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Abstract—This paper investigates using multi-connectivity
(MC) with mixed numerology to leverage the benefits of both
techniques. The scenario we consider involves users connecting
to multiple base stations simultaneously, with each user being
served by the desired numerology set. The goal is to maximize the
utility function, considering network throughput and satisfaction
rate. To achieve this goal, we present an integer non-linear
programming (INLP) problem and propose a multi-connectivity
resource allocation (MCRA) heuristic algorithm. Moreover, a
Speed-up MCRA (SMCRA) algorithm is proposed to reduce
the time complexity of the MCRA algorithm while maintaining
similar performance. Simulation results demonstrate that the
proposed algorithms outperform existing methods in terms of both
user satisfaction and network throughput.

Index Terms—5G communications, multi-connectivity, mixed
numerology, resource allocation

I. INTRODUCTION

With the increasing number of mobile devices in the future,
the 5G network is expected to provide great amounts of spec-
trum resources to satisfy growing demands. The highly dense
deployment of small cells has been regarded as a promising
technique to support the macro base station (BS) under the
pressure of large traffic loading. So, user equipment (UE) is
more likely to be under the multiple coverages of base stations
(BSs). Moreover, there are more and more UEs that can support
multi-connectivity (MC), which enables them to leverage more
spectrum resources and use applications with stringent quality
of service (QoS) compared to LTE.

Many works have MC optimization criteria, such as trans-
mission reliability [1], [2], network throughput [3]–[5], fairness
[6], [7], resource allocation [8]–[10], and satisfaction rate [11].
Recent research [12] shows that sending duplicated packets
from different access points (APs) will improve channel gains
and enhance reliability. Moreover, UEs aggregating various
radio resources from several BSs will leverage more spectrum
resources than single connectivity to enhance the throughput.
Thus, the authors [3] consider the 5G mmWave network with
a beamforming technique, and the users can access multiple
links to improve the throughput. [4] allows the users to switch
between single and MC and aims to maximize the use of
idle wireless resources. The authors propose a threshold-based
algorithm to decide the connection of BSs. However, the above
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studies do not consider UEs’ fairness or satisfaction rate. Thus
UEs with lousy channel conditions are likely to be allocated
fewer resources.

[6] proposes a centralized Proportional Fair (PF) scheduling
scheme for Dual Connectivity (DC) in heterogeneous networks
(HetNets). The PF-DC scheme outperforms the standard PF
scheme and improves proportional fairness. Three heuristic
association algorithms for DC are proposed to maximize PF
utility. With the proposed PF scheme, DC achieves significant
gains on PF utility over single connectivity and performs almost
as well as the optimal PF scheme. On the other hand, the
authors in [11] further consider the uplink transmission with
network throughput and satisfaction rate by maximizing the
utility with the sigmoid function, which incorporates the user
demand into network utility. The problem is then solved by the
convex optimization method.

According to the 3GPP standard, 5G networks can deal
with a wide variety of services, such as enhanced Mobile
Broadband (eMBB), Ultra-Reliable Low Latency Communi-
cation (URLLC), and massive Machine Type Communication
(mMTC). Hence, the conventional uniform resource block (RB)
structure is unsuitable for these services in 5G. To accommo-
date these services, 3GPP provides mixed-numerology [13],
enabling users to enjoy various services. Optimization for
resource allocation with mixed numerology and heterogeneous
QoS requirements has been studied in [8], [14], [15]. In
[14], the authors consider two types of users, latency-aware
and latency-tolerant users, and formulate a resource allocation
problem with throughput optimization. In [15], the authors
optimize the resource and numerology allocation to achieve
maximum throughput. They formulated the problem as a max-
min knapsack problem and solved it by linear programming.
The study in [8] aims to minimize total transmission power
by joint allocating power and resource block. It divides the
different numerologies into multiple bandwidth parts (BWPs)
with a guard band between them to reduce the inter-numerology
interference (INI) [16] in the system.

However, the studies mentioned above have not considered
the scenario of MC association with different numerology
resource allocations. Hence, in this work, we consider that each
UE has different applications with various QoS requirements
that must be served by a suitable numerology set and can be
associated with multiple BSs. We aim to find the solution that
maximizes the utility function considering their throughput and979-8-3503-1090-0/23/$31.00 ©2023 IEEE
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satisfaction rate. To the best of our knowledge, we are the
first to introduce mixed numerology to MC in 5G HetNets,
considering the satisfaction rate and throughput. The simulation
results show that our proposed MCRA and SMCRA algorithms
have a better throughput and satisfaction rate than the Oppor-
tunistic Scheduling Algorithm (OSA) proposed in [17].

