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Abstract—Federated Learning (FL) allows Internet-of-Things
(IoT) devices to train a global model collaboratively and keep their
data locally to address privacy concerns. However, the current FL
framework has three main drawbacks, high communication cost,
single point of failure, and low accuracy on non-independent and
identically distributed (non-IID) data. To this end, we propose a
novel FL framework, IHC-FL, to 1) group devices into clusters
based on communication cost and model distance, 2) distribute
model aggregation over cluster heads, and 3) construct a topology
to guide cluster heads to exchange model updates. To the best of
our knowledge, this paper makes the first attempt to jointly op-
timize grouping user devices into clusters and exchanging model
updates among cluster heads to enhance model performance. The
numeric results show that IHC-FL can reduce 38%∼89% of total
communication cost over time than other heuristics with non-IID
data on FMNIST and CIFAR-10 to achieve the target accuracy.

Index Terms—Federated learning, clustering, communication
topology, machine-learned advice

I. INTRODUCTION

Widespread Internet-of-Things (IoT) devices generate mas-
sive amounts of data (e.g., sound, video, text) in our daily lives.
Thus, Machine Learning (ML) has been widely used to analyze
user data for many applications [1]. In traditional, application
servers collect user data and train a global model, but such a
centralized approach may violate data privacy. To address this
issue, Federated Learning (FL) has emerged to collaboratively
train the global model by distributed devices with on-device
training data and become a promising paradigm [2]. However,
FL has the following drawbacks. 1) Communication cost is
considerable due to many model updates exchanged between
the central server and a massive number of user devices. 2)
FL suffers from the single point of failure. The entire training
process will stop if the server fails since the model aggregation
only occurs on the server. 3) Devices collect and generate non-
independent and identically distributed (non-IID) data across
the network. The non-IID data distributions may severely
degrade model accuracy and postpone training convergence [1].

To alleviate communication cost of FL, [3] proposed struc-
tured updates (i.e., learning an update from a restricted space
that can be parameterized using a smaller number of variables)
and sketch updates (i.e., compressing the model before sending
it to the server) to reduce up-link communication cost. Then,
[4] proposed a distillation mechanism that exchanges model
outputs instead of model updates to reduce communication cost
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with a cost of performance degradation. Moreover, Decentral-
ized Learning (DL) further makes user nodes exchange model
updates with their neighbors directly [5]. DL does not need
a central parameter server, and thus it avoids communication
cost from the central server and overcomes the single point of
failure. Nevertheless, the test accuracy of the above methods
may drop severely with typical non-IID data of user devices.

To solve the problem caused by non-IID data in FL, many
researchers proposed hierarchical and clustering mechanisms
that encourage users with similar data distributions or model
parameters to exchange model updates with each other [6]–
[9]. [6] set up K global models in advance and made each user
select the best global model among them (i.e., the global model
that generates the lowest loss on its local data). [7] proposed
Clustered Federated Learning (CFL), which iteratively divides
user nodes into two clusters based on their cosine similarities
between model updates. Then, the user nodes of each cluster
train a model for their local data collaboratively to mitigate
the effect of non-IID data. Unlike CFL, Hierarchical Federated
Learning (HFL) is a two-level FL, having only one clustering
step to group users based on model distance to reduce cluster-
ing cost [8]. The nodes in each cluster train a cluster model
via FL, and then all nodes’ models are aggregated by a central
server periodically. [9] took a regrouping mechanism in FL
to iteratively update the members of clusters based on model
distance and loss. However, the above methods require long-
term additional computation on the permanent parameter server
and deteriorate the effect of the single point of failure.

