the offloading time from the IoT device to the UAV
comprises the offloading time when the UAV hovers on tih and
UAV is flying tif . In addition, the offloading time from the
IoT device to the satellite can be calculated as di

Rs
. Therefore,

we can calculate the transmission energy consumption of IoT
devices by

Ei =

{
(tif + tih)Pi,u, if oui = 1,
di
Rs
Ps, if oui = 0.

(4)
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B. Problem Formulation

The main objective of this article is to minimize the total
energy consumption of IoT devices under the constraints of the
limited energy budget of the UAV. By jointly optimizing the
offloading indicator, the UAV’s trajectory, offloading points,
and the UAV’s hovering time, the optimization problem can
be formulated as

P1 : min
Qu,{oui },{psi ,pei},{tih}

I∑
i=1

Ei (5)

s.t.

C1: oui ∈ {0, 1}, ∀i,
C2: Eut ≤ Eub ,
C3: ‖psi − πi‖ ≤ ri, ∀i ∈ I, oui = 1,

C4: ‖pei − πi‖ ≤ ri, ∀i ∈ I, oui = 1,

where Eub is the available energy budget of the UAV, which
can be utilized for MEC service. Constraint C1 represents the
binary variable of the offloading indicator for each IoT device.
Constraint C2 states that the total energy consumption of the
UAV cannot be greater than the energy budget Eub . Constraints
C3 and C4 ensure that the selected offloading start point (psi )
and endpoint (pei ) of IoT device i are located within the
communication radius of the corresponding IoT device.

Our objective problem P1 can be mapped to the NP-hard
Orienteering Problem (OP) by assuming that the MEC service
provided by the UAV is only available when it hovers above
the IoT devices [9]. Hence, we have mapped our objective
problem to the OP solely to determine the UAV’s trajectory
and the devices for data offloading. First, we defined the profit
in the OP as the energy cost of an IoT device that can be saved
by utilizing the UAV as an MEC server and is represented as

Eis =
di
Rs

Ps − tihPi,u, (6)

where tih represents the time required for an IoT device to
complete its offloading only when the UAV hovers above it.
The optimization problem of OP is to determine the offloading
decision for all the IoT devices and find an efficient route to
maximize the total saved energy cost Eis.

III. FLYING AND HOVERING PLANNING DP-BASED
ALGORITHM (FHPDP)

Here, we present a dynamic programming (DP) scheme
to optimize the UAV trajectory’s offloading cost, called the
Flying and Hovering Planning DP-based Algorithm (FHPDP).
First, we use a 4-phase heuristic algorithm proposed in [10] to
solve the OP. The time complexity of this algorithm is O(n3).
This algorithm determines the offloading indicator oui for each
IoT device i and the trajectory of the UAV in polynomial
time. After the 4-phase heuristic algorithm, we will obtain a
trajectory Qu that starts from π0 = (x0u, y

0
u) and visits n IoT

devices that satisfy the energy constraint before returning to π0
at the end. Moreover, the offloading indicator of the n visited
IoT devices will be set to oui = 1, which means that the UAV

will provide MEC service for these devices. Then, we propose
a dynamic programming (DP) algorithm that further optimizes
the offloading time and reduces the overall energy cost of the
UAV. Finally, the saved energy budget can be utilized to serve
some unvisited IoT devices and minimize the overall problem
of energy consumption.

Fig. 1: Illustration of offloading points for IoT device without overlap

The task offloading in Qu is based on the UAV hovering
above IoT devices. However, if the task size is large, the hov-
ering duration of the UAV will be long and consume a lot of
energy. To reduce the hovering time, we can offload the tasks if
the UAV is within the communication range of the IoT devices.
Here, we first consider the communication range of the IoT
device without overlapping with other devices. To determine
the optimal offloading start and end points for device i, we
give several candidate points with distance δr as shown in
the red line segments of Fig. 1. Let the candidate offloading
points on the entry segment be {p1, ..., pni}, and the candidate
offloading points on the exit segment be {q1, ..., qni}, where
ni =

ri
δr

. Note that p1 and q1 are the UAV entry and exit points
for the communication range of the IoT device, respectively.
For example, in Fig. 1, the IoT device i can offload its task
to the UAV from the green point p3, hovering at phi , and
complete the offloading at the yellow point q3 finally.