The remainder of this paper is organized as follows. Section
II introduces the network model and formulates the objective
problem. Section III describes the proposed MCRA and SM-
CRA algorithms. Section IV presents the simulation results,
and Section V concludes the paper.

II. NETWORK MODEL AND PROBLEM FORMULATION

A. Mixed Numerology Frame Structure

Unlike the 4G LTE system, the 5G network can accommo-
date various services, so it adopts flexible numerology to meet
user requirements. Therefore, we define the set of numerologies
as N . Let µ ∈ N be the numerology index, corresponding to
the bandwidth of an RB 15 × 2µ kHz and the time interval
1/2µ ms in the 5G networks. In general, µ varies from 0
to 4 [13]. The available bandwidth is partitioned into many
BWPs, and each BWP is configured to specific numerology
to serve the applications. We put the guard band between two
adjacent BWPs to avoid the rise of INI. For each numerology
µ in BS j, the BWP is divided into Fµ

j sub-bands in the
frequency domain, and in the time domain is partitioned into
T µ
j slots. So, the number of RBs in BS j with numerology

µ is given by Kµ
j = Fµ

j × T
µ
j . We denote the set of RBs in

BS j with numerology µ by Bµ
j and let RB bµk ∈ Bµ

j , where
k = {1, 2, ...,Kµ

j }.
The notations and descriptions are summarized in Table I

for easy reference and better understanding.

TABLE I: List of Notations

Notation Description
C Set of base stations
U Set of users
B Set of RBs
N Set of numerologies
µ SCS configuration
l Maximum links the user can connect to

xi,j 1, if user i connects to BS j; 0, otherwise
ρµ,ki,j 1, if RB bµ,k on BS j is assigned to user i;

0, otherwise
αi Maximum number of RBs user i can take
βµ
i Maximum number of RBs user i with numerology µ can take

Bµ
j Set of RBs in BS j with numerology µ

Ni Candidate set of numerologies for user i
Mi Set of RBs that assigned to user i
Mµ

i Set of RBs that assigned to user i with numerology µ
Rµ

i Total data rate of user i with numerology µ

B. System Model

We consider the downlink of two-tier HetNet with one macro
BS at the center and several micro BSs and denote the set
of BSs by C = {0, 1, 2, ...,M}, where j = 0 represents the
macro BS and j = {1, ...,M} are micro BSs. The macro BS
and micro BSs use different frequency resources, so there is no

interference between the two different tiers of BSs. Here, the
set of total RBs in the network is denoted as B = {1, ..., Nb},
where Nb =

∑
j∈C

∑
µ∈N Kµ

j . The set of user equipments
(UEs) is denoted by U = {1, 2, ..., N} and all of them have
been equipped with multiple antennas l, which enable them to
connect to at most l BSs simultaneously. The scenario of our
two-tier HetNet is shown in Fig. 1.

In addition, users can use multiple services simultaneously
, and each service has different latency requirements that must
be met. Therefore, each service is mapped to one specific
numerology according to different latency requirements to
ensure its QoS. In this way, we denote the numerology set
Ni ⊆ N to represent the desired numerologies used for each
user i. Lastly, due to the limitation of user capabilities [18],
each user can only use at most αi RBs to serve its applications
and have at most βµ

i RBs used in numerology µ. Based on our
system model, we define a binary variable xi,j as an association
indicator. If xi,j = 1 indicates the UE i being associated with
BS j; otherwise xi,j = 0. On the other hand, we denote another
binary variable ρµ,ki,j to specify whether the user i occupies the
RB bµk on BS j. If ρµ,ki,j = 1 means the RB bµk on BS j being
used by user i; otherwise ρµ,ki,j = 0.

