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Abstract—Recently, mobile edge computing (MEC) assisted
unmanned aerial vehicles (UAVs) have brought a revolution to
the existing precision agriculture (PA). The target UAVs can
execute various PA tasks with different heterogeneous resource
requirements on the farm. However, due to the stringent service
deadline of PA tasks and the battery limitation of UAVs, one
of the promising solutions is to offload those computation
tasks to MEC servers jointly. This paper explores the MEC-
assisted task offloading problem with multi-UAVs under different
deadline constraints in uncertain real-world environments. The
diverse requirements of PA tasks, the heterogeneous network
status, and the dynamic loading of MEC edge servers make the
offloading decision an NP-hard problem. Therefore, we propose
a reinforcement learning (RL)-based task offloading approach,
BANDIT-SCH, to minimize total MEC system costs to achieve
online task dispatching and scheduling in uncertain environments
without further global information. The experiment results show
that the performance of BANDIT-SCH is approximate to the
upper bound strategy, which can foresee all edge servers’ detailed
status.

Index Terms—Mobile Edge Computing, Reinforcement Learn-
ing, UAVs, Precision Agriculture.

I. INTRODUCTION

Recently, severe climate change and global population
growth explosively, are threatening the production of crops and
food dramatically. Precision agriculture (PA) is an emerging
technology combining the Internet of Things (IoT), remote
sensing, and automated robotic farming to help farmers im-
prove agricultural production intelligently. Unmanned aerial
vehicles (UAVs) play a critical role in PA nowadays. The
sensors on the UAV periodically send information to the 5G
back-end for analyzing valuable farm output. Similarly, UAVs
collect real-time information that provides actionable intelli-
gence to farmers. By taking advantage of low deployment
cost and flexible mobility, UAVs can support different PA
applications ranging from crop monitoring to spraying [1].
However, most PA tasks are computing-intensive and require
real-time decision-making [2], which makes UAVs challenging
to meet all diverse requirements with limited heterogeneous
resources and energy budgets.

Fortunately, mobile edge computing (MEC) is a well-
established framework to support UAVs and PA clients with
instantaneous computational services available at the edge
network. Since the nearby edge server provides the com-
putation service instead of the traditional remote cloud, the
offloading latency of the computation task and network con-
gestion through the core network can be significantly reduced.

This work was supported by the National Science and Technology Council
under Grant 112-2222-E-007-002-MY3, National Tsing Hua University under
Grant 112QI018E1, and Qualcomm Technologies, Inc. under Grant SOW
NAT-487844.

Many companies have started to deploy MEC systems in the
5G/B5G network to assist farmers in achieving PA tasks in
the northwestern U.S. and worldwide [3].

There exists intensive research that focuses on designing
task offloading policy for MEC applications [4], [5]. Zhang et
al. [6] address offloading tasks with delay sensitivities in
purely MEC systems. Other related works aim to solve
the deadline scheduling problem without adopting a UAV
plan [7]–[9]. Recently, some literature studied the offloading
problems with MEC-assisted UAVs [10]–[12], which opti-
mizes the flight trajectory or minimizes total energy costs.
However, the above researchers neglect the diverse deadline
requirements of various PA offloading tasks. In our work,
UAVs need to provide many types of PA services with different
resource and deadline requirements, especially in uncertain
real-world environments. It is a novel and challenging task
offloading problem compared with existing research.

Reinforcement Learning (RL) has been regarded as a
promising solution for designing task-offloading policies [6].
RL-based approaches gain experience through interaction with
the environment without domain-specific knowledge or require
high-complexity computation efforts. Also, it is a feasible
way to achieve fast adaptation in a dynamic and uncertain
environment. Previous works [6], [13], [14] advocate deep
RL (DRL)-based strategies to solve the offloading problem
by considering energy, migration, security, or in real-world
environments. To face the uncertainty caused by some stochas-
tic process or unknown information about the environment, it
is hard to characterize some fragment information to make
the offloading decision. Besides, the search space and the
computing cost for applying the DRL-based technique are not
practical with resource-limited servers at the edge compared
with those in the cloud. Therefore, we choose Multi-Armed
Bandit (MAB) as one of the RL frameworks to provide a feasi-
ble solution that embraces the uncertainty over time. Recently,
[15] formulates the MAB offloading problem in purely edge
systems. Furthermore, [16] makes the offloading decisions
under non-stationary network dynamics. However, the above
MAB-applied works have not yet considered MEC-assisted
UAVs and heterogeneous resource allocation, especially in the
precision agriculture scenario.