Inspired by DL and CFL, we propose a novel framework
of FL with Information-exchangeable Hierarchical Clustering
(IHC-FL) to solve the mentioned drawbacks of conventional
FL. To the best of our knowledge, IHC-FL is the first one
to leverage both DL and CFL to avoid the hot spot of the
communication and computation and mitigate the effect of
non-IID data. To this end, IHC-FL groups user nodes into
clusters (i.e., training groups), and each cluster has a cluster
head, similar to CFL. Meanwhile, it exploits the concept of
DL to establish a communication topology connecting cluster
heads. Thus, for each epoch, each cluster head coordinates its
members to collaboratively train a model by FL and exchanges
model updates with its neighboring cluster heads based on the
constructed communication topology. The proposed promising
framework combines the advantages of DL and CFL but
also raises three research challenges as follows. 1) Effect of
the number of clusters on communication cost. Intuitively,
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grouping closer user nodes into a cluster can lead to more
clusters and a higher data transfer rate within a cluster, re-
ducing intra-cluster communication cost. However, inter-cluster
communication cost (i.e., between cluster heads) may increase
significantly as the number of clusters inclines. Thus, to
minimize total communication cost (including intra- and inter-
cluster communication costs), it has to choose the number of
clusters carefully. 2) Effect of the number of clusters on model
performance. Grouping user nodes with similar model updates
together can lead to a high performance of each cluster’s model
for their local data [7]. Besides, the more clusters, the smaller
the cluster size, the faster the convergence speed. However, it
may make the training data insufficient in a cluster and generate
a less robust model. Thus, to ease the effect of non-IID data,
it has to fine-tune the number of clusters. 3) Communication
topology construction for cluster heads. Selecting the cluster
heads with similar models for each cluster head as neighbors
to exchange model updates can further mitigate the effect
of non-IID data and improve model performance for local
data of their members. However, excessive distant neighbors
selected for each cluster head will cause significant inter-cluster
communication cost. Thus, to alleviate the effect of non-IID
data and minimize total communication cost, it has to balance
model distance and communication cost.

To further solve the above challenges in IHC-FL, we present
a new optimization problem. More specifically, given 1) a
set of user nodes and 2) the network information, the op-
timization problem aims to group user nodes into clusters,
select cluster heads, and construct a communication topology
for the cluster heads to minimize total communication cost
while optimizing model performance. However, simultaneously
making the above decisions to minimize total communication
cost is complicated and intractable. To overcome the difficulty,
we rewrite the original optimization problem to a novel opti-
mization problem termed Cluster Formation (CF) that adopts
an oracle trained to predict communication cost for exchanging
the models among any given set of selected cluster heads,
inspired by the idea of value function in reinforcement learning.
To further train the oracle, we introduce another optimization
problem, Topology Construction (TC), to construct a connected
communication topology with the minimum communication
cost for any given set of selected cluster heads while bounding
model distance between any adjacent nodes in the communi-
cation topology. The solutions generated by TC will be used
as samples to train the oracle later. Last, we design an efficient
framework to alternately solve CF and TC and train the oracle
until the solution converges. Afterward, IHC-FL will follow
the solution to train user models, aggregate local updates on
cluster heads, and exchange models among cluster heads.

With the framework’s assistance, IHC-FL takes the ad-
vantages of DL and CFL to address the three challenges
above. Overall, IHC-FL can 1) alleviate communication cost
by selecting a suitable number of clusters, 2) distribute model
aggregation over cluster heads to mitigate the effect of the
single point of failure, and 3) balance model distances between
user nodes and their cluster heads and between neighboring
clusters on the communication topology to avoid performance

degradation with non-IID data distribution. Finally, extensive
simulation results manifest that IHC-FL can outperform the
state-of-the-art frameworks by up to 63.221%.

II. OPTIMIZATION PROBLEM FOR IHC-FL

This section first provides an overview of IHC-FL. Subse-
quently, we observe the effect of the number of cluster heads
on total communication cost (including intra- and inter-cluster
communication costs) in IHC-FL. Then, we conduct experi-
ments to show the effect of the number of cluster heads on
the model accuracy in IHC-FL, where user devices have non-
IID data. After that, we formulate the optimization problem to
solve the three challenges mentioned in the introduction section
according to the observed effects.

A. The Overview of IHC-FL

IHC-FL is run over an IoT system that consists of a platform
and user devices. IHC-FL has two main stages. In the first
stage, the platform collects the effect of user data on model
training. To this end, it sends the initial model to all participant
nodes, and each node train the model with its local data for a
few epochs (not yet converged) and uploads the model updates
back to the platform. Afterward, the platform calculates model
distance1 and communication cost (e.g., transmission time)
between any two nodes to group the nodes into several clusters.
It determines the communication topology based on model
distance and communication cost to minimize total commu-
nication cost (including intra- and inter-cluster communication
costs) while accelerating later training. Note that the platform
no longer needs to monitor the training after the first stage.

In the second stage, the training process starts. Each cluster
head sends its model to its members. Each cluster member
receives the model, performs training using its local data, and
uploads the model updates to its cluster head. Each cluster head
then aggregates the received models and sends the aggregated
model to its neighboring cluster heads in the communication
topology. Afterward, each cluster head aggregates the received
models as its new model. All cluster heads will repeat the
above operations in the second stage until convergence.

