GLOBECOM 2022 - 2022 IEEE Global Communications Conference | 978-1-6654-3540-6/22/$31.00 ©2022 IEEE | DOI: 10.1109/GLOBECOMA48099.2022.10000887

2022 IEEE Global Communications Conference: Selected Areas in Communications: Satellite and Space Communications

A Dynamic Multicast Tree Selection Algorithm in
LEO Satellite Networks

Ke-Jun Zheng* and Jang-Ping Sheu®
*Dept. of Information Systems and Applications, National Tsing Hua University, Hsinchu, Taiwan
fDept. of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
$108065536 @m108.nthu.edu.tw, sheujp@cs.nthu.edu.tw

Abstract—Satellite networks are a promising way to provide
ubiquitous access to network service. However, due to the
mobility of satellites, the traditional routing scheme cannot be
adapted to the constellation directly. This paper studies the
challenge of multicast routing on satellite networks. The mobility
of satellites makes the serving satellites of ground users change
with time. When performing a multicast on the constellation, the
changing of serving satellites leads to many link handover control
messages. To minimize the control message overhead is NP-
hard. Therefore, a dynamic programming-based algorithm called
Dynamic Multicast Tree Selection (DMTS) is proposed to find
the sub-optimal result with polynomial time complexity. Besides,
we proposed a tree generation algorithm called LMBBSP with
DMTS to avoid link congestion in unbalanced network load. The
simulation results show that our proposed schemes outperform
the baselines with link handover and request rejection rate.

Index Terms—Satellite networking, multicast routing, dynamic
programming, link handovers

I. INTRODUCTION

In recent years, network communications have increased
dramatically worldwide. One of the critical issues of the
traditional terrestrial network is the accessibility in rural and
remote areas, such as desert and mountain areas [1]. The
satellite constellation networks have been proposed to elimi-
nate this issue. A satellite network contains several Low Earth
Orbit (LEO) satellites, and the satellites connect each other to
construct a mesh-like topology [2]. To access the constellation,
users on the ground must install an antenna to get the service
from the sky. Software-Defined Network (SDN) is used to
control the operations of the satellite constellation network.
The SDN controller is deployed at geostationary satellites
(GEO) [3]. Note that in practice, a GEO cannot cover the
whole earth. There must be some cooperation between GEOs
to reach the full function of the SDN controller. In this paper,
we view the GEO cluster as one centralized controller.

The satellite constellation is a promising solution for ubig-
uitous network accessibility beyond 5G or even 6G mobile
networks [4]. Many companies have raised several projects to
build their constellations, for example, Starlink from SpaceX
[5], Kuiper from Amazon, and OneWeb. One of the promising
applications in satellite networks is the scenario of multicast

This work was supported in part by the Ministry of Science and Technol-
ogy, Taiwan, under grant MOST 109-2221-E-007-079-MY3 and Qualcomm
Technologies, Inc. under grant SOW NAT-435533.

video streaming. A multicast request contains a source host
and several destination hosts with their bandwidth require-
ments and the duration of the video streaming. However,
the mobility of satellites makes the traditional multicast tree
cannot be directly used in the satellite constellation.

Two main challenges exist for the conventional multicast
tree to the satellite networks. 1) Dynamic changing serving
satellites of the source and destinations. Since the satellites
keep moving in a constellation, both source and destinations
on the ground keep changing their serving satellites. There-
fore, the multicast tree must be recomputed when satellites
handover. The multicast tree algorithms for fixed topology
cannot be used at the dynamic one. 2) A large number of
control messages. The satellite mobility forces the controller to
recompute the multicast tree in a fixed time interval. When the
controller wants to deploy a new multicast tree to deal with the
mobility, it will send the link update control messages to the
network. The longer a request is, the more tree updates would
happen. Thus, reducing the SDN link updates is essential for
multicast streaming in a constellation network.