In this paper, we consider MEC-assisted UAVs to serve
various PA tasks with different stringent deadlines and re-
source requirements in uncertain real-world environments. We
first formulate the optimization problem and show its NP-
hard property. The objective is to find a task offloading
policy to minimize total MEC system costs, which means
sacrificing less essential data. Then, we proposed a two-stage
offloading scheme called BANDIT-SCH, including an RL-979-8-3503-1090-0/23/$31.00 © 2023 IEEE
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Fig. 1: Scenario of MEC-assisted multi-UAV network in PA.

based Deadline-Aware Bandit Dispatch (DABD) algorithm and
a Min-Queuing Scheduling (MQ-SCH) algorithm. BANDIT-
SCH enables online task dispatching and scheduling even
in uncertain real-world environments without any predeter-
mined model or domain knowledge. We evaluate our approach
compared with the state-of-the-art baselines with dynamic
loads and stochastic task offloading in MEC systems. The
experiment results show that the performance of the BANDIT-
SCH is approximate to the upper bound baseline, which can
foresee all edge servers’ detailed status.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. MEC-assisted UAVs System

The system scenario is shown in Fig. 1. We consider a
MEC-assisted multi-UAV system providing various precision
agriculture tasks. Total service period T = {1, 2, ..., T} is
divided into total T equal time slots. The Base Station (BS)
set is denoted as M = {1, 2, ...,M}. To provide computing
capability closer to users, the MEC edge servers (ES), defined
as K = {1, 2, ...,K} with computation capacity fk, are
randomly deployed at the BS. Each ES k maintains a job
queue denoted as Qk with length |Qk|.

The UAVs N = {1, 2, ..., N} are randomly deployed on
the farm and execute various PA tasks. Specifically, each
UAV has a different type of PA mission (e.g., crop image
analytics and fertilization) with deadlines and generates tasks
at arbitrary times. The task rtn generated from UAV n at time t
is characterized by a tuple rtn = (stn, λn, ωn), where the data
size represents stn (bits), λn is defined as the computation
workload (cycles/bit), ωn is assigned as the task deadline,
respectively. We define a binary variable otn,k ∈ {0, 1} as
an offloading decision indicator. Each UAV n requires the
offloading task to one of the MEC ESs (i.e.,

∑
k∈K otn,k = 1.)

Besides, otn,k = 1 implies that the task was generated from
UAV n and further processed at ES k.

B. Task Offloading Model

In our scenario, each BS operates on the same frequency
band, which causes mutual inter-cell interference when multi-
UAV sends their data to the target BS simultaneously.
Therefore, we specify the wireless communication parts in

Reference Signal Received Power (RSRP) and Signal-to-
Interference-plus-Noise Ratio (SINR) as follows. Each UAV
will select the BS with the most strength-received RSRP signal
for BS association. We define a binary variable xt

n,m ∈ {0, 1}
as an association decision indicator of UAV n associated with
BS m at time slot t. The uplink RSRP of UAV n to BS m at
time t is given by:

rsrpn,m(t) = P − PLn,m(t),∀n ∈ N, (1)

where P denotes the constant transmission power of UAVs.
PLn,m(t) is obtained by substituting the distance between
UAV n and BS m and the dedicated band used by the
5G communication spec [17]. According to the amount of
transmitted data of UAVs serving by the same BS, we assume
the bandwidth usage of UAV as bn,m(t).