To optimize the training process in the second stage, we will
observe the effects of the number of clusters and formulate a
novel optimization problem for IHC-FL in the following.

B. Information-exchangeable Hierarchical Clustering

In FL, the model parameter server performs aggregation and
sends back and forth the model parameters. Communication
cost will be severe for the central parameter server. Thus,
splitting the parameter server into multiple cluster heads is
intuitive to remedy the single point of failure and distribute
communication cost over cluster heads. Then, we cannot help
wondering whether communication cost can also be reduced
significantly by doing so. To this end, we observe the effects
of splitting the parameter center into one, two, four, and eight
cluster heads for 12 participant nodes, as shown in Fig. 1.
The solid and dashed edges denote the intra- and inter-cluster
communications, respectively. Assume that the communication

1In this paper, we use cosine distance [10] to represent model distance.
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Fig. 1. Effect of the number of clusters on total communication cost.

cost between every two nodes is the Euclidean distance, and
the communication graph between cluster heads adopts a ring,
which is common for DL [11]. The total communication cost
is 6.08+7.07+4.0+3.0+3.61+7.21+10.63+10.3+6.08+
6.71+9.49 = 74.18 for the one-cluster scenario, 3.0+3.61+
6.08+6.71+9.49+2.24+3.16+8.54+9.06+6.0+4.0 = 61.89
for the two-cluster scenario, 2.24 + 3.16 + 4.0 + 3.0 + 3.61 +
6.0 + 3.61 + 3.16 + 5.0 + 3.61 + 2.0 + 6.08 = 45.47 for the
four-cluster scenario, and 2.24 + 2.24 + 7.28 + 3.16 + 2.24 +
6.71 + 3.61 + 2.0 + 6.71 + 3.0 + 2.0 + 5.0 = 46.19 for the
eight-cluster scenario. This shows that choosing the number of
cluster heads can also reduce communication cost significantly
(i.e., from 74.18 to 45.47). However, excessive cluster heads
may increase communication cost conversely.

C. Effect of Number of Clusters on Model Performance

To observe the effect of the number of clusters on model
performance, we split the data into non-IID user data based on
symmetric Dirichlet distribution with a parameter α according
to [12]. To be general, we set α to different levels, ranging
from 0.3 to 1.0, and conducted ten trials for each level to
get the average result. Then, the K-means algorithm [13] was
adopted here to obtain K cluster heads and the total number
of nodes in each cluster based on model distance, where K
ranged from 1 to 16. Afterward, the K cluster heads formed
a ring communication topology with minimum total model
distance. For each training epoch, every cluster head aggregates
the models from its cluster members and then exchanges the
aggregated model with its neighboring cluster heads.

Fig. 2 shows the best accuracy occurs when the cluster
head number is around four. The more cluster heads, the
smaller the maximum model distance between neighboring
cluster heads (denoted by γ). An increase in cluster heads can
benefit model performance until reaching four. After that, the

Fig. 2. Effect of number of clusters
on accuracy, loss, and γ using the
FMNIST dataset.

Fig. 3. Effect of ratio γ/ε on accu-
racy using non-IID data distributions
of CIFAR-10 dataset.

cluster members in each cluster become insufficient, causing a
decrease in the accuracy of each cluster.

D. System Model and Problem Formulation

Following Section II-A, the platform has to jointly consider
model distance and communication cost to group the nodes
into several clusters to minimize total communication cost
(including intra- and inter-cluster communication costs) while
speeding up convergence. To this end, the optimization problem
is formulated as Integer Linear Programming (ILP) as follows.

min.
∑

n∈V

∑

a∈V

zn,a · pn,a +
∑

i∈V

∑

j∈V

xi,j · pi,j (1a)

s. t. zn,a ≤ ya, ∀n, a ∈ V (1b)
∑

a∈v

zn,a = 1, ∀n ∈ V (1c)

δn,a · zn,a ≤ ε, ∀n, a ∈ V (1d)

∆i,j · xi,j ≤ γ, ∀i, j ∈ V (1e)

xi,j = xj,i, ∀i, j ∈ V (1f)

xi,j ≤ yi, ∀i, j ∈ V (1g)
∑

j∈V

xi,j = D · yi, ∀i ∈ V (1h)

xi,j ≥ fd
i,j , ∀i, j, d ∈ V \ {r} (1i)

xr,i + zr,i ≥ fd
r,i, ∀i, d ∈ V \ {r} (1j)