The multicast in satellite networks has been studied in some
literature [6]-[9]. [6] proposes a distributed method for robust
multicasting based on the unicast in [10]. This method allows
each node to make its own decision to reroute the path fast
when a link failure happens, making the network more robust.
[7] proposes a DLMRA algorithm to exploit the concept of
the topology snapshot to simplify the mobility of the LEOs.
[8] used the geographical information of neighbor satellites to
perform a multicast tree. The proposed method aims to send
messages to the geographical center of group members who
have not received the packets to reduce the control messages.
This multicast strategy has low signaling, computation, and
memory usage. [9] proposed a multi-layer rectilinear Steiner
tree with a multi-layer LEO constellation. They extend the
spanning graph into a 3D scenario to generate a 3D Steiner
tree. The multicast tree is generated by minimizing the tree’s
total length, saving more bandwidth than traditional multicast
trees. However, none of them consider the control message
overhead when switching between different multicast trees
caused by the dynamic changing serving satellites of the
source and destinations.

In this paper, we formulate a minimization problem to
reduce the number of link handovers for multicast in satellite

1546

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on June 17,2024 at 16:10:44 UTC from IEEE Xplore. Restrictions apply.



2022 IEEE Global Communications Conference: Selected Areas in Communications: Satellite and Space Communications

networks. Since the minimization problem is NP-hard, a
dynamic programming-based tree selection algorithm called
DMTS is proposed to find the sub-optimal result in polynomial
time. The main contributions of this paper are summarized as
follows:

« First, to our best knowledge, this is the first paper to consider
the multicast tree with link handovers minimization into the
satellites constellation system.

e Second, we propose a dynamic programming algorithm,
DMTS, to solve this problem in polynomial time. In ad-
dition, we proposed a multicast algorithm LMBBSP with
DMTS to avoid link congestion in unbalanced network load.

« Finally, simulation results show that the performance of our
algorithm is better than the baselines.

The rest of this paper is organized as follows. Section II
presents our multicast network system and the main objective
of this paper. Our algorithm is proposed in Section III. The
simulation result is shown in Section IV. Finally, Section V
concludes this paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

The Satellite Multicast System (SMS) consists of N LEO
satellites and one GEO as SDN controller to deal with the
incoming multicast requests from ground stations. The GEO is
responsible for monitoring the satellites’ allocation and serving
for multicast tree computation when receiving multicast re-
quests. The satellites are responsible for actual data forwarding
for the multicast transmission. And the sources on the ground
raise multicast requests to the constellation.

Orbit 0 Orbit 1 Orbit 2 Orbit 3 Orbit 4

e e e ___/“_I\
& |

. | f

D) l__ L__ i

— AT RT T AR T AT
6 | ) |6 |
" e “— "— "

Fig. 1. A 5x4 connected mesh network

In our system model, the +grid model [2], is used to con-
struct the constellation network. We deploy the constellation
of N satellites into an O x L mesh, where O is the number
of orbits and L is the number of LEOs within an orbit. An
example of a +grid network model with O =5 and L =4 is
shown in Fig. 1. In a +grid model, a satellite has four satellite
links. Two are connected to the successor and predecessor
satellites in the same orbit. Such type of link is called an
intra-orbit link (vertical links in Fig. 1). And the other two
links connect to the satellites at the left and right orbits, called
inter-orbit links (horizontal links in Fig. 1). By adopting this

method, the network becomes a mesh topology. The neighbors
of each node are fixed. The +grid model makes the regular
connections between satellites, which allows us to implement
the system quickly without consideration of dynamic neighbor
satellites. In practice, the +grid model provides lower latency
variance and better path stability [2].

Splitting the whole orbit period into time slices is widely
used in satellite network research [11]. Here, we divide the
orbit period into several time slices. The orbit period is when
a satellite goes around the earth to the same position as the
beginning. In each time slice, the positions of all LEOs are
viewed as constant. Therefore, the relative positions of the
satellites and their serving users are the same within a time
slice. Hence, we can use the same multicast tree for a request
during each time slice. By splitting the orbit period into time
slices, we only need to handle the mobility (i.e., the relation
between LEOs and ground users) when the system goes into
the next time slice. For example, assume a request spanning
over three-time slices, so the request duration is set to 3, which
means we need three different multicast trees with two tree
transitions to serve the multicast request. The link handover
control messages are the cost of the tree transitions. We aim to
find the optimal tree transition sequence to reduce the control
overhead.