After obtaining the bandwidth usage of UAVs, we derive
the interference caused by UAVs under adjacent BSs using the
same bandwidth for transmission. The interference of UAV n
is calculated with:

In,m(t) =
∑

m′∈M\{m}

∑
n′∈N\{n}

xt
n′,m′rsrpn′,m′(t)ICn(Φ),

,∀n ∈ N,∀m ∈M, (2)

where the function ICn(Φ) = min(Φ, 1) indicates the impact
on inter-cell bandwidth used by UAV n, and the proportion of
other UAVs using on the same band under neighbor BSs. The
Φ =

bn′,m′ (t)

bn,m(t) represents how the bandwidth bn′,m′(t) used by
other UAVs in neighboring BSs affects the UAV n bandwidth
bn,m(t) ratio. Regarding this, we restrict the ratio range to
Φ ≤ 1. According to (1) and (2), the SINR of the received
signal at the BS m from UAV n is given by:

sinrn,m(t) =
rsrpn,m(t)

In,m(t) +N0Bn,m(t)
,∀n ∈ N. (3)

where the N0 refers to the noise spectral density of the normal
atmosphere.

Therefore, the transmission rate of UAV n at time slot t can
be obtained as:

raten,m(t) = bn,m(t)log2(1 + sinrn,m(t)),∀n ∈ N. (4)

The uplink data transmission delay from UAV n to BS m at
time slot t can be calculated as:

dtransn,m (t) =
stn

raten,m(t)
,∀n ∈ N. (5)

Note that we assume that the UAV has no additional storage
equipment. If the amount of uploading data stn exceeds the
uplink rate raten,m(t) at time t, UAV n will drop these data
(i.e., lose essential data stn). Besides, the computation delay
of the task from UAV n executed at ES k is given by:

dexecn,k (t) = otn,k(
stnλn

fk
),∀n ∈ N. (6)

C. Task Queuing Model
To characterize the processing progress of each assigned

task in the ES k, we denote the processing time information
pjn,m,k(t) of the j-th process from UAV n at time t as:

pjn,m,k(t) = (τ, dtransn,m (τ), dexecn,k (τ), dcpuj,n (t)),

∀n ∈ N,m ∈M,
(7)
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where τ represents the initiation time when the UAV n
delivers the task, and dcpuj,n (t) represents the actual execution
time of ES k from initial time τ of request to current t.
The process will pop out of the Qk when the j-th process
has been successfully processed. The set of job queue set
Qk = {p1n,m,k(t), . . . , p

|Qk|
n,m,k(t)}, which the execution order

of the process in the queue follow the ascending power of the
index j = 1, . . . , |Qk|.

Before the ES executes the process, two factors affect the
time it starts to be serviced. One is the status of the existing
queuing tasks in the ES, and the other is the task transfer time
from the UAV to the ES. We denoted the task arrival time of
j-th process which generated from UAV n at time τ through
BS m transfer to the ES k as:

ντj = τ + dtransn,m (τ). (8)

Before calculating the task waiting time of each process
j ∈ Qk, we need to calculate the remaining processing time
Rn,k,j(t) of all previous processes in ES which are calculated
as:

Rn,k,j(t) = Rk,(j−1)(t) + max(ντj − t, 0)

+ (dexecn,k (τ)− dcpuj,n (t)),
(9)

where the remaining processing time of the 1-th process in the
queue is Rn,k,1(t) = max(νt1 − t, 0) + (dexecn,k (τ) − dcpu1,n (t)).
Therefore, the waiting time of the task is to compare the
remaining data transfer time ντk − t of the current j-process
with the remaining processing time Rn,k,(j−1)(t) of the previ-
ous (j−1)-th process. We can obtain the waiting time of j-th
process from UAV n in the ES k at time t as:

dwait
n,k,j(t) = max(max(νtj − t,Rk,(j−1)(t)), 0), ∀n ∈ N. (10)

The total offloading delay of the task generated from UAV n
at time t offloaded to ES k is given by:

Dtotal
n,m,k(t) = dtransn,m (t) + dwait

n,k,j(t) + dexecn,k (t),

∀n ∈ N,m ∈M, k ∈ K.
(11)

Note that we assume the response time of offloading results
back to UAV is relatively short, so we neglect the feedback
delay in this paper.