Fig. 1. Illustration of our two-tier HetNet

C. Channel Model

In our scenario, there are two types of BSs: macro and
microcells. We present the Reference Symbol Received Power
(RSRP) and Signal to Interference plus Noise Ratio (SINR)
with different BSs. The received RSRP at the user i served by
the macro cell on RB bµk ∈ Bµ

0 is given by [19]

rsrpµ,ki,0 = P0 − Lµ,k
i,0 , (1)

where P0 denotes the power of RB sent from the macro cell.
The Lµ,k

i,0 = 11.4 + 28 log (disti,0) + 23 log (freq0) + σµ,k
i,0

denotes the path loss from macro cell of RB bµk to user i. The
disti,0 denotes the distance between user i and the macro cell.
The freq0 is the center of the macro cell’s frequency. And
the σµ,k

i,0 denotes the standard deviation describing large-scale
signal fluctuations.

The received SINR at user i served by the macro cell on RB
bµk ∈ Bµ

0 is given by

γµ,k
i,0 =

rsrpµ,ki,0

N0
, (2)
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where N0 is the Additive White Gaussian Noise (AWGN).
Similar to (1), the received RSRP at user i served by the
microcell j on RB bµk ∈ Bµ

j , for j ̸= 0, is expressed as

rsrpµ,ki,j = Pj − Lµ,k
i,j , (3)

where Lµ,k
i,j = 31.4 + 20 log (disti,j) + 21 log (freqj) + σµ,k

i,j

denotes the path loss from micro cell j to user i. The received
SINR at user i served by the micro cell j on RB bµk ∈ Bµ

j , for
j ̸= 0 is given by

γµ,k
i,j =

rsrpµ,ki,j∑
j′∈C\{0,j} rsrp

µ,k

i,j′
+N0

. (4)

According to Shannon’s theorem, the data rates received at
user i served by the BS on RB bµk can be expressed by

rµ,ki,j = Wµ log (1 + γµ,k
i,j )Tµ, (5)

where Wµ and Tµ denote RB bandwidth and time duration
with numerology µ, respectively. Hence, the total data rate that
the numerology µ in user i can achieve is

Rµ
i =

∑
j∈C

∑
k∈Bµ

j

xi,jρ
µ,k
i,j r

µ,k
i,j . (6)

D. Problem Formulation

Here, we present an objective function to improve the
network throughput and maintain the user satisfaction rate.
We formulate the resource allocation problem to maximize the
network utility, incorporating the user demand and throughput
into the sigmoid function. We use the sigmoid function as:

S(Rµ
i , η

µ
i , δ

µ
i ) =

1

1 + e−ηµ
i (Rµ

i −δµi )
, (7)

where δµi is the traffic requested rate for user i with numerology
µ. The ηµi is a parameter for balancing throughput and satisfac-
tion rate. If ηµi is large, it is more like distributing resources to
all users, increasing the satisfaction rate. On the other hand,
if ηµi is small, it tends to allocate resources to users with
higher data rates, reducing the satisfaction rate. According to
our experiments, ηµi was set at 10/δµi to balance the throughput
and satisfaction rate. Hence, our problem formulation is given
as follows:

max
(x,ρ)

∑
i∈U

∑
µ∈N

S(Rµ
i , η

µ
i , δ

µ
i ). (8)∑

j∈C

xi,j ≤ l (9)∑
i∈U

ρµ,ki,j ≤ 1, ∀j ∈ C,∀µ ∈ N (10)

|Mi| ≤ αi,∀i ∈ U (11)

Mi ⊆ ∪j∈C ∪k∈Ni
Bk
j ,∀i ∈ U (12)

|Mµ
i | ≤ βµ

i ,∀i ∈ U (13)

Mµ
i ⊆ ∪j∈CBµ

j ,∀i ∈ U (14)
Objective (8) considers the throughput and satisfaction rate

with the numerology among the users. Constraint (9) forces a

user to connect l BSs simultaneously at most. Constraint (10)
ensures that more than one user cannot access RB bµk on BS
j. Constraint (11) guarantees that the number of RBs allocated
to user i cannot exceed the value αi, and Mi is the set of RBs
assigned to user i. Constraint (12) ensures that the set of RBs
assigned to user i must be in the candidate numerologies of
user i. Like (11), constraint (13) guarantees that the number of
RBs with numerology µ allocated to user i cannot exceed the
value βµ

i , and Mµ
i denotes the set of RBs with numerology µ

assigned to user i. Constraint (14) ensures that the set of RBs
with numerology µ allocated to user i must be in the set of
numerology µ RBs.