B. Problem Formulation

Let M = (Go,{G1,Ga,...,Gq},k,bw) be a multicast
request consisting of a ground node G| as the source, d ground
nodes G1, G, ..., G4 as destinations, a number of time slices
k, and the bandwidth requirement of the multicast stream-
ing bw. After receiving a multicast request, the controller
would plan a sequence of multicast trees T for the multicast
transitions. A sequence of the multicast trees is denoted as
T = [Ty, T3, ..., Tk, where k is the number of time slices
this request would continue (i.e., how many trees we need to
serve this request). After a sequence of multicast trees T is
established, the SDN controller sends link set-up messages
to LEO satellites on the first tree of the 7" to connect all
ground source and destination nodes to 73. Also, the SDN
controller reserves the link bandwidth for the future trees in
[T, T5, ..., Tx] to ensure enough link bandwidth in the k time
slices for the multicast request.

Let S* and D! denote the satellite serving the source Gy and
the set of satellites serving the destinations {G1, G2, ..., G4}
in each time slice ¢, respectively. After that, the controller
computes a multicast tree sequence T with length k for serving
a request with k£ time slices. The shape of the ¢-th tree T} in
the sequence T is represented as a link usage matrix X*:

t t t ¢

x%l Jj%2 1‘}3 l‘lN

To1 T2 T3 TN
Xt — . . . ) , (1)

t t t ¢
Tn1 Tn2 TNs TNN
where
b = 1, if link (4,7) is used at time slice ¢; @
Y 0, if link (¢, 7) is not used at time slice ¢.

1547

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on June 17,2024 at 16:10:44 UTC from IEEE Xplore. Restrictions apply.



2022 IEEE Global Communications Conference: Selected Areas in Communications: Satellite and Space Communications

Equation (1) is the tree matrix of the ¢-th tree in T, where
N is the number of LEO satellites in a network. Equation (2)
means each item of the tree matrix X* is 1 if a link from
satellite ¢ to satellite j is used in time ¢ and O otherwise. Note
that the indices ¢ and j here are the global identification of
satellites. The controller would compute £ trees to ensure there
is always a tree to serve the request in k-time slices. When
the time goes from slice ¢ — 1 to ¢, the controller sends control
messages to the satellites not in use and newly joined at slice
t to perform the tree transition. Our goal is to minimize the
number of satellite (link) handover control messages. The link
handover matrix Dif f* is defined as:

st Xt Xt if2<t<k;

biff = {0, ift=1; )
Equation (3) shows how to get the matrix of link handovers.
The @ operator is the element-wise Exclusive OR operation
for two matrices. The result after Exclusive OR is the matrix
of links that be released or be added from time slice £ — 1 to
t, for 2 <t < k. Thus, the objective of this paper is:

k
. . t
I(l’;l)l tE:1 |Diff*l. 4

In equation (4), the || operator sums up the number of
ones in the matrix Di f f?, which indicates the number of link
handovers from time slice ¢t — 1 to ¢, and the ), operator adds
up the total link handovers from the first time slice to the
last time slice. The equation (4) is an allocation problem. The
controller allocates the binary variable zgj in equation (1) to
form a multicast tree. And the objective is a summation of
the Exclusive OR operation, which is not a linear function.
The allocation problem is a well-known Integer Non-Linear
Programming (INLP) problem [12] that is NP-hard.

The multicast tree expression above in equation (1) is a
general multicast tree that leads to a large number of possible
trees. Fortunately, the traditional multicast tree algorithms have
their QoS considerations, such as the shortest path tree (SPT)
[13] or the Maximum Bottleneck Bandwidth Shortest Path
(MBBSP) [14] tree. So, we can generate multicast trees based
on one of the QoS considerations for all time slices and reduce
the number of link handovers. Nevertheless, many possible
trees can satisfy the same QoS consideration in each time
slice. To solve objective equation (4) at a reasonable cost, we
restrict the number of multicast trees in each time slice to be
a constant c.