The lack of data collection will affect the chance of
misjudgment in PA decision-making. Due to the impact of
the random incoming traffic and the uncertain status of the
heterogeneous servers, the task may be unable to meet its
deadline requirements. We define missing data of UAV n at
time t as the system cost, which can be formulated as:

Θt
n(D

total
n,m,k(t)) =

{
stn, Dtotal

n,m,k(t) > wn

0, otherwise
. (12)

D. Problem Formulation

Based on the above models, we define the task offloading
problem with deadline constraint in the heterogeneous MEC

system, which is formulated as:

min
O

∑
t∈T

∑
n∈N

∑
m∈M

Θt
n(D

total
n,m,k(t)) (13a)

s.t. Dtotal
n,m,k(t) ≤ wn,∀n ∈ N,∀m ∈M,∀k ∈ K, (13b)∑

n∈N

∑
j∈Qk

ptk,j,n ≤ |Qk|,∀k ∈ K, (13c)∑
m∈M

xt
n,m ≤ 1, xt

n,m ∈ {0, 1},∀n ∈ N, (13d)∑
k∈K

otn,k ≤ 1, otn,k ∈ {0, 1},∀n ∈ N, (13e)

St
n ≤ raten,m(t), ∀n ∈ N,∀m ∈M,∀t ∈ T. (13f)

In (13a), our goal is to finding a task offloading policy O =
{otn,k,∀n ∈ N,∀m ∈ M,∀t ∈ T} to minimize the cumulative
offloading cost of UAVs subject to (13b) - (13f). The (13b)
specifies each PA task should meet the service deadline. The
(13c) ensures the assigned tasks will not exceed the server’s
queue length. The (13d) indicates that each UAV can only
associate with a single BS for task transmission. The (13e)
implies that each UAV can be served by only one MEC server
for task offloading. The (13f) specifies that the task will be
dropped when the data rate from BS is unsatisfied. Since the
optimization variable otn,k ∈ O is a binary integer variable, and
the other constraints preserve linearity, our target problem (13)
is formulated as an integer linear programming (ILP) problem.

III. REINFORCEMENT LEARNING-BASED
TASK OFFLOADING APPROACH

To provide various PA services in uncertain real-world
environments, our focused task offloading problem is NP-hard
and infeasible to achieve the optimal solution in polynomial
time. Therefore, we first state the hardness property of our
target problem and then adopt Reinforcement Learning (RL)
strategy to seek a feasible solution.

A. NP hardness
Theorem 1. Task offloading problem is NP-hard.

Proof: This problem is NP-hard and can be proved by
a reduction from generalized assignment problem [18]. The
proof is omitted due to a lack of space.

To deal with challenging task offloading problem, we pro-
posed an RL-based approach, BANDIT-SCH, which includes
a Deadline-Aware Bandit Dispatch (DABD) algorithm and a
Min-Queuing Scheduling (MQ-SCH) algorithm. At each round,
when the agent receives the request from the UAV, the DABD
algorithm first assigns the task to the target ES k and collects
the system cost as reward feedback to estimate the future status
of the MEC system. Then, the target ES k decides the service
order of the Qk by MQ-SCH to mitigate the waiting period of
the queuing tasks.

B. Deadline-Aware Bandit Dispatch Policy
Based on the state-of-the-art bandit algorithm UCB1 [19],

we revise it as DABD algorithm to solve the stochastic offload-
ing problem and balance the dilemma between explore and
exploit jointly. The bandit framework comprises two elements,
the action space A of the arm and the reward function Re(),
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Algorithm 1: Deadline-Aware Bandit Dispatch (DABD)

1: Initialize:
The request dispatch counter c← 0,
N(a)← 0, Q(a)← 1, ∀a ∈ A.

2: for t← 1 to T do
3: while the MEC system receives rtn at time t do
4: Calculate the estimated empirical cost of each

arms a ∈ A by (17), and select the arm with
the highest upper value.

5: Get the reward Re(rtn, a
∗) with (16).

