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Abstract—The WiFi-based localization approach has been
widely used in the indoor environment. This paper proposes a
MultIple Fingerprints-based Indoor localization system (MIFI).
MIFI is based on the depthwise separable convolution neural
network technique and utilizes Unmanned Aerial Vehicle (UAV)
to help with transmitting fingerprint data. With the help of UAV,
human effort can be decreased. In the training phase, we collect
the Channel State Information (CSI) of the reference points. In
the testing phase, CSI sent at the test locations are collected by
Raspberry PI 4 as the input, then the system will output the
predicted location. The experiment results show that MIFI can
achieve a higher classification accuracy and mean localization
distance error than the baseline work. Compared to the CSI
data sent from UAV, only a minor performance is lost due to the
drift problems of UAV.

Index Terms—Channel State Information, Fingerprint, Indoor
Localization, Convolution Neural Networks, Unmanned Aerial
Vehicle

I. INTRODUCTION

Location-Based Service (LBS) is one of the most important
IoT applications. Though GPS can provide accurate local-
ization results in outdoor environments, indoor environments
still cannot get a satisfying result. Thus, finding an alterna-
tive approach for the indoor environment is necessary. Some
researchers have studied vision-based localization approaches
with deep learning. To achieve high localization accuracy with
vision data, the authors in [1] and [2] utilize the images
obtained by the device’s camera and fuse them with other data,
such as wireless signals and coarse GPS results, to localize
the target. Although these researches can achieve accurate
localization results, they usually suffer from the problem
of photo quality due to the light condition, camera quality,
surroundings, etc. So, the vision-based approaches are not
suitable for the indoor environment.

For the Indoor Localization System (ILS), to achieve high
accuracy localization, a large number of devices are needed
to install in the specified environment. Due to the low cost
and convenience, the WiFi-based approach has become the
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mainstream of ILS [3] that does not require many additional
devices. In the previous ILS research, the Received Signal
Strength (RSS) of the wireless signal is widely used in the
WiFi-based fingerprint approach [4]. RSS was used as the
input, and a database was built to store the fingerprints from
various locations. The testing phase matches the fingerprint to
the map from the fingerprint database by various approaches,
such as the least square approach, maximum likelihood, K-
Nearest Neighbors (KNN), and Neural Network (NN) [5], [6].
RSS of the wireless signal is easy to use and widely applied
because it can be directly acquired from devices. But RSS
is a coarse-grained feature for the indoor environment. The
multiple paths and signal blocking problems will severely im-
pact the collected fingerprint data and degrade the relationship
between RSS data and location. So, RSS is hard to provide
an accurate result.

In contrast with the RSS, Channel State Information (CSI)
represents the frequency response of a communication chan-
nel, and CSI is a fine-grained feature in the physical layer with
higher stability [3], [7]–[10]. However, CSI cannot be directly
acquired from most user equipment such as smartphones, and
it can be obtained only by modifying the firmware of the
specific WiFi network chips [11]–[13]. The CSI extracted from
the devices is described in a complex number, which can be
transformed into features of Orthogonal Frequency-Division
Multiplexing (OFDM) sub-carriers. Compared to RSS, CSI
contains features of each sub-carrier, including the phase and
the amplitude, which can provide more information than RSS,
and it is more stable than RSS. So, we can reach a more
accurate result by using CSI over RSS.

Utilize a WiFi-based fingerprint approach to set up ILS
need to build a database that stores the fingerprints of all the
reference points. But a lot of effort is required to transmit
fingerprints by humans, which is time-consuming and labor-
consuming. To solve the problem, the authors of [14]–[16]
utilize UAV in localization. UAV is helpful with transmitting
CSI fingerprints because of its good mobility that can ignore
obstacles on the ground and work automatically. With the help
of UAV, human work can be significantly reduced.

This paper proposes a multiple Fingerprints-based indoor
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localization system, MIFI, that utilizes human or UAV carrying
user equipment (UE) to receive data sent by WiFi AP. As the
UE can not acquire CSI directly, we used the Raspberry PI 4
(PI4) as a monitor. PI4 installed the Nexmon framework [13],
which uses frame injection to make UE send UDP packets
about the information of the physical layer to PI4 after UE
received the data transmitted from AP. Then PI4 can extract
CSI data from the received UDP packets as the reference data
(fingerprints). After preprocessing, the collected CSI data will
feed to a depthwise separable convolution neural network.
We use the Hampel filter and moving average (MA) filter
to reduce the fluctuation of the raw data. We utilize multiple
PI4s to collect robust CSI fingerprints for localizing the target.
The number of PI4 depends on the size of the environment.
More PI4s are needed in a larger area. The experiments show
that the localization accuracy of MIFI outperforms the other
approaches, such as KNN, XGBoost, Random Forest, and
SVM, in indoor environments. In addition, we also show
that UAV helps send fingerprint data, reducing human effort
and preserving satisfying accuracy compared with data sent
manually.