For example, we can use the shortest path tree algorithm
to generate c different trees for each time slice. And store
these trees for time slice ¢t in 74, where 1 < ¢ < k. In
this way, we can limit the possible combinations of different
transition sequences. An example of three-time slices with
¢ = 3 is shown in Fig. 2. In Fig. 2, nodes in each time
slice are the tree candidates. The number on each node is
the accumulative transition cost of the node. The numbers on
the arrows are the tree transition cost between two-time slices.
To find the minimum transition cost, we can compute the cost

of all combinations of the possible tree transitions. However,
the time complexity is O(c*), which is exponential in k. To
solve this problem in polynomial time, we propose a dynamic
programming-based algorithm called Dynamic Multicast Tree
Selection (DMTS).

71
( ) 20

@ :
3
3
3

73

s,
el

o
-
.
R

-~/

Fig. 2. An example of DMTS with c =3 and k = 3
C. Tree Candidates of DMTS

This paper uses two traditional multicast QoS requirements
to show the performance of our algorithm. The first one is
the Shortest Path Tree (SPT), and the other is Maximum
Bottleneck Bandwidth Shortest Path (MBBSP).

1) Shortest Path Tree (SPT): The shortest-path tree means
that all paths to serve all the destinations are the shortest. The
shortest path of each destination can be easily computed by
Breadth-First Search (BFS). The complexity of BFS is O(N +
E), where N is the number of nodes and E is the number of
links. By the +grid model, the number of E is equal to 4N.
Therefore, the BES can be solved in O(N). It takes O(dN)
to find a multicast tree with the shortest path, where d is the
number of destinations.

2) Maximum Bottleneck Bandwidth Shortest Path: The
Maximum Bottleneck Bandwidth Shortest Path (MBBSP) [14]
aims to prevent network from congestion. The goal of MBBSP
is to find out paths with Maximum Bottleneck Bandwidth
(MBB) to prevent link congestion. MBBSP avoids routing
to the heavy loading satellites when the network load is
unbalanced. MBBSP computes MBB for all nodes with a
modified Dijkstra algorithm, where we modify the cost value
of the shortest distance to the value of MBB. Then, the
MBBSP uses BFS to find the shortest path that meet the MBB
requirement for each destination to form a multicast tree. It
takes O(NlogN + dN) to find a multicast tree candidate.

III. DYNAMIC MULTICAST TREE SELECTION (DMTS)

In this section, we propose a dynamic multicast tree se-
lection (DMTS) algorithm to reduce the link handovers with
polynomial time complexity. In addition, a modified version
of MBBSP, called LMBBSP, is proposed to improve the
reduction rate of link handovers in unbalanced network load.
To solve the proposed tree transition selection problem in a
polynomial time, we use the technique of dynamic program-
ming to find out the optimal tree transition sequence. The
DMTS computes the accumulative transition cost of each tree

1548

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on June 17,2024 at 16:10:44 UTC from IEEE Xplore. Restrictions apply.



2022 IEEE Global Communications Conference: Selected Areas in Communications: Satellite and Space Communications

in each time slice recursively. After that, DMTS chooses the
tree in the last time slice with the minimum accumulative cost
to be the last tree transition and then traverses backwardly to
figure out the whole transition sequence.

We elaborate the dynamic programming with a top-down
explanation. Let A! be the accumulative optimal cost of
multicast tree ¢ in time slice ¢. First, we introduce the recursive
recurrence of computing the A;?, where 1 < ¢ < ¢ and
1 <t < k. The recursion of Af is derived by:

At o {minlSjSC(Az_l + C]t',i)’ if 2 S t S /f

» 5
7o, ift =1, ©)

where C’Jtz is the transition cost from the j-th tree in time
slice t — 1 to the i-th tree in time slice ¢. The recursion of
equation (5) explains the optimal substructure of this dynamic
programming. The case when 2 < t < k shows the optimal
cost of time slice ¢ is based on the result of optimal costs of
time slice ¢ — 1. The base case of ¢ = 1 returns zero because
there is no transition in the first time slice. By equation (5),
DMTS can get the optimal accumulative cost of each time
slice. Second, we can derive the transition cost CL as follows.

(6)

L JIXTte XY, if2<t <k
A ) ift=1.