Since ρµ,ki,j also has the information of connectivity xi,j , we
can rewrite the equation (6) as

Rµ
i =

∑
j∈C

∑
k∈Bµ

j

ρµ,ki,j r
µ,k
i,j , (15)

where xi,j is removed from equation (6). Hence, our objective
function can also rewrite as

max
(ρ)

∑
i∈U

∑
µ∈N

S(Rµ
i , η

µ
i , δ

µ
i ). (16)

The problem is then reduced to a resource allocation problem
because determining the ρµ,ki,j also decides the connectivity xij .
So, we can focus on resource allocation by assigning the RBs
to users rather than jointly considering the users’ association
and resource allocation. However, the objective function needs
to decide the binary variable ρ and maximize the logarithm of
users’ data rate, which is non-linear. The objective function (16)
is an integer non-linear programming (INLP) problem that is
NP-hard. We propose a heuristic algorithm to solve the problem
in the next section.

III. MC RESOURCE ALLOCATION (MCRA) ALGORITHM

This section describes the proposed two-step MCRA algo-
rithm as the solution to the utility mentioned above maxi-
mization problem considering throughput and satisfaction rate.
Because the resource allocation problem between users and
RBs can be seen as a bipartite graph matching. So, the
first step of MCRA is the matching-based resource allocation
algorithm, which aims to maximize the network throughput.
After obtaining the matching game result, an iterative greedy
algorithm is used to improve the utility function.

A. Matching Game (MG) Algorithm

In the first step, we use the framework of college admissions
games, also known as the many-to-one matching game. A
college admissions game is used to maximize the network
throughput. There are three components in this game: 1) the
set of users U acting as colleges has the fixed admission quota
corresponding to constraint (11), 2) the set of RBs B acting
as students, and 3) preference relations for the users and RBs
allowing them to build preferences over one another.

Each user (RB) defines its preferred RBs (users) in a
matching game. Two sets of players in a matching game are
users i ∈ U and RBs b ∈ B. Let the preference relation be
denoted as ≻. The expression b ≻i b

′
implies that user i prefers
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Algorithm 1 Many-to-One Matching Game Algorithm

Input:
Data rate table D[1..N ][1..Nb] and RSRP table
S[1..N ][1..Nb]

Output:
Matching table T [1..Nb]

1: Initial: A[1..N ] = ∅, M [1..N ] = ∅, T [1..Nb] = −1
2: Build user preference list pi and RB preference list pb

based on the tables D with (17) and table S with (18),
respectively.

3: while any T [b] = -1 and pb is not empty do
4: Store each unmatched RB in list A[i] if the first

element in pb is user i and then remove the user
i from pb.

5: for i = 1 to N do
6: User i matches most αi preferred RBs in A[i] ∪

M [i] by pi under constraints (9), (11), (12), (13).
7: Recalculate the data rate of each RB by (5).
8: Sets T [b] = i if user i matches RB b; otherwise,

T [b] = -1, ∀b ∈ A[i] ∪M [i].
9: Updates the matched RBs in list M [i].

10: end for
11: end while

to take RB b rather than RB b
′
. A similar expression i ≻b i

′

implies that RB b prefers to serve the user i rather than user i
′
.

Let pi be the preference list of user i, and pb be the preference
list of RB b. In the preference list pi of user i, the preference
relation can be expressed as

b ≻i b
′
⇐⇒ rib > rib′ , (17)

where rib (rib′ ) is the data rate of user i with RB b (b
′
).

Equation (17) indicates that user i prefers RB b to b
′

as rib
is greater than rib′ . Since MG aims to maximize the total
throughput among users, we use the data rate of RB as a
preference relation for users. Similar to (17), the RBs also
determine their preference for users. In the preference list pb
of RB b, the preference relation can be expressed as

i ≻b i
′
⇐⇒ rsrpib > rsrpi′b, (18)

where rsrpib (rsrpi′b) is the RSRP of user i (i
′
) with RB

b. Equation (18) indicates that RB b prefers user i to i
′

as
the rsrpib is greater than rsrpi′b. This is because we tend to
associate the users close to the BSs.