Assuming offloading starts at pai and ends at qbi , the data
offloaded at the flying period between pai and qbi is calculated
as

dai,bif =

∫ pai (t)+pai,hi (t)

pai (t)

Rui (t)dt+

∫ phi (t)+qhi,bi (t)

phi (t)

Rui (t)dt,

(7)
where pai(t) denotes the time of UAV arriving pai , and
pai,hi(t) denotes the duration for UAV flying from pai to phi ,
phi(t) denotes the time when the UAV reaches the hover point
phi , and qhi,bi(t) denotes the duration for the UAV flying from
phi to qbi . Note that the UAV needs to hover above the device
i at phi for some time if the offloading data size is greater
than the data transmitted during the flying period. Thus, if
dai,bif < di, the UAV needs to hover at phi to satisfy the data
offloading constraint. Then we have

Rui (p
hi(t))tai,bih = di − dai,bif , (8)

where Rui (p
hi(t))tai,bih is the task offloaded while the UAV

hover at phi for a time duration tai,bih . Otherwise, the hover
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Fig. 2: Illustration of offloading candidate points for IoT device with overlap

time for offloading pair (pai , qbi) is 0. Finally, we select
the offloading points (pa

∗
i , qb

∗
i ) with the least hover time as

optimal offloading start and end points for the IoT device i.
Since the data rate at point pj equals to qj , for 1 ≤ j ≤ ni,
we can determine the optimal offloading points (pai , qbi) by
calculating dai,bif in (7) for ai = bi ∈ {1, ..., ni}.

Next, we consider the overlapping communication ranges
of IoT devices, as shown in Fig. 2. We propose a DP scheme
to solve this problem. Assume there are j − i+1 consecutive
overlapping IoT devices, where i and j denote the first and
last indices of IoT devices in an overlapping group. Let Si,j =
ri + rj +

∑j−1
k=i ‖πk − πk+1‖ be the path length from the

entry point of device i to the exit point of device j as the
red line segments shown in Fig. 2, where j = i + 3 in this
example. Let Oi,j = {p1, p2, ..., pni,j} be the set of candidate
points on the path of length Si,j for overlapping IoT device
{i, ..., j}, where ni,j = Si,j/δr is the number of candidate
points. We must determine which candidate points in Oi,j are
within the communication range for each overlap IoT device.
Let Ok be a subset of Oi,j which consists of candidate points
that are within the communication range of IoT device k ∈
{i, ..., j}. Let phk denote the hover point in Ok. Ok can be
constructed as {pck , pck+1, ..., phk , ..., pdk−1, pdk}, where ck
and dk are the first and last indices within the communication
range of IoT device k, respectively. For example, in Fig. 2,
O1 = {p1, ..., p5, ..., p9}, where c1 = 1, h1 = 5, d1 = 9.

Furthermore, a pair of offloading start and end points for
an overlapping IoT device i is defined as (pai , pbi), ∀ai, bi ∈
{ci, ..., hi, ..., di}, where pai and pbi are the offloading start
and end points, respectively. Note that the offloading start point
pai can be after to the hover point phi , and the offloading
end point pbi can be before the hover point phi . Hence, the
offloading process of (pai , pbi) can be classified into three
cases. Thus, the offloaded data at flying period of (pai , pbi)
for the first case is the hover point phi located between pai

and pbi , which is represented as dai,bif and can be calculated
by equation (7). The second and third cases are pai and pbi

before and after phi , respectively. Both cases can be calculated
by

dai,bif =

∫ pai (t)+pai,bi (t)

pai (t)

Rui (t)dt, (9)

where pai,bi(t) represents the time it takes for UAV to fly from
pai to pbi . If dai,bif < di, the hover time tai,bih for (pai , pbi) can

be calculated by the equation (8) when substituting dai,bif into
it. Otherwise, tai,bih = 0. To determine the optimal offloading
points for consecutive overlapping of IoT devices {i, ..., j},
we define the problem as

P2 : min
{(pak ,pbk )}

j∑
k=i

tak,bkh , (10)

s.t.