Here, we extend equation (1) to X! by adding index i to
represent the i-th candidate’s tree matrix in time slice {.
Equation (6) uses the Exclusive OR operator ¢ to get the
matrix difference between the j-th tree in time slice ¢ — 1
and the i-th tree in time slice ¢. The || operator indicates the
number of ones in a matrix.

Finally, after all costs and selected tree indices are com-
puted, DMTS selects the tree with the lowest accumulative
cost in the last time slice k.

R {argminlgigc(Af)v if k> 1; 7

argmini<i<.(|XF|), if k=1

Equation (7) returns the index R in the last time slice to
indicate the optimal multicast tree selected in time slice k.
In equation (7), if £ = 1, it means that the request starts and
ends in the first time slice. So, DMTS selects the tree with
the least total hop counts. The pseudo code of DMTS is given
in Algorithm 1 with a bottom-up implementation. The time
complexity of DMTS is O(kc?N?).

The SPT algorithm aims to find paths with the shortest hops
without considering the remaining bandwidth of links, leading
to network congestion. While the MBBSP aims to find paths
with MBB to prevent link congestion, it leads to longer paths
than SPT. We propose a compromising algorithm called Loose
Maximum Bottleneck Bandwidth Shortest Path (LMBBSP),
which looses the strict limit of MBB to allow more links can be
used for path-finding. In many cases, the required bandwidth
bw may be much lower than the mbb when the network load
is low. The tight limit of MBBSP removes too many valid
links when the network load is still light, which causes a lot
of unnecessary detours. To reduce the unnecessary detours,

Algorithm 1 Dynamic Multicast Tree Selection (DMTS)

Input: The request duration k, the number of tree candidates in each

time slice ¢, and the tree candidates [1, 72, ..., Tk]
Output: The optimal result index R in the candidate list of the last

time slice

: Compute Ct‘yi by eq. (6), where 1 <i¢,j <cand 1 <t <k;
: Initialize A; to oo, where 1 <i<cand 1<t <k;
for i =1 to c do

Al «0;
for t =2to k do

for i =1to cdo

for j =1tocdo
it AL+ Cf; < Al then

J

A ol e

hd

. if kK = 1 then

R = argmin <i<c(|XF));
. if kK > 1 then

R = argminlgigc(Af);

N
W = O

: return R

—_
'S

LMBBSP looses the tight limit of MBB. The main difference
of the LMBBSP is that LMBBSP allows the BFS to search
links above mbb with a tolerance factor 0 < o < 1. The new
valid link threshold is defined as:

threshold = max(mbb x (1 — «), bw), (8)

where mbb is the MBB of the searching destination node, and
bw is the bandwidth requirement of this multicast request. Link
with remaining bandwidth rb > threshold is a valid link for
path-finding. This expression means that the link whose b is
greater or equal to mbb x (1 — «) is valid. Note that the valid
link’s rb must be greater or equal to the requirement bw, so
the max operation is needed. The tolerance factor o makes a
trade-off between MBBSP and SPT. When « is close to 0, the
LMBBSP performs more like MBBSP with more bandwidth
consideration. When « is close to 1, the LMBBSP performs
more like SPT, which focuses on minimizing the hop counts
and has more diversity of path-finding. By using LMBBSP,
the DMTS has impressive improvement in the aspect of the
number of link handovers while slightly sacrificing the request
rejection rate compared to the original MBBSP.

IV. PERFORMANCE EVALUATION

The simulation results of our DMTS with different multicast
tree algorithms, including SPT, MBBSP, and LMBBSP, are
shown in this section. The simulation is running on Intel Xeon
Silver 4110 CPU with Python 3.6.9. All the simulation results
are the average of 20 different cases. The number of orbits
and satellites per orbit are set to 25 and 25, respectively. The
total number of satellites is 625. The bandwidth of each link
is 1000Mbps. The number of requests is 200. We randomly
choose the size d of the multicast group in [10,40]. The
positions of the ground source and d destinations are randomly
generated. The duration k is randomly chosen within [1, 6], and
the bandwidth requirement bw is randomly selected in [10, 30]
Mbps. The simulations would deploy the constellation in the
sky and connect them with the +grid model.