∑

i∈V

fd
j,i −

∑

i∈V

fd
i,j = 0, ∀j, d ∈ V \ {r}, j &= d (1k)

∑

i∈V

fd
d,i −

∑

i∈V

fd
i,d = −yd, ∀d ∈ V \ {r} (1l)

∑

i∈V

fd
r,i −

∑

i∈V

fd
i,r = yd, ∀d ∈ V \ {r} (1m)

In the above ILP, binary decision variable ya ∈ {0, 1}
represents whether node a is selected as a cluster head. That
is, a is a cluster head if and only if ya = 1. In addition, we
make binary decision variable zn,a ∈ {0, 1} indicate whether
node n is connected to cluster head node a. In other words, n
is connected to a that we select as a cluster head if and only
if zn,a = 1. Moreover, binary decision variable xi,j ∈ {0, 1}
denotes whether node i and node j are both cluster heads and
they exchange model parameters with each other.

The objective (1a) is to minimize total communication
cost, including 1) communication cost between each cluster
head and its members (i.e., intra-cluster communication cost)
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and 2) communication cost between cluster heads (i.e., inter-
cluster communication cost), where parameter pi,j denotes the
communication cost from node i to node j.

Constraint (1b) states that node n selects node a as its cluster
head only if a is a cluster head, and constraint (1c) indicates
that each node must join one cluster. Let δi,j be the model
distance between node i and node j before model aggregation,
while ∆i,j represents the model distance between cluster heads
i and j after model aggregation. Note that the platform can
calculate model distance between two participant nodes based
on their models trained for a few epochs. Constraint (1d)
prevents node n from joining the cluster of head a if their
models are dissimilar (i.e., their model difference is greater
than a given threshold ε) before model aggregation. In contrast,
constraint (1e) bounds the model difference between cluster
heads i and j within a given threshold γ if they determine to
exchange their cluster model parameters on the communication
graph. Subsequently, constraint (1f) ensures that if cluster head
i sends its cluster model to cluster head j, then j will send j’s
cluster model to i to enable DL among the cluster heads.

Constraints (1f) and (1g) jointly guarantee that head i sends
the cluster model parameters to head j only if node i and node
j are both selected as cluster heads. Therefore, the selected
cluster heads will form a communication graph, where each
link on such a graph is between two cluster heads. Constraint
(1h) make every selected cluster head has the same degree in
the communication graph to speed the DL convergence among
cluster heads according to [11]. If yi = 1, then the degree of
node i will be limited to D by constraint (1h), where D ∈
Z+ is user-defined parameter (no less than two) to make the
communication graph regular. D is often set to 2 or 4, leading
to a ring or a 4-regular graph, respectively [11]. Otherwise,
the degree will be zero due to constraint (1g). Constraint (1h)
make each cluster head exchange model update with exactly
D cluster heads to ensure the connectivity among headers.

Afterward, constraints (1i), (1j), (1k), (1l), and (1m) guar-
antee that the communication graph is connected by finding
a virtual flow from an arbitrarily selected source r to each
cluster head. Note that the virtual flow is not an actual flow in
the network but is only used to ensure any two cluster heads
in the formed communication graph are connected. That is,
the two cluster heads will share their model parameters with
each other later. Specifically, r is a node randomly pre-selected
from V , and it does not have to be a cluster head. After that,
let binary decision variable fd

i,j denote whether the flow from
r to a cluster head d visits the link between nodes i and j. By
doing so, constraints (1i) and (1j) can ensure that the virtual
flows will pass only cluster heads in the communication graph.
Finally, flow-like constraints (1k), (1l), and (1m) construct a
virtual flow from r to each selected cluster head d through
only the cluster heads in the induced communication graph.

The problem is NP-hard since the well-known NP-Complete
problem, the Hamiltonian cycle problem (HCP) [14], can be
reduced to our problem. Also, it does not has any polynomial-
time approximation algorithm with any constant approximation
ratio [15]. Otherwise, such an algorithm can know whether
there is a Hamiltonian cycle for any instance of the HCP in

polynomial time. The proof is detailed in Appendix A of [16].
To solve the problem efficiently, in the following section, we

introduce how to leverage machine-learned advice to find the
appropriate set of cluster heads to overcome the three IHC-FL’s
challenges mentioned in the introduction section.

