
Profit Maximization for UAV Trajectory Planning in
Time-Constrained Data Collection

Hung-An Kuo†, Jang-Ping Sheu†, and Nguyen Van Cuong ‡
†Department of Computer Science, National Tsing Hua University, Taiwan

‡Insititute of Communications Engineering, National Tsing Hua University, Taiwan
Emails: andykuo8766@gapp.nthu.edu.tw, sheujp@cs.nthu.edu.tw, cuongnv@gapp.nthu.edu.tw

Abstract—In this work, we use unmanned aerial vehicles
(UAVs) to collect data from IoT devices on the ground. Each
device has an amount of data that can be sent to the UAV during
a specific time window. Our objective is to maximize the total
profit that the UAV can collect the data from the IoT devices.
Since the problem is NP-hard, we propose a heuristic algorithm
in three stages to solve the problem. We solve the traveling-
salesman problem (TSP) in the first stage to find the UAV’s
flying trajectory. In the second stage, we propose an algorithm
to change the visiting order or remove IoT devices from the
flying trajectory if we cannot satisfy their time constraints. In
the third stage, we improve the UAV’s flying distance established
in the second stage. The simulation results show that the proposed
algorithms outperform some baselines in terms of total profit and
execution time.

Index Terms—UAV trajectory, time-constrained data collec-
tion, profit maximization.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have been widely adopted
in aerial delivery, surveillance, monitoring, disaster rescue,
and remote sensing due to their inherent advantages, such
as mobility, agility, flexibility, and adjustable altitudes [1],
[2]. The UAVs can be used as aerial base stations (BSs)
to provide reliable, cost-effective, and on-demand wireless
communication service to desired areas [1]. Especially using
the UAVs to harvest sensing data from distributed sensor nodes
(SNs) is promoting the future Internet of Things (IoTs) [2].
However, IoT devices are made up of small and low energy
consumption battery-limited sensors to periodically collect
environmental information such as wind speed, temperature,
and particulate matter 2.5 micrometers (PM2.5) [3]. To save
energy, IoT devices often use low power to transmit data in
a short period. On the other hand, IoT devices are typically
deployed in remote areas where terrestrial communications
networks are unavailable. In such a scenario, using the UAV
as a data collector appears as a promising solution. The UAV
may periodically fly close to the IoT devices and receive the
data over a single hop communications [4].

Trajectory planning is essential while employing the UAV as
a data collector in IoT applications [5]–[10]. For example, op-
timizing resource allocation and trajectory scheduling in UAV-
assisted mobile edge computing (MEC) networks can provide
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computation or energy-efficient mobile services [5]. In [6], the
authors studied the deployment of UAVs for IoT computation
offloading. The objective was to minimize the completion
time and energy consumption by optimizing the computation
offloading and resource allocation, and UAV trajectory. In [7],
the author considered the sum power minimization problem
by optimizing user association, power control, computation
capacity allocation, and trajectory planning in a MEC network
assisted by multiple UAVs. Aiming to mobile edge computing,
[8] maximized the energy efficiency by optimizing allocation
of computation load, the trajectory of IAV, and the transmit
power of users. In [10], the UAV roamed around the target
area to offload the computation tasks sent from user equipment
(UEs) or relay to the access point (AP) for further offloading.
The weighted sum energy consumption of the UAV and UEs
was optimized by jointly determining the task constraints, the
bandwidth allocation, and the trajectory of the UAV. Note that
the above works did not consider the deadline requirement of
the tasks (data collection/computation offloading).

Trajectory optimization of UAV for time-constrained data
collection has been investigated in several works [11], [12].
In [11], the authors optimized the trajectory of UAV and
the radio resource allocation while imposing a deadline on
data packets that need to be collected from the IoT devices.
The objective was to maximize the number of devices that
can be served within a given mission time. They proposed a
solution with the branch, reduce, and bound (BRB) algorithm
to solve the problem in small-scale networks and a solution
based on successive convex approximation method in large-
scale networks. In [12], they optimized the data collection
deployment costs for energy consumption. In [13], they aim
to minimize the number of UAVs and the total operation time
by optimizing the UAV trajectory and hovering location. In
[14], they address a UAV trajectory design problem for a
single UAV with a limited battery and is allowed to swap
its battery during its mission in a UAV-aided IoT network
that contains multiple ground sensors that need to upload data
within random time windows. Notice that most of the above
works proposed high computation complexity solutions that
may be inappropriate in time-sensitive applications.