6: Q(a∗)← Q(a∗) +
(Re(rtn,a

∗)−Q(a∗))
N(a)

7: N(a∗)← N(a∗) + 1
8: c← c+ 1
9: end while

10: end for

respectively. We take the number of ESs |K| as the available
arms of the MAB framework. The action space is defined as
follows:

a ∈ A = {1, 2, ..., |K|}. (14)

Intuitively, DABD leverages the idea of concentration in-
equality, which provides bounds on how a random variable
deviates from the expected action-value E[Q(a)]. When the
number of decision-making is large enough, the empirical
mean action-value of the arm, denoted as Q(a), will be
close to E[Q(a)]. DABD aims to find a policy to get the
maximum empirical mean Q(a). The reward function will
guide the decision-making behavior of the task dispatch agent.
Traditionally, the RL algorithms bound their reward into [0, 1]
to guarantee convergence in mathematics. Therefore, we need
to normalize the system cost of the server a given by,

Θ̂N(a)
a =

Θt
n(D

total
n,m,k(t))

sup∀N(a),a Θ̂
N(a)
a

, (15)

where the N(a) is the number of time choose server a, and
the sup∀N(a),a Θ̂

N(a)
a records the maximum system cost value

after select server a for N(a) times. We consider reward as
the opposite of the system cost, given by (15). After selecting
server a, the reward can be calculated with the following:

Re(rtn, a) =

{
−Θ̂N(a)

a , |Ya| = 0

−( Θ̂
N(a)
a

|Ya| ), otherwise
. (16)

where we define the set {rtn ∩ Hk|Θ̂n = 0} to record tasks
assigned to ES k that meet the deadline requirements. The RL
agent evaluates the confidence value of each arm and selects
the highest value as offloading decision a∗, given by:

a∗ = argmax
a∈A

(Q(a) +

√
2ln(c)

N(a)
), (17)

where c is dispatch counters and N(a) is the number of
selection to server a.

Once we get the offloading server decision a∗ given
by DABD, we can obtain the task offloading indicator as
otn,a∗ . Following the offloading policy otn,a∗ ∈ O, the learn-
ing goal of DABD is to minimize the cumulative system

Algorithm 2: Min-Queuing Scheduling (MQ-SCH)

Input: The dispatch server a∗,
New assigned request rtn, the execution status of target
ES Qa∗(t).

Output: The execution order j⋆ of request rtn in Qa∗

1: Initialize:
j⋆ ← −1, Q̂a∗ ← Qa∗(t), feasible← false,
Dwait ← 0, Dwait∗ ← 0

2: for j in |Q̂a∗ | down to 1 do
3: if j = |Q̂a∗ | then
4: Record the total waiting time of the queuing tasks

at the tail position, Dwait∗ ←
∑

j∈ ˆQa∗ Rn,k,j(t)
5: else
6: Swap the scheduling position of process from

pjn,m,a to pj−1
n,m,a

7: Record the total waiting time of the queuing tasks
at the new position, Dwait ←

∑
j∈Qa∗ Rn,k,j(t)

8: end if
9: if All process pjn,m,a ∈ Q̂a∗ meet its deadline then

10: feasible← True
11: if Dwait∗ ≥ Dwait then
12: Dwait∗ ← Dwait

13: j⋆ ← j
14: end if
15: else
16: break;
17: end if
18: end for
19: if feasible is False then
20: Reject the task rtn. ▷ The request not satisfied (13b)
21: else
22: Qa∗ ← Q̂a∗ ▷ Update to scheduled queue
23: return j⋆

24: end if

cost
∑c

c=0−(Re(rtn, a
∗)), representing data loss. The pseudo

codes of DABD are given in Alg 1. The learning procedure
of DABD starts when receiving the new request rtn. In each
decision round c, the agent evaluates the confidence value of
each arm calculated by (17) and chooses the largest one, which
has the highest upper confidence value in line 4.

After the agent assigns the rtn to ES a∗ and gets a negative
reward, the remaining step is to update the average estimate
value of the a∗ and the number of selections N(a∗) in lines 6-
8. By accumulating task dispatching experience, the agent will
gradually learn a better offloading policy.