III. REFORMULATION AND CLUSTERING FOR IHC-FL

In this section, we first reformulate the problem to select
the cluster heads with machine-learned advice and formulate a
sub-problem to construct a communication graph for any given
selected cluster heads. After that, we develop a framework to
solve the above two problems alternately until convergence.
Finally, we discuss how to select ε and γ with experiments.

A. Problem Reformulation with Machine-Learned Advice

Intuitively, solving problem (1) is time-consuming since it
has numerous variables and constraints. Instead, we reformu-
late the problem as a novel Mixed-Integer Linear Programming
(MILP) as shown in problem (3) termed CF using a Neural Net-
work (NN) parameterized by Θ (i.e., weights www and biases bbb)
to estimate the inter-cluster communication cost (i.e., machine-
learned advice). In this way, problem (1) can be narrowed down
to identify a suitable set of cluster heads without explicitly
finding an exact communication graph for the selected cluster
heads. To this end, the sub-problem, minimizing inter-cluster
communication cost for any given cluster heads, is separated
from problem (1), termed TC, and shown in problem (4), while
the NN is trained to act as an oracle, predicting the inter-cluster
communication cost. With the reformulation, the running time
of solving problem (1) can be reduced by 99.99%. Due to the
page limit, it is shown in Table III of Appendix B in [16].

Specifically, the NN consists of an input layer, a fully-
connected hidden layer, and a scalar output. The input layer
includes the values of all decision variables ya (i.e., whether
node a is selected as a cluster head), while the hidden layer
has 16 neurons. To simulate the behavior of a hidden layer in a
neuron network with Rectified Linear Unit (ReLU) activation
functions in a MILP formulation, we impose the constraints in
the following definition from [17].

Definition 1. Let I and H denote the input of hidden layer
and the set of neurons in the hidden layer, respectively. The
MILP formulation for simulating a hidden layer in a neural
network with ReLU activation functions is defined as follows:

y
(h) ≥ w(h)w(h)w(h) · xxx + b(h), ∀h ∈ H, (2a)

y
(h) ≤ w(h)w(h)w(h) · xxx + b(h) +M · (1− z

(h)), ∀h ∈ H, (2b)

y
(h) ≤ M · z

(h), ∀h ∈ H, (2c)

(xxx , y
(h), z

(h)) ∈ R
|I|
≥0 × R≥0 × {0, 1}, ∀h ∈ H, (2d)

where 1) xxx is the input vector of hidden layer, 2) y(h) is the

ReLU’s output of neuron h ∈ H , 3) w (h)w (h)
w (h) is the weight vector

of neuron h ∈ H , 4) b(h) is the bias of the neuron h ∈ H , 5)
z(h) indicates whether the ReLU’s output of neuron h ∈ H is
positive, and 6) M is a sufficiently large constant. Therefore,
if w(h)w(h)w(h) · xxx + b(h) > 0, then z(h) will be one, and y(h) will

be squeezed to w(h)w(h)w(h) · xxx + b(h) by constraints (2a) and (2b).
Otherwise, constraints (2c) and (2d) will make y(h) = 0.
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Thus, we derive the reformulated problem (CF) by replacing
constraints (1e)−(1m) with constraints (3e)−(3g), where the
latter constraints are used to simulate an NN to predict inter-
cluster communication cost, as follows:

min.
∑

n∈V

∑

a∈V

zn,a · pn,a + C (3a)

s. t. zn,a ≤ ya, ∀n, a ∈ V (3b)
∑

a∈v

zn,a = 1, ∀n ∈ V (3c)

δn,a · zn,a ≤ ε, ∀n, a ∈ V (3d)

C =
∑

h∈H

wout
(h) · y

(h) + bout (3e)

y
(h) ≥

∑

a∈V

w(h)
a · ya + b(h), ∀h ∈ H (3f)

y
(h) ≤

∑

a∈V

w(h)
a · ya + b(h) +M · (1− z(h)),

∀h ∈ H (3g)

y
(h) ≤ M · z

(h), ∀h ∈ H (3h)

The objective (3a) aims to minimize total communication
cost, where decision variable C is the estimated inter-cluster
communication cost predicted by the NN. The NN with
weights www and biases bbb is trained by the sub-problem TC in
(4), which will be illustrated in detail later in Section III-B.
Following Definition 1, constraints (3e)−(3h) simulate the
NN’s structure with ReLU activation functions. Constraint (3e)
calculates the NN’s output (i.e., inter-cluster communication
cost), while constraints (3f)−(3h) represent the hidden layers.