The pseudo-code of our matching game algorithm is
given in Algorithm 1. The input tables D[1..N ][1..Nb] and
S[1..N ][1..Nb] are the input of data rate and RSRP between
users and RBs, respectively. We define the list A[i] to store
the RBs b that want to match user i and the list M [i] to keep
the RBs that already match user i. The output of the matching
table T [1..Nb] records each of the Nb RBs serving one of the
N users. Each table entry T [1..Nb] is initially set to -1 as
empty. In line 2, we sort the preference list pi for each user i
and pb for each RB b based on the preferences (17) and (18),

respectively. The time complexity of sorting the preference lists
is O(NNblog(Nb) +NbNlog(N)) = O(NNblog(NNb)).

In line 4, if there is any unmatched RB b with the preferred
users in pb, RB b will try to match the most preferred user i
in pb. This time complexity is O(Nb) since there are Nb RBs.
We save the RB b in list A[i], and the user i will be removed
from pb to prevent RB b from matching user i again. In line
6, the users will select the most αi (constraint (11)) preferred
RBs by comparing their preferences in the list of A[i] ∪M [i]
with the order of pi under constraints (9), (12), and (13). Note
that user i may prefer the RBs in A[i] to those in M [i] because
strong RSRP (RB to a user) does not guarantee a high data rate
due to the interference of the RBs used in other RBs with the
same frequency. The data rate must be recalculated by equation
(5) according to the current matching result (line 7). The time
complexity of line 6 is O(Nb) since there are at most Nb RBs
to be compared by each user. In line 8, we update the matching
table T [b] to i if RB b matches user i; otherwise, we set it to -1.
In line 9, we update the list M [i] for each user i with the newly
matched RBs. The algorithm will terminate when all RBs are
matched, or the preference list of unmatched RB is empty.

Since the RBs will be matched in constant times, our
time complexity in lines 3-9 is O(Nb + Nb) = O(Nb). The
total MG time complexity is O(NNblog(NNb) + Nb) =
O(NNblog(NNb)). Our MG algorithm only considers the total
throughput. However, objective (16) wants to maximize the
utility considering the throughput and satisfaction rate. So, in
the following subsection, we will propose the Iterative Greedy
algorithm to maximize the network utility based on the result
of the MG algorithm.

B. Iterative Greedy (IG) Algorithm

Here, we introduce the Iterative Greedy (IG) algorithm
to enhance (16) by considering the satisfaction rate. After
executing the MG, each RB will belong to one of the users and
obtain a network utility NU by equation (16). The main idea
of the IG algorithm is to iteratively explore different resource
allocations by moving each resource block (RB) to different
users and evaluating the new network utility after the move.
The IG considers all possible RB-user assignments and selects
the assignment with the largest network utility improvement,
subject to the given constraints. Assume the RB i moves to
user j can produce the largest network utility NU ′ for all RBs
in B and users in U, and if NU

′
- NU > threshold ϵ, we will

move the RB i to the user j. The IG algorithm will repeat the
above procedure until the utility improvement is smaller than
the threshold ϵ. The IG algorithm is described as follows.

Let U(b, k) denote the network utility if moving an RB b
from its original assigned user to a new user k. Note that the
RB b and user k must satisfy the constraints (9), (11), (12),
and (13). Let (b∗, k∗) = argmaxb∈B,k∈U U(b, k). Then b∗ is
the RB index, and k∗ is the user index, which can produce
the largest network utility if we move RB b∗ to user k∗. The
time complexity to find b∗ and k∗ is O(NNb) because we
need to check Nb RBs with N users. Assume RB b∗ originally
belonged to user j. Let NU

′
= U(b∗, k∗). In each round, if
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NU
′
-NU > ϵ, we move the RB b∗ from user j to k∗. If the

numerology of RB b∗ is µ, we update the data rate of Rµ
j and

Rµ
k∗ corresponding to equation (6) and set NU = NU

′
. The

above steps will repeat until the utility enhancement is less
than the threshold ϵ. To ensure the efficiency of MCRA, we
limit the maximum number of rounds to Nb. Thus, the time
complexity of MCRA is O(NNb

2).