C1: ak ≤ bk, ∀k ∈ {i, ..., j},
C2: ‖pak − πk‖ ≤ rk, ∀k,
C3: ‖pbk − πk‖ ≤ rk, ∀k.

A valid pair (pai , pbi) has to satisfy constraints C1, C2,
and C3. Constraint C1 represents that the index of the start
point must not be after the end point’s index. Constraints
C2 and C3 state that a valid pair must be within an IoT
device’s communication range. We solve this problem for
each consecutive overlapping group in the UAV’s trajectory to
minimize the overall hover time of the UAV. The problem P2
can be solved by solving a sequence of Bellman equations. Let
MinTk+1(p

ak+1 , pbk+1) be the minimum accumulative hover
time at (pak+1 , pbk+1) for IoT device k + 1, which is the
summation of the hover time from the IoT device i to the
device k + 1. The Bellman equation can be formulated as

MinTk+1(p
ak+1 , pbk+1) (11)

= min
pak ,pbk∈Ok

[MinTk(pak , pbk)] + t
ak+1,bk+1

h ,

∀pak+1 , pbk+1 ∈ Ok+1,

∀ak, bk ∈ {ck, ..., dk} and ak, bk ≤ ak+1,

where i ≤ k ≤ j−1. Initially, the MinTi(pai , pbi) = tai,bih for
the first IoT device i in an overlapped group for all ai, bi ∈
{ci, ..., di} and ai ≤ bi. Besides, the offloading end point of
(pak , pbk) must before the start point of (pak+1 , pbk+1). DP
can solve the Bellman equations, as detailed in Algorithm 1.

Fig. 3: Example of DP stages for overlap IoT devices in Fig. 2

Fig. 3 shows an example of three stages of the DP algorithm
for Fig. 2. We compute the equation (11) for all combinations
of candidate points at each stage. The pairs connected with the
blue arrow between the two stages mean that the offloading
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points of the pair in the previous stage are before the offloading
start point of the pair in the next stage. However, some pairs
in the previous stage cannot connect to the next stage while
solving the equation (11). For example, the pair (p1, p4) in
stage 1 cannot connect to the pair (p3, p3) in stage 2 since the
end point of (p1, p4) is after the start point of (p3, p3). The
DP algorithm will continue until all the j − i + 1 stages are
computed. We choose the optimal solution for the offloading
points in each stage, leading to minimum accumulative hover
time.

In Algorithm 1, steps 1 to 4 calculate the hover time for each
pair of offloading points in Oi,j . In steps 5 to 11, it solves the
equation (11) iteratively, the PrePointk+1(p

ak+1 , pbk+1) in step
9 denotes which pair of offloading points of the IoT device
before k + 1 leads to the minimum MinTk+1(p

ak+1 , pbk+1).
Steps 12 to 13 determine the optimal offloading points and
hover time of the last overlapped IoT device j. Steps 14 to 16
determine the optimal offloading points and a hover time of
IoT devices j− 1 to i according to PrePointk+1(p

a∗k+1 , pb
∗
k+1)

iteratively. The time complexity of Algorithm 1 is O(n · n4i,j)
since there could be at most n IoT devices in an overlapping
group for i = 1 and j = n. Since the number of candidate
points in Oi,j is ni,j , at most n2i,j offloading pairs will be
computed in the DP for each IoT device. When determining
PrePointk+1(p

ak+1 , pbk+1) in step 9 of Algorithm 1, it exam-
ines a maximum of n2i,j pairs among all the candidate pairs
from the previous stage. Thus, the time complexity can be
calculated as O(n · n4i,j).