This paper considers a single UAV as a data aggregator
in an IoT network. The UAV is dispatched to collect data
from IoT devices. The UAV can collect data from each IoT
device within a particular time window. The UAV can get a
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Fig. 1: Illustration of a UAV data collection mission.

specific profit if the data is uploaded on time. We propose a
scheme that aims to maximize the total profit the UAV can
get from all IoT devices. First, we find the visiting order
of devices by solving Travelling Salesman Problem (TSP).
Secondly, we design a Find Ending Time Algorithm (FETA)
to find the ending time of each IoT device and a Pair Exchange
Remove Algorithm (PERA) to meet IoT devices’ deadlines
by changing visiting orders or removing nodes. Furthermore,
we improve the flying distance of the UAV by adjusting the
optimal trajectory. Simulation results validate the effectiveness
of the proposed strategy.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this work, a single UAV is studied to collect data from N
IoT devices on the ground. The UAV takes off from a starting
point of (0, 0, H) and flies at the fixed altitude of H while
doing the mission, as shown in Fig. 1. The set of IoT devices
is denoted as N = {1, . . . , N}. Each IoT device n, ∀n ∈ N ,
is located at qn ≜ (xn, yn, 0) and has a maximum amount
of data sdatan that can only be uploaded to the UAV during a
specific time window [treadyn , tduen ].

Let qu(t) ≜ (x(t), y(t), H) denote the UAV’s location at
time t. The three-dimensional (3D) distance between the UAV
and IoT device n at time t is defined as

dn(t) = ∥qu(t)− qn∥, (1)

for all n = 1, . . . , N. Since IoT devices are assumed to be
outdoors, the communications channel between IoT devices
and the UAV is mainly dominated by a line of sight (LoS)
link. The maximum link rate between the IoT device n and
the UAV at time t can be expressed as [15]

Rn(t) = B log2

(
1 +

Pnβdn(t)
−α

σ2

)
, (2)

where B is the channel bandwidth, Pn is the transmit power
of IoT device n, α is the path loss exponent, σ2 is noise power
at the receiver, and β is the average channel power gain at a
reference distance of one meter [15]. Note that the IoT devices
have different transmit powers, so their communication ranges
are different, as shown in Fig. 1. UAV can collect data within
the communication radius r̃n of IoT device n. Suppose that the
UAV starts and ends data collection from device n at tstartn and
tendn , respectively, where treadyn ≤ tstartn ≤ tendn ≤ tduen . The
device n is satisfied if its data demand equals the total data

which the UAV can collect during the interval [tstartn , tendn ].
We have

sdatan =

∫ tend
n

tstart
n

Rn(t)dt. (3)

The main objective of this work is to maximize the total
profit that the UAV can get by collecting the data from IoT
devices by optimizing the UAV’s flight path and transmission
scheduling of IoT devices. The problem can be formulated as
follows

max
qu(t),an,∀n

N∑
n=1

anpn, (4)

where pn is the profit the UAV can get if device n is satisfied.
If device n is satisfied, an = 1; otherwise, it is set to 0.
Solving the problem (4) is even more challenging than the
Traveling Salesman Problem with Time Windows (TSPTW)
problem, which is an NP-hard problem. In the next section,
we propose a heuristic algorithm to solve the problem with
polynomial-time complexity.