Subsequently, for any given set of cluster heads denoted by
V (i.e., the set of nodes with ya = 1 in problem (3)), the sub-
problem TC separated from problem (1) is defined as follows:

min.
∑

i∈V

∑

j∈V

xi,j · pi,j (4a)

s. t. ∆i,j · xi,j ≤ γ, ∀i, j ∈ V (4b)

xi,j = xj,i, ∀i, j ∈ V (4c)
∑

j∈V

xi,j = D, ∀i ∈ V (4d)

xi,j ≥ fd
i,j , ∀i, j, d ∈ V \ {r}, (4e)

∑

i∈V

fd
j,i −

∑

i∈V

fd
i,j = 0, ∀j, d ∈ V \ {r}, j &= d, (4f)

∑

i∈V

fd
d,i −

∑

i∈V

fd
i,d = −1, ∀d ∈ V \ {r}, (4g)

∑

i∈V

fd
r,i −

∑

i∈V

fd
i,r = 1, ∀d ∈ V \ {r}, (4h)

It is not difficult to observe that most constraints in problem
(4) are identical to those in problem (1). The underlying reason
is that problem (4) is extracted from problem (1). Besides, it is
worth noting that problem (4) does not consider the nodes that
are not selected as cluster heads, and constraint (4d) is derived
directly from (1h). Moreover, variable yd is not needed for
constraints (4g) and (4h).

B. Clustering Framework for IHC-FL

With (3) and (4), we develop a clustering framework to select
the suitable set of clusters and build the communication graph.
It includes three phases: 1) Oracle Initialization Phase (OIP), 2)
Cluster Formation Phase (CFP), and 3) Topology Construction
Phase (TCP). OIP initializes an NN as an oracle to learn and
predict the result of problem (4) later. CFP uses an MILP
solver to solve problem (3) with the simulated NN inside to
obtain suitable cluster heads and their members. Given the set
of cluster heads selected by CFP, TCP uses an MILP solver to
solve problem (4) to derive inter-cluster communication cost.
Then, it randomly draws samples from the previous solutions
and trains the NN to predict inter-cluster communication cost
of any set of selected cluster heads. Overall, the clustering
framework first executes OIP. After that, CFP and TCP are
called alternately to repeatedly select a set of cluster heads,
calculate the communication graph and its cost, and train the
NN until the set of cluster heads converges.

Recall that in Section II-A, IHC-FL will start the second
stage after the set of cluster heads is determined. In the
following, we observe the trade-off between intra- and inter-
cluster model distance and their effects on model accuracy.
Then, we discuss how to tune the model distance thresholds ε
and γ based on the observation to achieve high performance.

C. Trade-off between intra- and inter-cluster model distances

To avoid insufficient or excessive clusters that will degrade
model performance significantly, we set ε with the formula
ε = maxi∈V

(

minj∈V \{i} δi,j
)

. Then, to get the best setting
for ε and γ, we distributed the CIFAR-10 dataset to 32
nodes using symmetric Dirichlet distribution (i.e., non-IID) and
conducted experiments to observe the effect of the ratio γ

ε
on

model accuracy. Fig. 3 shows the best setting of γ
ε

for model
accuracy is 1.8, also works effectively on the FMNIST dataset.

IV. EVALUATION

A. Simulation Settings

1) Training Settings: We perform experiments using two
well-known datasets: FMNIST (70,000 samples) and CIFAR-
10 (60,000 samples). For both datasets, we adopt a convolu-
tional neural network (CNN) with two 5×5 layers. The 1st and
2st layers have six and sixteen output channels, respectively.
The two layers are both followed by a 2×2 max pooling.
Following [12], we use the symmetric Dirichlet distribution
with a parameter α to randomly distribute samples to nodes.
The smaller the parameter α, the more non-IID the nodes’
data distributions. Each node employs 70% of its assigned
data for training and 30% for testing and aims to acquire a
model optimized for its local test data distribution. For the
simulations, we set D = 2 for IHC-FL according to [11].

2) Communication Cost: Nodes with higher spatial similar-
ities usually have more similar data distributions and smaller
communication cost [18]. Thus, we randomly generate com-
munication cost from 1 to 1.5 seconds for simulating the time
required by exchanging model updates between nodes with
similar data, and 1 to 2 seconds between dissimilar others.
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Fig. 4. Effect of different levels of
non-IID data on the 32-device accu-
racy of FMNIST dataset.