C. Speed-Up MC Resource Allocation (SMCRA) Algorithm

In this subsection, we introduce the SMCRA algorithm to
reduce the time complexity of IG in the MCRA algorithm.
Let RBµ denote the RB with numerology µ and UTµ

i de-
note the utility of user i with numerology µ. Let UTmin =
minµ∈N ,i∈U UTµ

i and umin be the user with the UTmin. The
main idea of the algorithm is that if the numerology of the
UTmin is µ, we take an RBµ with the least data rate from
some users and allocate the RBµ to umin. In this way, we can
enhance the network utility of the system by improving the
UTmin for fairness or satisfaction rate.

To efficiently retrieve the resource blocks with the lowest
data rate for numerology µ̂ in each user, we construct a min-
heap Hµ

i for each user i with numerology µ. The root of Hµ
i

is the least data rate of RBµ in user i, and the corresponding
RB is denoted as rbµi . We also maintain a min-heap U for
the utility of each user i with its numerology µ. The root of
U is UTmin and the corresponding user and numerology of
UTmin are umin and µ̂, respectively. Our goal is to remove
some RBs from some users to umin to improve the fairness or
satisfaction rate. However, we will also decrease the users’ data
rate sacrificing their RBs with the numerology µ̂. To reduce
the decreased data rate of the sacrificed user, we only consider
sacrificing the RB with the minimum data rate rbµ̂i , ∀i ∈ U.

Let Utility(rbµ̂i , umin) denote the network utility if moves
rbµ̂i from user i to user umin. Note that users umin and
i must satisfy the constraints (9), (11), (12), and (13).
Let rbµ̂i∗ = argmaxi∈U Utility(rbµ̂i , umin). Let NU∗ =
Utility(rbµ̂i∗ , umin). If NU∗ - NU > 0, we extract the rbµ̂i∗
from Hµ̂

i∗ and insert it to Hµ̂
umin

for the movement of RB rbµ̂i∗
from user i∗ to user umin. Also, we will increase the data rate
of Rµ̂

umin
and decrease the data rate of Rµ̂

i∗ . Then, the utility
of UT µ̂

umin
and UT µ̂

i∗ in U will update accordingly. Note that
if NU∗ - NU ≤ 0, we will extract the UTmin from U because
there is no RB rbµ̂i , ∀i ∈ U, to enhance the network utility by
increasing the data rate of Rµ̂

umin
. The iteration will stop when

the U is empty.
The pseudo-code of the SMCRA algorithm is given in

Algorithm 2. Line 1 initiates the algorithm by constructing min-
heaps U , and Hµ

i for each user i and its numerology µ. Line
3 calculates the network utility NU by equation (7). Line 4
initialize NU∗ = 0 and rbµ̂i∗ is set to −1 as a sentinel value
in line 5. The user with the minimum utility, umin, along with
its associated numerology, µ̂, is obtained from the root of U in
line 6. In line 9, we get the least data rate of resource block
rbµ̂i with the numerology µ̂ in user i. Lines 7-16 encompass a
loop that iterates through each user i in the set U. Within this

Algorithm 2 Speed-Up MC Resource Allocation Algorithm

Input:
Data rate table D[1..N ][1..Nb]

1: Construct min-heap of users’ application utility U and min-
heap of RBs based on data rate for each users application
{{Hµ

i }Ni=1}2µ=0

2: while U ̸= ∅ do
3: NU ←

∑N
i=1

∑2
µ=0 S(R

µ
i , η

µ
i , δ

µ
i )

4: NU∗ ← 0
5: rbµ̂i∗ ← −1
6: (,umin, µ̂)← U .getMin()
7: for i ∈ U do
8: if Hµ̂

i = ∅ then continue
9: (,rb

µ̂
i ) ← H

µ̂
i .getMin()

10: if do Utility(rbµ̂i , umin) violates the con-
straints (9), (11), (12) and (13) then continue

11: NU
′ ← Utility(rbµ̂i , umin)

12: if NU
′
> NU∗ then

13: NU∗ ← NU
′

14: rbµ̂i∗ ← rbµ̂i
15: end if
16: end for
17: if NU∗ −NU > 0 then
18: Hµ̂

i∗ .extract()
19: Hµ̂

umin
.insert(D[umin][rb

µ̂
i∗ ], rb

µ̂
i∗ )

20: \\ update Rµ̂
umin

, reorder the new UT µ̂
umin

in U
21: Rµ̂

umin
← (Rµ̂

umin
+D[umin][rb

µ̂
i∗ ])

22: U .extract()
23: U .insert(UT µ̂

umin
, umin, µ̂)

24: \\ update Rµ̂
i∗ and reorder the new UT µ̂

i∗ in U
25: Rµ̂

i∗ ← (Rµ̂
i∗ −D[i∗][rbµ̂i∗ ])

26: U .decreaseKey(UT µ̂
i∗ , i∗, µ̂)

27: else
28: U .extract()
29: end if
30: end while

loop, we evaluate whether a specific RB assignment is feasible
and whether it enhances the overall utility.