III. PROPOSED ALGORITHM

In this section, we describe our proposed algorithm which
is composed of three stages. In the first stage, we aim to find
a good initial visiting order of IoT devices with a minimum
flight distance. This appears as a variant of the well-known
traveling-salesman problem (TSP), except that the UAV is not
required to return to the start point. However, adding a dummy
node with zero cost to the start point and identical positive
costs to other nodes, the problem becomes a regular TSP
problem. It then can be solved efficiently by many heuristic
algorithms proposed in the literature [16]. For convenience,
we relabel the indices of IoT devices according to the visiting
order found by solving the TSP problem. The second stage
consists of two steps. In the first step, we propose a Find
Ending Time Algorithm (FETA), which is used to find the
ending time of collecting data for each device. In the second
step, we propose a Pair Exchange Remove Algorithm (PERA),
which is used to exchange the visiting order of devices or
remove the lowest profit device when the device is unsatisfied
with its deadline. In the third stage, we optimize the trajectory
to reduce the flying distance.

A. Find Ending Time Algorithm (FETA)

In FETA, the purpose is to determine the data collection
time (and also hovering location and hovering time) of the
UAV. We first let the UAV follow the path found in the first
stage. We then mark three timestamps for each device visited
by the UAV, including when the UAV arrives at the device’s
communication range, when the UAV arrives at the device’s
location, and when the UAV starts leaving out of the device’s
communication range. Let us denote those timestamps by tinn ,
tonn , and toutn , respectively, as shown in Fig. 1. Next, we relax
the deadlines and then compute the hovering time thovn and the
ending time tendn of data collection of the UAV by considering
the following four cases, as shown in Fig. 2. The red line
indicates the duration that starts from the data ready time to
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Fig. 2: The cases of treadyn for FETA.

the moment when the data collection is finished. The blue line
is the period in which the device uploads the data to the UAV.
The green line is the period the UAV hovers on the location
closest to the device. The length of the red line is the length
of the blue line plus the length of the green line.

The first case is the ready time treadyn ≤ tinn as shown
in Fig. 2 (1-1). In this case, the UAV can collect the data
as soon as it arrives at the device’s communication range.
We can use the following equation to calculate the data size
that collected from the device n during the interval [tinn , toutn ]
without hovering at the device’s location.

sfulln =

∫ tout
n

tinn

Rn(t)dt. (5)

Note that the integral in (5) can be computed by tools using
numerical methods. If sdatan is less than sfulln , the UAV does
not need to hover on the device n and thovn = 0. In this case,
tstartn = tinn and tendn can be found by using the formula (3).
If sdatan is greater than sfulln , the UAV needs to hover on the
location above the device n and the hover time is computed
as thovn =

sdata
n −sfull

n

Rn(tonn ) . We add thovn to toutn and then obtain the
tendn , as shown in Fig. 2 (1-2).

The second case is tinn < treadyn ≤ tonn . Total data the UAV
can collect from device n during the interval [treadyn , toutn ]
without hovering is computed by

sflyn =

∫ tout
n

tready
n

Rn(t)dt. (6)

If sdatan ≤ sflyn , the UAV does not need to hover, i.e., (thovn =
0). We set tstartn = treadyn and use formula (3) to calculate
tendn as shown in Fig. 2 (2-1). If sdatan > sflyn , the UAV must
hover at the device’s location for a time thovn =

sdata
n −sfly

n

Rn(tonn ) . We
add thovn to toutn and get the tendn , as shown in Fig. 2 (2-2).

The third case is tonn < treadyn ≤ toutn . Since the UAV does
not receive the data during the interval [tinn , tonn ], we compare
sfull
n

2 with sdatan to determine the hovering time. If sdatan ≤

sfull
n

2 , there are two possible situations that UAV can finish
collecting data before toutn . We will use formula (6) to calculate
the total data sflyn that the UAV can collect from device n
during the interval [treadyn , toutn ] without hovering. If sflyn ≥
sdatan , the UAV does not need to hover (thovn = 0) and the tendn

will be calculated by formula (3), as shown in Fig. 2 (3-1). If
sflyn < sdatan , then we will set tendn as toutn and use formula (3)
to calculate tstartn under the known data sdatan . So UAV needs
to fly to the position of tstartn first and then wait for a duration
of thovn = treadyn - tstartn until data is ready. After the data is
ready, UAV will start collecting data while flying out of the
communication radius of the device n. The end time is updated
tendn = toutn + thovn , as shown in Fig. 2 (3-2). If sdatan >

sfull
n

2 ,
the UAV needs to hover at the position of tonn . Besides the
hover time, UAV needs to wait for treadyn − tonn until data is
ready. The time ready to send data is treadyn . Therefore, the

total hover time is thovn = treadyn − tonn +
sdata
n − s

full
n
2

Rn(tonn ) . The
tendn = toutn + thovn , as shown in (3-3) of Fig. 2.