Algorithm 1 Flying and Hovering Planning DP-based
Algorithm
Input: UAV’s trajectory Qu, Offloading candidate set Oi,j

Output: {(pa
∗
k , pb

∗
k ), tkh}, for i ≤ k ≤ j

1: for k = i to j do
2: for ak = ck to dk do
3: for bk = ak to dk do
4: Compute t

ak,bk
h as in (8)

5: for k = i to j − 1 do
6: for ak+1 = ck+1 to dk+1 do
7: for bk+1 = ak+1 to dk+1 do
8: Compute MinTk+1(p

ak+1 , pbk+1) as (11)
9: Let PrePointk+1(p

ak+1 , pbk+1) = argminpak ,pbk∈Ok

10: [MinTk(p
ak , pbk )]+t

ak+1,bk+1

h ,
11: ∀ak ≤ bk and ak, bk ≤ ak+1

12: Let (pa
∗
j , pb

∗
j ) = argmin

p
aj ,p

bj∈Oj
MinTj(p

aj , pbj ), ∀aj ≤ bj

13: tjh ← t
a∗
j ,b

∗
j

h
14: for k = j − 1 to i do
15: (pa

∗
k , pb

∗
k )← PrePointk+1(p

a∗
k+1 , pb

∗
k+1), tkh ← t

a∗
k,b

∗
k

h

16: return {(pa
∗
k , pb

∗
k ), tkh}, for i ≤ k ≤ j

The following is the last phase of our algorithm. Let
Esu denote the UAV’s energy budget saved by offloading
proceeding at the flying period rather than hovering above
IoT devices. In the last phase, we will utilize Esu to serve the
unvisited IoT devices not included in Qu. Note that the UAV
will follow the original trajectory Qu to serve the unvisited
IoT devices by hovering at their optimal hovering locations

on trajectory Qu. The location in the trajectory closest to
the selected IoT devices will be determined as the optimal
hovering location. Let phi

u denote the optimal hovering location
for an unvisited IoT device on the trajectory Qu. The data rate
for an unvisited IoT device i to offload the task to UAV at phi

u

can be calculated by substituting di,u(t) in (1) with distance
‖phi
u −πi‖, and the hovering time for completion of offloading

is tih = di
Ru

i
. Hence, the hovering energy consumption on UAV

to serve the unvisited IoT device i ∈ M can be calculated
as Ehu,i = ηh · tih, where ηh is the energy consumption rate
of hovering. The unvisited IoT device to be served by UAV
will be determined according to a profit-to-cost ratio defined
as µi = Eis/E

h
u,i, where Eis is defined in (6). Finally, we

can select the unvisited candidate IoT device that satisfied
‖phi
u − πi‖ ≤ ri with the highest µi value to be served by

the UAV greedily. This phase continues until the remaining
energy budget Esu is depleted.

IV. SIMULATIONS

In this Section, we compare the performance of our al-
gorithm with different methods. Our simulation result is the
average of 30 experiments. In our simulations, IoT devices are
randomly deployed in a 500m×500m area. Each IoT device
has a communication radius of [30, 70] meters, and the data
size is in [30, 70] Mb. The UAV is flying with a constant speed
of 10m/s at a fixed altitude of 100 m to serve IoT devices
with a limited energy budget of 75,000 joules. The transmit
power Pi,u from the IoT device to the UAV is in the range of
[0.1, 0.3] watts, corresponding to the communication radius
of the IoT device. The transmit power Ps for IoT devices to
satellite is set to one watt. The bandwidth Bu (IoT to UAV)
and Bs (IoT to satellite) is 10MHz. The noise power σ2 is -
100dBm, and the channel power gain β0 is -80dB [14]. Before
our simulations, it is necessary to establish the offloading point
distance δr for the DP algorithm. Based on the results of our
experiments, the performance when δr = 10m is comparable
to when δr < 10m. However, we noticed a rapid increase in
execution time as δr decreased. Thus, the δr is set at 10m.