In the remainder of this paper, the system model is presented
in Section II. Then, we introduce our scheme in Section III. In
Section IV, we provide experimental validation results. Finally,
we conclude our work in Section V.

II. SYSTEM MODEL

This section will present the CSI and system model for
indoor localization. The CSI consists of the channel charac-
teristics during the signal propagation between the transmitter
and receiver, which contains the effects of scattering caused
by the surroundings, signal attenuation during propagation,
etc. According to IEEE 802.11ac, a signal can be transmitted
through sub-carriers with different frequencies and mutually
orthogonal by OFDM. Let xi and yi denote the transmitted
and received signal vectors. We can obtain

yi = Hxi +Ni, (1)

where Ni represents the additive white Gaussian noise. H
is the CSI matrix that makes devices adapt transmissions to
the channel conditions, which is important to achieve robust
communication with high data rates. H can be estimated by
xi and yi.

Fig. 1 shows the architecture of our system. Our system
architecture utilizes multiple PI4s to collect CSI data when
the WiFi AP transmits data to the target device, such as a cell
phone. The collected CSI fingerprints are stored in a database.
After data processing, fingerprints will be input to the machine
learning (ML) model. The ML outputs are the probability of
the target at different locations where we have collected data.
Then, we will use the weighted average to acquire the target’s
predicted location.

The CSI signal will decrease due to the increased transmit-
ted distance and the signal blocking, multipath propagation,
etc. According to [17], the authors have tested how CSI

decrease in a real-world environment. In the real-world envi-
ronment, PI4 might lose the packets sent by UE, leading to the
extracted CSI containing considerable noise in some locations.
Therefore, the collected CSI data are not stable enough if we
only collect them by one device. So, we use multiple PI4s
to collect data that can yield more robust fingerprints than
utilizing only one PI4, especially for a large environment. The
number of PI4s to collect data depends on the environment’s
size.

Fig. 1: System Architecture for Multiple PI4s

According to the experiment of the feature selection in
[18], the authors assumed the input of the ML model should
be the most stable component of the CSI. The stability of
CSI is defined as the correlation between the value of CSI
collected from a very close location. The experiment tests
four components of CSI, including real, imaginary, amplitude
(3), and phase (4), respectively. The relationships between the
components of CSI are defined as:

h = Real + j(Imaginary) (2)

|h| =
√

(Real)2 + (Imaginary)2 (3)

∠h = tan−1(
Imaginary

Real
), (4)

where |h| is the amplitude of CSI and ∠h is the phase of CSI.
The experiment result shows that no matter which sub-carrier
is chosen, the correlation of amplitude has the highest stability.
The phase component is not stable enough to train a model.
So, the amplitude of the CSI is chosen as the input feature of
our ML model.
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III. MULTIPLE FINGERPRINTS-BASED INDOOR
LOCALIZATION SYSTEM (MIFI)

This section will introduce the implementation of our
multiple fingerprints-based indoor localization system MIFI,
including data preprocessing and ML model algorithm.

A. Data Preprocessing

Though we can acquire the CSI data, the multipath and
shadowing will cause the raw data to fluctuate. Therefore,
the raw data cannot provide satisfying features for ML if we
directly use it as input. So, data preprocessing is necessary
for the ML. The raw data collected from the PI4 consist of
noise and interference, even if we process it into amplitude.
To improve the performance of the CSI data, we need to
preprocess the raw input data. Firstly, no matter which band-
width of WiFi is adopted, null sub-carriers exist that do not
transmit data. Secondly, besides the null sub-carriers, pilot sub-
carriers are also in the CSI data that do not carry user data.
For example, 802.11ac with 80MHz bandwidth, the number
of sub-carriers is 256 that ranges from [−128 ∼ 127], the
usable sub-carriers range from [−122 ∼ −2, 2 ∼ 122], there
are 14 null sub-carriers. The ranges of 8 pilot sub-carriers are
[±11,±39,±75,±103]. Therefore, 22 sub-carriers should be
removed from raw data. Finally, we pick 234 sub-carriers from
the original 256 sub-carriers.