The last case is ready time treadyn > toutn . If sdatan <
sfull
n

2 ,
the UAV needs to hover at the position of tstartn . We set tendn =
toutn and use formula (3) to calculate tstartn . In this case, the
UAV flies to the position of tstartn and then wait for thovn =
treadyn - tstartn until data is ready. After the data is ready, UAV
will start data collection while flying out of the communication
radius of the device n. The end time tendn = toutn + thovn , as
shown in Fig. 2 (4-1). If sdatan >

sfull
n

2 , the UAV needs to hover
at the position of tonn for a duration of treadyn −tonn until data is

ready. The total hover time is thovn = treadyn −tonn +
sdata
n − s

full
n
2

Rn(tonn )

The end time is updated as tendn = toutn + thovn , as shown in
Fig. 2 (4-2). The time complexity of FETA is O(n).

B. Pair Exchange Remove Algorithm (PERA)
Note that the deadline is excluded in FETA. Once FETA is

done, we mark all devices whose tendn > tduen as unsatisfied
devices, i.e., an = 0. Next, we use PERA to change the
visiting order to check whether the unsatisfied devices can
become satisfied devices or not. The PERA is organized into
three steps, and the details are described in Algorithm 1. The
first step is to check whether unsatisfied devices are in the
visiting order. The second step is to exchange pairs of visiting
orders to search for satisfying visiting orders. The third step
is to remove a device from the visiting order when it is not
satisfied after the second step.

In the second step of PERA , we first use FETA to get the
end time tendn and define r(n) = tduen − tendn be the remaining
time of device n before its deadline. We assume the first un-
satisfied device is device u. We will pair exchange the visiting
order of device u−1 with the device i, i = u−2, u−3, ..., 1.
Let Vu−1,i be the new visiting order that exchanges the device
u − 1 with the device i. We then recalculate the end time of
data collection by FETA. Let ru−1,i(j) = tdueu−1,i(j)−tendu−1,i(j)
denote the remaining time before the deadline of device j, for
all 1 ≤ j ≤ u in the visiting order Vu−1,i. Let

rmin
u−1,i = min

1≤ j ≤u
ru−1,i(j). (7)
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If rmin
u−1,i ≥ 0, the visiting order Vu−1,i is satisfied. Otherwise,

the visiting order is unsatisfied. If there are multiple satisfied
visiting orders, we select the visiting order Vu−1,i with the
largest value of rmin

u−1,i. Let

i∗ = argmax
1≤ i ≤u−2

rmin
u−1,i. (8)

Then, we exchange the orders of device u− 1 and the device
i∗ and relabel the devices according to their new visiting order
as n = 1, 2, ..., N . If no any Vu−1,i is satisfied, we execute
the third step of PERA.

In the third step of PERA, let Vi be the new visiting order af-
ter removing device i from visiting order V , for i = 1, 2, ..., u,
where u is the first unsatisfied device found at the first step of
the algorithm PERA. We recalculate the end time of collecting
data by FETA. Let ri(j) = tdueu−1,i(j) − tendu−1,i(j) be the
remaining deadline time of device j in Vi. We define

rmin
i = min

1≤ j ≤u,j ̸=i
ri(j). (9)

Note that rmin
i ≥ 0 indicates that the visiting order Vi is

satisfied and vice versa. If there is no satisfied visiting order,
we remove the unsatisfied device, i.e., device u . Otherwise, we
remove the device i∗ that the resulting visiting order produces
the maximum total profit as follows

i∗ = argmax
1≤ i ≤u

wi, (10)

where wi is the total profit of all devices on the visiting order
Vi and computed by

wi = Σi−1
n=1pn +Σu

n=i+1pn, (11)

for all i = 1, . . . , u. Then, we set N = N − 1 and relabel the
devices by their visiting order as n = 1, 2, ..., N . We iterate
the first step of PERA to check the next unsatisfied devices,
until no further devices can be served. The time complexity
of PERA is O(n2).