We compare our algorithm with four methods: Heuristic-
OP, TSP with Neighborhoods (TSPN), and TSPN-DP. The
Heuristic-OP is the 4-phase heuristic algorithm that solved the
OP, which can be used as a baseline for comparison. TSPN
improves the energy consumption of the UAV based on the
Heuristic-OP. The TSPN is a scheme proposed in [15] using
the CVX tool to solve TSP with neighborhoods. The TSPN
changes the hovering point of the UAV from above the IoT
device to an optimal location within the communication range
of IoT devices to reduce the trajectory distance. The TSPN-DP
algorithm utilizes our proposed DP scheme on the trajectory
obtained from TSPN to reduce the hover time in the offloading
process and save energy on the UAV.

Fig. 4 shows the total energy consumption among all IoT
devices concerning the different numbers of IoT devices, while
the mean data size is set to 50Mb. The proposed FHPDP
algorithm outperformed the baseline by 55% and beat TSPN
by 48% in this experiment. The TSPN has the second-worst
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Fig. 4: Total IoT device energy consump-
tion vs. the number of IoT devices

Fig. 5: Total IoT device energy con-
sumption vs. different data sizes

energy consumption since optimizing the flying distance of
the trajectory will also increase the hover time due to the in-
creasing distance between the hover point and the IoT device.
Hence, the energy budget saved by TSPN can only serve a few
additional IoT devices not included in the trajectory. Applying
our DP scheme to the TSPN trajectory effectively reduces the
UAV’s energy consumption and can serve more IoT devices.
However, the overall energy consumption of IoT devices is
still higher than FHPDP. This is because the shorter the flying
distance, the shorter the time for offloading in the flying
period. Hence, our proposed FHPDP algorithm outperformed
TSPN-DP by 22%. Fig. 5 shows the total energy consumption
among all IoT devices for different mean data sizes. The data
size of IoT devices varies according to uniform distribution
with 5Mb as the standard deviation, and the number of IoT
devices is set to 100 in this experiment. Similar to Fig. 4, the
proposed FHPDP algorithm outperforms the other methods,
and this vantage remains as the data size increases. The energy
consumption of FHPDP is 39% lower than baseline while the
data size is 70Mb.

Fig. 6 shows UAV serves IoT devices concerning the
number of IoT devices. The FHPDP has the highest UAV-
served IoT devices, which is 9% more than TSPN-DP. TSPN-
DP has a shorter flying distance, and the hover point is not
above the IoT device, which increases the hover time. Hence,
as the number of IoT devices increases, FHPDP can save
more energy than other approaches by reducing hover time.
Eventually, the number of UAV-served IoT devices for FHPDP
will also be higher than other algorithms. Fig. 7 illustrates the
fly and hover time of the UAV for the MEC service concerning
different algorithms while the number of IoT devices is 100,
where the red part represents the fly time with transmission
and the yellow part means the fly time without transmission.
The FHPDP has a higher fly transmission time and a lower
hover time than the TSPN-DP. This translates to greater energy
savings for the UAV during the DP process and eventually
serves more IoT devices.

V. CONCLUSION

This paper investigates the energy optimization problem in
a UAV-assisted satellite edge computing system. We map the
issue to the orienteering problem and use a 4-phase heuristic
algorithm to determine the data offloading devices and the
UAV’s trajectory as an initial solution. Next, we proposed
a DP algorithm for overlap and non-overlap IoT devices
that minimizes the offloading hover time by determining the

Fig. 6: Number of IoT devices served
by UAV vs. the number of IoT de-
vices

Fig. 7: Fly and Hover time vs. dif-
ferent algorithms

offloading start and end points at the UAV’s flying period to
save energy of UAV and utilize the saved energy to serve
more unvisited IoT devices. The simulation results show that
our FHPDP algorithm outperforms the other algorithms on the
total energy consumption of IoT devices and the total number
of UAV-served IoT devices.
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