1549

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on June 17,2024 at 16:10:44 UTC from IEEE Xplore. Restrictions apply.



2022 IEEE Global Communications Conference: Selected Areas in Communications: Satellite and Space Communications

= SPT —~ MBBSP-DMTS —SPT — MBBS-DMTS
+ SPT-DMTS —+ LMBBSP-DMTS SPT.DMTS — LMBBSP-DMTS
~MBBSP —MBBSP
- 100
5]
z 3, 80
= =4
g Z 60
(]
= B 40
E g
i s 20
o
[_1
0
45 6 7 8 9 10 S0 100 150 200 250

Number of time slices Number of requests

Fig. 3. Number of link handovers vs. Fig. 4. Number of rejections vs. num-
request duration ber of requests

When the SDN controller receives a multicast request, the
geographical information of longitude and latitude of the
ground nodes is first converted into 3D coordinates with the
formula in [15], and the nearest satellites in each time slice
are assigned to be the serving satellites. After converting the
nodes’ information into satellites, the controller computes the
tree sequence according to the algorithm used. The controller
allocates the link bandwidth and reserves bandwidth for future
time slices when a tree sequence is found. If the controller
cannot find a proper tree to serve the request, the request will
be rejected. In our simulations, we choose ¢ = 5 because it
has a better balance between execution time and link handover
reduction. Besides, we choose o = 0.2 because it provides
a sharp reduction in number of link handovers and only
sacrifices 1.1% request rejection rate compare to a = 0.0
(i.e., MBBSP).

A. Link Handovers and Request Rejections

Here, we show the benefits of DMTS and LMBBSP in
aspects of link handovers and request rejection rate. We
simulate two different versions of algorithms. The version
without DMTS means that the controller only generates one
multicast tree for each time slice. Using the DMTS version,
the controller generates five multicast trees and chooses the
lowest cost transition sequence. Fig. 3 shows the average
number of link handovers for a request. We can observe that
the SPT and MBBSP with DMTS can reduce link handovers
by 16.4% and 7.7% compared to the original SPT and MBBSP,
respectively. The LMBBSP-DMTS has a similar performance
as the SPT-DMTS. The link handover of LMBBSP-DMTS
is 45% lower than the MBBSP-DMTS. The main reason is
that the LMBBSP allows the path-finding to relax the original
MBB constraint. Therefore, the trees generated by LMBBSP
are shorter than MBBSP, which leads to lower transition cost.
Thus, DMTS can select a better sequence with LMBBSP than
MBBSP.

The request rejection rate in an unbalance network load
is shown in Fig. 4. Here, we congest 40% of links with a
load of [75%,95%] to simulate the unbalance network load.
We can observe that the methods with consideration of the
MBB have a significantly lower rejection rate than the SPT
ones. The algorithms with DMTS have a lower rejection rate

-= SPT —~MBBSP-DMTS
+ SPT-DMTS —+ LMBBSP-DMTS
-—MBBSP

800 \
700
6

—

9] - 5 =
=4 — — \)\'t?::——g—_w. —s _—

— 400 =
40% 0% 10% 20% 30% 40%
Percentage of links congested

-=SPT —~MBBSP-DMTS
+ SPT-DMTS —+ LMBBSP-DMTS
- MBBSP

12
0%  10% 20% 30%
Percentage of links congested

Fig. 5. Average hops vs. percentage Fig. 6. Number of link handovers vs.
of links congested percentage of links congested

than those without DMTS. The reason is that the DMTS
tends to choose trees with lower total hops, so the bandwidth
occupation is lower than the original algorithm, leading to
a lower rejection rate. In the aspect of rejection rate, the
MBBSP-DMTS outperforms all the others since it follows the
tightest limit of MBB, and the algorithm with DMTS tends to
choose the trees with lower total hops leading to a lower link
occupation. MBBSP-DMTS outperforms the simple SPT and
SPT-DMTS with 23.7% and 18.4%, respectively. Compared
to MBBSP-DMTS, LMBBSP-DMTS just slightly sacrifices
1.2% of the rejection rate, but it can reduce the number of
link handovers by 44.6%.