C. Min-Queuing Scheduling Mechanism

After the intelligent agent makes the task offloading assign-
ment, the assigned server a∗ will schedule the execution order
in the job queue Qa∗ to reduce the total waiting time without
violating the deadline in (13e). The pseudo codes of MQ-
SCH are given in Alg. 2. The main procedure of MQ-SCH is
in three steps. First, we push the task in the tail of Q̂a∗ and
get the initial cumulative waiting time Dwait of the existing
tasks in Q̂a∗ in lines 3-5. Second, we check whether the order
of the new schedule meets the deadline in lines 2-18. We
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repeat the above two steps to check the remaining possible
position is feasible and make the total Dwait less. Last, we
confirm whether to reject the task if there has no feasible
position in Q̂a∗ in lines 19-24. The scheduling procedure will
be interrupted if the swap order of the task does not satisfy
the deadline. If there is no feasible position for the task in
Q̂a∗ , the ES a∗ will reject the request rtn accordingly.

IV. PERFORMANCE EVALUATION

A. Experiment Settings

We evaluate the performance of BANDIT-SCH in a MEC-
assisted UAVs network with various realistic network settings.
There are 40 BSs on the farm with an area of 1600 × 700
m2. We set the transmission radius of the BS as 350 m
and operated on the dedicated band with a bandwidth of
100 (MHz). The UAVs perform PA tasks by offloading crop
images, which requires data size ranging from 1 MB to 3
MB, and the workload of processing image recognition is
1900 cycles per bit. The deadline ωn for the PA task is [10,
15] slots. The clock speeds fk for each heterogeneous server
k are set uniformly distributed in [2, 3] (GHz). Besides, we
randomly deployed total of five servers, in which the number
of CPU cores for each server is set to be uniformly distributed
[6, 10]. Therefore, the computation capacity provided by the
server is multiplied by the clock speed and number of cores.
The maximum queue length of each server Qk is uniformly
assigned in [3, 8]. Our simulations run on Python 3.6.13
with Intel(R) Core(TM) i5-9400 CPU @ 2.90GHz processor.
We evaluate the uncertain MEC environments in that each
server has a dynamic load, representing the probability that
the server has a random incoming task to serve at an arbitrary
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5 10 15 20 25 30

Number of UAVs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Sy
st

em
 c

os
ts

UPPER GREEDY BANDIT-EPSILON BANDIT-SCH UCB1 RANDOM

0

500

1000

1500

2000

2500

3000

3500

4000

4500

N
um

be
r 

of
 r

eq
ue

st
s

(a) Cumulative system cost.

5 10 15 20 25 30
Number of UAVs

0.2

0.4

0.6

0.8

1.0

Sa
tis

fa
ct

io
n 

ra
te

UPPER GREEDY BANDIT-EPSILON BANDIT-SCH UCB1 RANDOM

(b) Satisfaction rate.

Fig. 3: The impact on the heterogeneous MEC system.

time. Each simulation results run averaged over 500 slots and
in 20 different episodes. We verify the performance of each
offloading scheme with two metrics: cumulative system cost
and satisfaction rate. The cumulative system cost evaluates the
service quality of the MEC system. The task offloaded from
UAVs may be dropped due to insufficient bandwidth allocated
by BS. Besides, we define the satisfaction rate of the server
as the number of tasks that meet the deadline divided by the
number of tasks successfully received by the server.

The proposed BANDIT-SCH is compared with five candi-
date algorithms as follows: UPPER, which can foresee all edge
servers’ detailed status and select the ES with the shortest
accumulated waiting time for queuing tasks. Generally, the
queuing status of ES is hard to access, so we take the UPPER
as the performance upper bound. GREEDY, as a heuristic
algorithm, the offloading agent assigns the tasks to the ES
with the least cumulative system cost. UCB1, as a classic
MAB algorithm [19], which considers whether the task meets
the deadline and gives a binary reward. The binary reward
in UCB1 will receive one if the task meets the deadline
constraint, or it will receive 0. BANDIT-EPSILON, as one of
the MAB algorithms with ϵ probability to explore and (1− ϵ)
possibility to exploit the arms to get the minimal cumulative
system cost. Finally, RANDOM, as the performance lower
bound, selects one of the ES randomly.