C. Flying Distance Refinement

It can be observed that the visiting location of the UAV (lo-
cation at tonn ) may not need to be the location above the device
as initialized in the first stage but can be any location inside
the device’s communications range. In the third stage, we can
reduce the total flying distance of the UAV while relaxing
the visiting location qu(t

on
n ) to be inside the communication

range. We first consider the problem that optimizes the visiting
locations of the UAV to minimize the total distance of the
flying path connecting the visiting locations. Such a problem
can be formulated as

min
qu(t

on
n ),∀n

N∑
n=2

∥qu(tonn )− qu(t
on
n−1)∥ (12a)

subject to ∥qu(tonn )− qn∥ ≤ r̃n,∀n. (12b)

The constraint in (12b) implies that the new visiting locations
must be inside the communication range of the devices. Note
that the problem in (12) is a convex optimization problem

Algorithm 1: Pair Exchange Remove Algorithm (PERA)

Input: Each device’s profit pn, time window [treadyn , tduen ], for
1 ≤ n ≤ N and initial visiting order V .

Output: Visiting order V and profit
1: Use FETA to calculate end time
2: for n = 1 to N do
3: if tendn > tduen then
4: u = n
5: break
6: else
7: if n == N then
8: Output the visiting order V and profit
9: end if

10: end if
11: end for
12: for i = u− 2 to 1 do
13: Exchange devices u− 1 and i on the visiting order.
14: Get new visiting order Vu−1,i
15: Use FETA to calculate end time
16: Use (7) to get rmin

u−1,i
17: end for
18: Use (8) to get i∗
19: if rmin

u−1,i∗ ≥ 0 then
20: Relabel the devices u− 1 to i∗ and i∗ to u− 1
21: Return to the first step of PERA
22: else
23: for i = 1 to u do
24: Remove device i from visiting order V
25: Get new visiting order Vi
26: Use FETA to calculate end time
27: Use (9) to get rmin

i
28: end for
29: if rmin

i < 0 for all i ∈ {1, . . . , u} then
30: Remove device u.
31: else
32: Remove device i∗ found in (10).
33: end if
34: N = N − 1
35: Relabel the visiting order V
36: Return to the first step of PERA
37: end if

that can be solved by convex optimization tools, for example,
CVX, with the interior point method. Solving the problem
in (12) requires a complexity O(M3.5 log(1/ϵ)), where M
is the number of variables and ϵ is the given accuracy [2].
Once the problem in (12) is solved, we search new visiting
locations to construct a shorter trajectory path as shown in
Fig. 3. Let ltn,∀n, denote the current visiting locations of
the UAV and lcn,∀n, denote the visiting locations obtained
by solving (12). If lcn,∀n, satisfies the time constraints of
the devices (checked by running FETA), we will use them
as the new visiting locations of the UAV. In this case, they
are the best solutions. Otherwise, we use a binary search
algorithm to find the most suitable visiting locations. First,
let lmn = (ltn + lcn)/2, ∀n, be the middle point between the
current visiting location and the visiting location found in (12).
Next, we run FETA to check the feasibility of lmn ,∀n. If all
middle points satisfy the devices’ time constraints, we will try
to find new visiting locations on the line segments connecting

2023 IEEE International Conference on Communications (ICC): Mobile and Wireless Networks Symposium

5416
Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on June 17,2024 at 16:11:44 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3: Illustration of searching for a shorter flying trajectory.

lmn and lcn by assigning ltn = lmn ,∀n. Otherwise, we will try
to find new visiting locations on the line segments connecting
ltn and lmn by assigning lcn = lmn ,∀n. The binary search is
repeated until the searching distance is less than one meter,
i.e., ∥ltn− lcn∥ ≤ 1,∀n. According to our simulation, the flying
distance with stage three is 25% lower than the flying distance
without using the third stage.