Line 18 removes the resource block with numerology µ̂,
which has the least data rate, from user i∗. This resource block
is assigned to user umin with line 19. Line 21 updates the total
data rate of user umin with numerology µ̂. Line 22 removes
the root from heap U corresponding to the outdated utility
value of umin with numerology µ̂. A newly updated utility
of user umin with numerology µ̂ is inserted into the heap U
in line 23. Line 25 updates the total data rate of user i∗ with
numerology µ̂. Finally, line 26 decreases the utility of user i∗

with numerology µ̂ in the heap U . Conversely, if the new
network utility is smaller than the original utility, compared
in line 12, we remove the root of heap U in line 28. The
algorithm iteratively executes the while loops until U becomes
empty. The number of iterations is close to O(Nb). So, the time
complexity of SMCRA is O(NNblog(NNb)+Nb(N+logN))
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= O(NNblog(NNb)).

IV. SIMULATION RESULTS

A. Simulation Setting

In our simulations, the map area is 1000 m × 1000 m. A
macro BS is located at the center of the map, and six micro
BSs are located in three clusters, as shown in Fig. 1. Two-
thirds of the users are distributed in the three clusters, and
the rest are randomly distributed in the macro cell coverage.
Table II shows the simulation parameters. Our experiments
compare the proposed algorithms MCRA and SMCRA to the
candidate algorithm OSA [17] and the greedy algorithm. The
OSA allocates the RBs to users by greedily picking up the
best association strategy with users and RBs under the network
constraints in each iteration. Hence, the time complexity of
OSA is O(NNb

2), the same as the MCRA. The greedy
algorithm assigns the RBs to users with the data rate demand
ratio (rµ,ki,j /Rµ

i ) from high to low. If a user is satisfied, it will
not assign more RBs to the user. So, it aims to satisfy the
users as more as possible. The time complexity of the greedy
algorithm is O(NNblogNNb), the same as the SMCRA.

TABLE II: Simulation Parameters

Parameter Value
Number of Macro BS 1
Macro BS transmit power (P0) 43 dBm
Micro BS transmit power 30 dBm
Macro BS transmit frequency (freq0) 2 GHz
Micro BS transmit frequency 6 GHz
Noise power (N0) -174 dBm/Hz
Macro BS bandwidth 40 MHz
Micro BS bandwidth 20 MHz
Scheduling time 1 msec
Maximum connectivity l 3
Threshold ϵ 10−4

Maximum number of RBs for user i (αi) [10, 20]
Maximum number of RBs for user i with
numerology µ (βµ

i )
[10, 12]

Demand of user user i with numerology µ (δµi ) [3, 8] Mbps
Number of RBs for mix numerology in 1 sub-
frame duration in Macro BS

1 × 72 RBs for µ = 0,
2 × 36 RBs for µ = 1,
4× 18 RBs for µ = 2

Number of RBs for mix numerology in 1 sub-
frame duration in Micro BS

1 × 36 RBs for µ = 0,
2 × 18 RBs for µ = 1,
4× 9 RBs for µ = 2

B. Varying Number of UEs

1) Total throughput: The total throughput with various
numbers of users is shown in Fig. 2(a). The total throughput
is calculated as

∑N
i=1

∑
µ∈Ni

Rµ
i . In Fig. 2(a), as the number

of UEs grows, the total throughput becomes higher because
more users are close to BSs, which gives rise to more data
rates in RBs. Besides, our MCRA outperforms the OSA with
an increasing number of users. The performance of SMCRA
is lower than MCRA since SMCRA has fewer choices than
MCRA when moving RBs to improve the utility. However, it
has lower time complexity achieving comparable performance
to OSA. The greedy algorithm achieves the lowest throughput
since it aims to satisfy the request of users. Thus, more RBs
may be assigned to unsatisfied users far from the BSs, causing
a drop in throughput when the number of users is small.