B. Performance with Different Network Load

Fig. 5 shows the average hops of multicast algorithms in
congested environments. We randomly select different percent-
ages of links to simulate various network loads. The algorithms
with DMTS have slightly lower average hop counts than the
algorithms without DMTS such as SPT and MBBSP algo-
rithms. Since dynamic programming minimizes the number of
link handovers, the trees with lower total lengths have more
selection opportunities. The MBBSP algorithm has larger hops
than the SPT one because the MBBSP takes a detour to use
links with larger remaining bandwidth. Note that hop counts
of MBBSP become shorter when the network load becomes
heavy. The reason is that the tight limit of MBB increases
the number of invalid links in the light-loaded network even
if the links still have enough bandwidth to support multicast
routing, so MBBSP takes more unnecessary detours. For the
LMBBSP-DMTS, it performs almost the same hop counts
as SPT when the network load is light since it avoids the
unnecessary detours of the MBBSP.

The number of link handovers with different network loads
is shown in Fig. 6. Both SPT and MBBSP have lower links
handovers as network load increases. The reason is that when
network loading increases, the number of valid links decreases,
so there is more opportunity to select the same links. Besides,
MBBSP decreases sharper than SPT because it not only avoids
the congested links but also avoids the heavy-loaded links.
Therefore, MBBSP has more opportunities to choose the same
links than SPT. Note that the number of link handovers of
the compromising method LMBBSP-DMTS decreases when

1550

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on June 17,2024 at 16:10:44 UTC from IEEE Xplore. Restrictions apply.



2022 IEEE Global Communications Conference: Selected Areas in Communications: Satellite and Space Communications

= SPT — MBBSP-DMTS —SPT — MBBS-DMTS
+ SPT.DMTS —+ LMBBSP-DMTS SPT-DMTS — LMBBSP-DMTS
~ MBBSP —MBBSP
250 3 120
» 2000 S 100
13} =
L o
- @
5 250 g 60
= 1000 g 40
= 750 2 20
500 I

4 5 6 7 8 9 10 50 100 150 200 250 300
Number of time slices Number of requests

Fig. 7. Number of link handovers vs. Fig. 8. Number of rejections vs. num-
request duration with large network  ber of requests with large network

network loading is light. Because when loading is light,
LMBBSP-DMTS performs more like SPT to reduce the length
of multicast trees. However, when the network load becomes
heavy, the property of MBBSP takes the lead on path-finding.

C. Performance with Large Network Size

In this simulation, the number of orbits and satellites per
orbit are 32 and 32, respectively. The total number of satellites
is 1024. Deploying a denser constellation brings some benefits.
For example, the accessibility of ground users increases, and
the transmitting power needed to reach the same data rate is
reduced [16]. But the number of link handovers also increases.
When using a larger topology, the size of trees and the density
of satellites increase, so the length of paths increases. There-
fore, the total number of link handovers increases. However,
the effect of DMTS is still noticeable. Fig. 7 shows the number
of link handovers for different schemes. Our DMTS scheme
still works well with varying sizes of networks. The DMTS
can reduce 17.5% and 8.9% of link handovers for SPT and
MBBSP, respectively.

The reduction rate of link handovers slightly increases
than the number of satellites is 625. The reason is that the
number of nodes used for data forwarding increases for the
same source and destination pair, so there are more choices
for path-finding. Thus, DMTS can find a better transition
sequence. Fig. 8 shows the requests rejection rate. With a
larger topology, the number of requests that can be accepted
increases, and the LMBBSP-DMTS can still outperform the
SPT and SPT-DMTS with 22.7% and 16.9% of rejection
rate, respectively. LMBBSP-DMTS can perform close to the
MBBSP-DMTS with only 1% gap of rejection rate while
reducing the number of link handovers with the impressive
ratio of 49% in unbalanced network load. In conclusion, no
matter the size of the network topology, DMTS works well to
reduce the number of link handovers, and the compromising
method LMBBSP-DMTS reduces a large number of link
handovers while scarifies a little reduction rate compared to
the MBBSP-DMTS.