IV. SIMULATION RESULTS

In this section, we demonstrate the effectiveness of the
proposed scheme through simulations using Matlab, which
is executed in a personal computer with AMD Ryzen 5600x
@3.7GHz processor, 16GB RAM. In the following experi-
ments, IoT devices are uniformly deployed in 1000 m × 1000
m. The flying speed of a UAV is 10m/s, and the maximum
flying height of the UAV is 70 m. We assume that the device’s
profit is defined as the data size collected from the IoT devices.
We set B = 10 MHz, α = 2, β = −60 dB, and σ2 = −110
dBm. The transmit power of each device, i.e., Pn, is randomly
selected in a range of [0.1, 0.5] watts. The communication
radius is in the range of 15 m to 45 m. For comparison, we
implement three baselines: the Min-Profit scheme, the Min-
Deadline scheme, and the DACO scheme. The Min-Profit
scheme/Min-Deadline scheme is implemented following our
proposed scheme, except that the PERA is replaced by a
removing policy in which minimum profit/minimum deadline
devices are removed first until all remaining devices are
served. The DACO scheme follows the data-driven ant colony
optimization algorithm in [17] to solve TSP with time windows
(TSPTW). In ant colony algorithms, the agents simulate the
ants in nature that follows the pheromone trail to find the
optimal route. The pheromone, in our case, is calculated by
a function of the distance, time windows, and profit. Each
simulation result is an average of 30 times the simulations.

In Fig. 4, we survey the performance in terms of total
profit over the number of IoT devices that is adjusted from
N = 40 to N = 60. The mean of data sizes is set to
M = 600 Kbits, in which the data size is randomly selected
in a range of [M − 200,M +200] Kbits. We can see that the
total profit increases as the number of IoT devices increases
in all the algorithms. Our proposed algorithm achieves the

Fig. 4: Total profit versus number of devices.

Fig. 5: Total profit versus data size of devices.

Fig. 6: Total satisfied devices versus data size of devices.

highest performance among others. The Min-Profit and Min-
Deadline are worse than the proposed algorithm with PERA.
The DACO algorithm uses roulette wheel selection to generate
data collection path. Although the time window is considered
in generating the path, it is still possible to choose a bad path
due to the probabilistic decision making.

In Fig. 5, we examine the total profit for the data size of the
devices. The mean data sizes of the devices are varied from
M = 400 Kbits to M = 800 Kbits and the number of devices
is set as N = 50. It shows that the total profit increases as the
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Fig. 7: The flying time and hovering time of algorithms.

Fig. 8: Execution time versus number of devices.

data sizes of the devices increase in all schemes.
We show the number of satisfied devices in Fig. 6. We can

see that the number of satisfied devices decreases in all the
algorithms as the data size increases because the UAV needs
more time to collect data from IoT devices. Our proposed
scheme has the best total profit and device satisfiability perfor-
mance compared to other schemes. The Min-Profit scheme has
the worst performance. Although the device satisfiability of
Min-Profit is smaller than DACO, its total profit is better than
DACO. This is because Min-Profit removes the unsatisfied
device with the lowest profit.

A realization of the total flying time of the UAV in schemes
is shown in Fig. 7, where the number of devices is set as
N = 50 and the mean data size is set to 600 Kbits. We can
see that the proposed scheme with PERA spends the longest
time since more devices are served in this scheme. Since the
DACO prefers hovering at the locations above devices with
the highest data rate, it thus has the least hovering time. In
Fig. 8, we compare the running time of all schemes. The
execution time increases as the number of devices increases
in all schemes. The DACO algorithm is a kind of ant colony
algorithm that typically takes a lot of time to converge. The
Min-Profit and Min-Deadline schemes can be done concisely
without exchanging the visiting order of devices.

V. CONCLUSION

In this work, we study the problem of using UAV to collect
time-constrained data from IoT devices and obtain the maxi-
mum profit. The resulting problem could be considered as a

variant of the TSPTW problem that is challenging to solve. We
proposed a solution with FETA and PERA algorithms to solve
the problem in polynomial time complexity. In addition, we
use a binary search algorithm to reduce the flying distance. The
simulation result shows that our proposed solution outperforms
the baselines in terms of total profit while requiring a moderate
running time.
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