(a) (b)

Fig. 2. Network performance versus the number of users in our network
scenario (a) total throughput (b) satisfaction rate

2) Satisfaction rate: Fig. 2(b) shows the satisfaction rate
over the different numbers of users. The satisfaction rate among
users can be calculated by

∑N
i=1

∑
µ∈Ni

eµi /n, where eµi is
a binary variable that indicates the request from user i with
numerology µ is satisfied or not. n =

∑
i∈U |Ni| indicates the

total number of requests with different numerologies in the
system. In Fig. 2(b), our MCRA and SMCRA outperform the
OSA with a 10% satisfaction rate as the number of users grows.
The SMCRA achieves the highest satisfaction rate since it
enhances utility by first serving the user with minimum utility.
So, the SMCRA serves the unsatisfied user first. On the other
hand, the MCRA improves the utility by picking up the best
result among all RBs movements. This may induce MCRA
to maintain higher throughput but a lower user satisfaction
rate. Although the satisfaction rate of the greedy algorithm is
comparable to our MCRA, it has the lowest network throughput
since more RBs are assigned to unsatisfied users far from BSs.

C. Varying Number of BSs

1) Total throughput: In the subsequent simulations, we
maintain a fixed user count of 150 while varying the number of
base stations from 4 to 8. We observe the resulting changes in
throughput and satisfaction rate. Note that the BSs are evenly
distributed among three clusters whenever possible. Otherwise,
any remaining BSs will be randomly assigned to any clusters.

(a) (b)

Fig. 3. Network performance versus the number of BSs in our network scenario
(a) total throughput (b) satisfaction rate

The total throughput with various BSs is evaluated in Fig
3(a). The throughput increases as BSs grow because more
RBs can serve users. Besides, the MCRA outperforms the

2023 IEEE Global Communications Conference: Mobile and Wireless Networks

1202
Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on June 17,2024 at 16:13:18 UTC from IEEE Xplore.  Restrictions apply. 



OSA in our network scenario, and the SMCRA uses less time
complexity to achieve a close result with OSA. The greedy
algorithm achieves the lowest throughput since it assigns more
RBs than other algorithms to users far from BSs.

2) Satisfaction rate: Fig. 3(b) shows the satisfaction rate
over different numbers of BSs. As the number of BSs grows,
the satisfaction rate increases since more RBs can be allocated
to users. Our MCRA and SMCRA have better satisfaction
rates than OSA. Since the OSA only greedily finds the best
association for the objective function in each iteration, it may
not have a better association for throughput, which causes a
lower satisfaction rate. Although the satisfaction rate of the
greedy algorithm is comparable to MCRA, it has the lowest
network throughput.

D. Execution Time

In this subsection, we show the execution time of our algo-
rithms and baselines in Fig. 4(a) and Fig. 4(b). Our experiments
run on a desktop with Intel Core i5-9400 and RAM with 16 GB.
In Fig. 4(a), we run the algorithms with one macro station and
six micro stations, and the Nb = 864. We show the execution
time over different numbers of users. When the number of users
grows, they spend more time achieving their goals. The MCRA
and OSA spend more time than SMCRA and Greedy since the
time complexity of MCRA and OSA is O(NNb

2), which is
larger than the SMCRA and Greedy with the time complexity
O(NNblogNNb). The SMCRA and Greedy algorithms spend
less than one second to achieve their goals. In Fig. 4(b), we
run the algorithms with 150 users and show the execution time
over different numbers of BSs. The simulation result is similar
to Fig. 4(a).

(a) (b)

Fig. 4. Execution time versus (a) the number of users (b) the number of BSs.

V. CONCLUSION

This paper investigates the resource allocation problem in
two-tier HetNets with MC and mixed-numerology. Our objec-
tive focuses on the network throughput and satisfaction rate of
users. We propose an MCRA algorithm to solve the resource
allocation problem. Besides, an SMCRA algorithm is proposed
to reduce the time complexity of the MCRA algorithm with
comparable performance. Simulation results show that the
performance of the MCRA algorithm is better than the OSA
and greedy algorithms. In addition, the proposed SMCRA
algorithm has comparable performance on network throughput
compared to the baselines but has a better satisfaction rate and
lower time complexity than the baselines.
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