B. Impact of the Stochastic Offloading and Dynamic Load
We evaluate the performance of BANDIT-SCH and other

baselines in two different PA task request patterns from UAVs
and under dynamic load in the edge servers. One of the task-
generating patterns varies in the task arrival intensity of the
system and represents the probability that the UAV sends
a request to the MEC system at each time. The enormous

2023 IEEE Global Communications Conference: Selected Areas in Communications: Cloud/edge Computing, Networking, and Data 
Storage

5591
Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on June 17,2024 at 16:12:50 UTC from IEEE Xplore.  Restrictions apply. 



task arrival intensity makes the system more stochastic and
challenging to support PA services. In Fig. 2, we evaluate the
impact of task arrival intensity from intensity 10% to 80%
with a total of five UAVs in the system. Fig. 2(a) presents the
cumulative system cost, and Fig. 2(b) shows the satisfaction
rate, respectively. As expected, the proposed BANDIT-SCH
scheme can find the proper offloading policy and lose less
essential data to approximate the UPPER in both performance
indexes compared to other baselines under different intensities.
The custom reward lets BANDIT-SCH control well in explo-
ration and exploitation to adapt to the different task arrival
intensities. In contrast, as shown in Fig. 2(a), the binary reward
feedback of UCB1 and the exploration-exploitation strategy of
BANDIT-EPSILON cannot find a good offloading policy in the
dynamic network. The lack of exploration of GREEDY makes
it fall into local optimal, with the worst results eventually.

Another task-generating pattern is adjusting the number of
UAVs in the MEC system. The number of UAVs affects the
load capacity of the edge server in the long run. Fig. 3(a) and
Fig. 3(b) demonstrate the cumulative system cost and the sat-
isfaction rate under different numbers of UAVs, respectively.
Here, we set the task intensity of UAVs to 30 % at an arbitrary
time. Furthermore, compared to the simulation in Fig. 2(a), we
evaluate the service deadline from 10 to 15 seconds. In fact, we
want to evaluate the performance under different continuous
loads from UAVs with stringent deadlines. As the number
of UAVs increases, BANDIT-SCH can still outperform other
baselines and is close to the performance of UPPER. The key
point is that the custom reward and the one-side confidence
let BANDIT-SCH handle the higher continuous loading in the
system and satisfy requests of UAVs with stringent deadlines.

C. The Convergence of Learning Offloading Policy
To analyze the convergence degree of the MAB-related

schemes, we combine the two figures of Fig. 2(a) and Fig. 3(a)
jointly. Finding the policy in the short dispatch rounds is
difficult for the bandit-related schemes since the agent is still
in its initial exploration phase. Unlike other MAB approaches,
taking (16) as the learning direction, the binary reward of
UCB1 cannot adapt to insufficient requests and fails in a highly
dynamic MEC system. However, the BANDIT-SCH scheme
can achieve the fast-adaptation and provide feasible solutions
in these two stochastic offloading patterns. With task intensity
increasing, although more essential data is inevitably sacrificed
in BANDIT-SCH compared with UPPER, the cumulative
system cost will increase marginally. We’re excited to observe
that BANDIT-SCH maintains the same satisfaction rate as
UPPER in Fig. 2.

V. CONCLUSION

This paper investigates the MEC-assisted task offloading
problem under various deadline constraints with multi-UAVs
to minimize total MEC system data loss costs. To provide
various PA tasks in uncertain real-world environments, we
proposed an RL-based task offloading mechanism, BANDIT-
SCH, which includes a deadline-aware dispatch policy DABD
and a minimized scheduling MQ-SCH. The custom deadline-
aware reward and the one-sided confidence interval let
BANDIT-SCH perform well in exploration and exploitation
to adapt to stochastic offloading and dynamic system loading.

The experiment results show that the performance of the
BANDIT-SCH is approximate to the UPPER and can preserve
acceptable MEC system cost and satisfaction rate in precision
agriculture. In future work, we will add UAV-mounted edges
to assist various task offloading and explore how to design
an RL-based strategy in such advanced MEC-assisted edge
systems for realizing PA services.
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