Fig. 5. Effect of different levels of
non-IID data on the 32-device accu-
racy for CIFAR-10 dataset.

TABLE I
IMPROVEMENT IN ACCURACY FOR 32 DEVICES

Method non-IID FMNIST (25 rounds) CIFAR-10 (80 rounds)
FedAvg

α = 0.3

74.798% (1.0x) 27.283% (1.0x)
HFL 76.738% (1.026x) 26.117% (0.957x)
CFL 82.925% (1.109x) 42.915% (1.573x)

IHC-FL 85.416% (1.142x) 53.714% (1.969x)

3) Performance metrics: Two metrics are adopted to evalu-
ate performance: 1) test accuracy and 2) communication cost.
Note that each result is averaged over ten trials. The target
accuracy ζ is set to 80% in FMNIST and 37% in CIFAR-10.

B. Effects of Non-IID Level and Number of Nodes

We compare IHC-FL with Federated Averaging (FedAvg)
[2], CFL [7], and HFL [8] with different data distribution
and the number of devices. Figs. 4 and 5 show that IHC-FL
handles non-IID data distributions better than other methods
and outperforms other methods in most cases and increases the
accuracy by 0.803% to 63.221% in average. Table I further
demonstrates IHC-FL improves accuracy significantly in the
network with 32 nodes. More experiment results are provided
in Figs. 8 and 9 and Table IV in Appendix B in [16].

C. Communication Cost and Number of Training Rounds

We compare IHC-FL with FedAvg, CFL, HFL on total
communication cost and the number of training rounds required
to achieve the target accuracy with different datasets. Table II
show total communication cost, the number of training rounds
to achieve the target accuracy, and total communication cost
over time for each method with α = 0.5 and 32 nodes and
the CIFAR-10 dataset. Then, Figs. 6 and 7 further show the
effect of the non-IID level and number of nodes on total
communication cost over time for different methods. Overall,
IHC-FL can reduce the number of rounds by 3.9%–72.0% and
total communication cost over time by 38.4%–89.3%, while
achieving the target accuracy. More training results are given
in Figs. 10 and 11 and Table V in Appendix B in [16].

V. CONCLUSION

In this paper, we proposed a new clustering and hierarchical
FL framework termed IHC-FL to tackle three drawbacks of the
FL framework. First, IHC-FL significantly decreases communi-
cation cost by selecting a suitable number of clusters. Second,
it performs model aggregation on cluster heads to remedy the
single point of failure. Third, it mitigates the effect of the non-
IID data on convergence. The paper indicates that a carefully-
selected set of clusters for clients with a subtly-built topology

Fig. 6. Effect of different levels of
non-IID data on 32-device total cost
over time for the FMNIST dataset.

Fig. 7. Effect of different levels of
non-IID data on 32-device total cost
over time for the CIFAR-10 dataset.

TABLE II
# ROUNDS TO ACHIEVE THE TARGET ACCURACY AND TOTAL COMM. COST

OVER TIME WHEN 32 DEVICES AND α = 0.5 ON CIFAR-10 DATASET.

Method Total comm. cost (s)
# rounds to achieve
the target acc.

Total comm. cost
over time (s)

FedAvg 42 (1.0x) 65 (1.0x) 2730 (1.0x)
HFL 107 (2.55x) 78 (1.2x) 8346 (3.06x)
CFL 71 (1.69x) 49 (0.75x) 3479 (1.27x)

IHC-FL 43 (1.02x) 20 (0.31x) 860 (0.32x)

for cluster heads can help speed up model training substantially
in non-IID environment. Finally, IHC-FL can reduce 3.9%–
72.0% training rounds and 38.4%–89.3% communication cost
compared with the other methods.

REFERENCES

[1] T. Li et al., “Federated learning: Challenges, methods, and future
directions,” IEEE Signal Process. Mag., vol. 37, no. 3, pp. 50–60, 2020.

[2] B. McMahan et al., “Communication-efficient learning of deep networks
from decentralized data,” in Proc. AISTATS, 2017.

[3] J. Konečný et al., “Federated learning: Strategies for improving commu-
nication efficiency,” in Proc. NeurIPS Workshop on PMPML, 2016.

[4] H. Seo et al., “Federated knowledge distillation,” Machine Learning and
Wireless Communications, pp. 457–485, 2022.
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