V. CONCLUSION

In this paper, we propose a multicast-tree link handover
reduction problem. This problem can be solved by a sequence

of multicast tree selection in a number of time slices. The
proposed DMTS is a general tree selection scheme that can
be used with traditional multicast tree generation algorithms.
DMTS brings the benefits of shorter hops and a lower number
of link handovers. A compromising multicast tree generation
algorithm called LMBBSP is proposed to make a trade-off
between the shortest path and congestion avoidance in a load
unbalanced network. The simulation results show that the
algorithms with DMTS have fewer hops and link handovers
than the original ones. Besides, the LMBBSP can reduce the
number of link handovers compared to the MBBSP while its
request rejection rate is close to MBBSP.

REFERENCES

[1] O. Kodheli et al., “Satellite communications in the new space era: A
survey and future challenges,” IEEE Communications Surveys Tutorials,
vol. 23, no. 1, pp. 70-109, 2021.

[2] B. Kempton and A. Riedl, “Network simulator for large low earth orbit
satellite networks,” in ICC, 2021, pp. 1-6.

[3] H. Zhang and C. Wang, “Research on routing control with delay con-
straint based on contact plan for integrated satellite terrestrial network,”
in ICICN, 2020, pp. 155-159.

[4] X. Zhu and C. Jiang, “Integrated satellite-terrestrial networks toward
6g: Architectures, applications, and challenges,” IEEE Internet of Things
Journal, vol. 9, no. 1, pp. 437461, 2022.

[5] T. Bilen et al., “Aeronautical networks for in-flight connectivity: A
tutorial of the state-of-the-art and survey of research challenges,” IEEE
Access, vol. 10, pp. 20053-20079, 2022.

[6] E. Ekici, I. Akyildiz, and M. Bender, “A multicast routing algorithm for
LEO satellite IP networks,” IEEE/ACM Transactions on Networking,
vol. 10, no. 2, pp. 183-192, 2002.

[7]1 C. Yuan and X. Wang, “A multicast routing algorithm for GEO/LEO
satellite IP networks,” in IEEE International Conference on Dependable,
Autonomic and Secure Computing, 2013, pp. 595-599.

[8] Y. Ma et al., “A source-based share-tree like multicast routing in satellite
constellation networks,” in FTRA International Conference on Mobile,
Ubiquitous, and Intelligent Computing, 2012, pp. 240-245.

[91 M. Hu et al., “Software defined multicast for large-scale multi-layer

LEO satellite networks,” IEEE Transactions on Network and Service

Management, pp. 1-1, 2022.

E. Ekici, I. Akyildiz, and M. Bender, “Datagram routing algorithm for

LEO satellite networks,” in Proceedings IEEE INFOCOM 2000, vol. 2,

2000, pp. 500-508 vol.2.

F. Shen, H. Yu, and X. Zhang, “HATS:a handover optimized routing al-

gorithm for the low earth orbit (LEO) satellite network,” in International

Conference on Information, Communications and Signal Processing

(ICICS), 2009, pp. 1-5.

R. Hemmecke, M. Koppe, J. Lee, and R. Weismantel, “Nonlinear

integer programming,” 50 Years of Integer Programming 1958-2008,

p. 561-618, Nov 2009.

L. Krishnamachari, D. Estrin, and S. Wicker, “The impact of data aggre-

gation in wireless sensor networks,” in Proceedings 22nd International

Conference on Distributed Computing Systems Workshops, 2002, pp.

575-578.

J.-P. Sheu, C.-W. Chang, and Y.-C. Chang, “Efficient multicast algo-

rithms for scalable video coding in software-defined networking,” in

PIMRC, 2015, pp. 2089-2093.

H. Xu et al., “A hybrid routing algorithm in terrestrial-satellite integrated

network,” in /CCC, 2020, pp. 90-95.

O. Popescu, “Power budgets for cubesat radios to support ground

communications and inter-satellite links,” IEEE Access, vol. 5, pp.

12618-12625, 2017.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

1551

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on June 17,2024 at 16:10:44 UTC from IEEE Xplore. Restrictions apply.