After removing the sub-carriers, noise still exists that causes
outliers in the CSI data. Here, we utilize a Hampel filter
to filter the outliers of the data. For each sample xi in the
vector V = [x0, x1, ..., xk], where k is the number of receive
packets in the specific sub-carrier. The Hampel filter computes
the median and the standard deviation of a sliding window
Whampel composed of a sample xi and six surrounding data.
If xi differs from the median by more than three standard
deviations, it is replaced with the median. The equation of the
Hampel filter is defined as:

xi =

 median, if xi > median+ 3 ∗ σ,
median, if xi < median− 3 ∗ σ,

xi, otherwise,
(5)

where σ means the standard deviation. The input of the
Hampel filter is consecutive CSI packets from the same sub-
carrier, as [Hi,j , Hi,j+1, ...,Hi,j+(n−1)], where i is one of the
234 sub-carriers after removing the none used ones, j is the
packet number, and n is packets we collect at each location.
We set n = 500 in our experiments.

Although after the Hampel filter, most of the outliers and
the noise has been eliminated, there still exists a little noise in
the data, causing it is not stable enough to make the ML model
learn the characteristic of each location. We utilize the moving
average (MA) filter to average the amplitude of consecutive
CSI data [Hi,j , Hi,j+1, ...,Hi,j+n] in the same sub-carrier. The
equation of MA is shown below:

AverageAmp =
(Ampi +Ampi+1 + ...+Ampi+(N−1))

N
,

(6)

where N is the window size of each MA filter, i is the number
of the continuous CSI amplitude. In our experiment, we pick
N = 3 to execute the MA filter. After the MA filter, we can
get stable fingerprints as the input of MIFI.

B. Machine Learning Model

After data preprocessing, each of the fingerprints contains
a 1 × 234 CSI amplitude matrix, corresponding to the CSI
amplitude of 234 sub-carriers. Inspired by MobileNet [19], we
designed MIFI based on the depthwise separable convolution
that is lighter than traditional convolution and can provide
localization results faster. MIFI consists of multiple input
layers, each corresponding to a PI4i collected by i-th PI4.
Each input layer follows a series of convolution layers and
one fully connected (FC) layer designed with data evaluation.
The setting of each layer’s parameters is shown in Table I. The
series of convolution layers consist of five convolution layers,
the first one is a traditional convolution layer, and the others
are depthwise separable convolution layers. A concatenate
layer concatenates the output of the FC layers from different
input layers. Finally, a series of FC layers is set to utilize the
concatenate data as input and output the result of the MIFI.
After the concatenate layer, the nodes number of the FC layer
is set to 64, and SELU is set as the activation function. Then,
the number of the output nodes K is dependent on the number
of locations stored in the training set. By setting the softmax
as the activation function in the output layer, we have the
probability of each location in the output of the ML model.

TABLE I: Parameter Setting of Machine Learning Model

Type Filter Number Activation Function Kernel Size Stride

conv1D 32 SELU 3 2
conv1D dw 32 SELU 3 1
conv1D 64 SELU 1 1
conv1D dw 64 SELU 3 2
conv1D 128 SELU 1 1
AvgPooling – – 7 1

Type Node Number Activation Function

Flatten – –
FC 128 SELU

The localization problem can be assumed as a classification
problem that classifies the input data to the location with the
highest probability, so we consider category cross-entropy as
a loss function to solve the classify function, which is denoted
as:

Loss = −
C∑
i

ŷi log yi, (7)

where ŷi is the true value of the target, yi is the output value of
the target, C is the number of categories. Adam optimization
is used to optimize the training procedure.

In the training phase, we divide the environment into two-
dimensional rectangular grids to determine the target location.
Each grid represents a category that MIFI has to learn.
The fingerprints collected by different PI4s after finishing
preprocessing are used as the training set of MIFI. MIFI will
learn the characteristics of the fingerprints collected at each
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grid and predict the location of the target. The output of the
MIFI is the probability of each grid where the target is.

In the localization phase, its goal is to provide accurate
indoor localization service to the users. PI4s collected the CSI
data through signals transmitted between AP and UE. Then
MIFI utilizes the CSI fingerprints as input and determines the
probability of each grid where the target is. However, the user
might not be at the location where we have collected data. So,
in the localization phase, we pick locations different from the
training set as the testing set. For each input from the testing
set, we utilize the weighted average approach that picks the
top k locations with the highest probability from the output
of the model and computes the user’s location as follows:

x̂ = (

∑k
i=1 wixi∑k
i=1 wi

) (8)

ŷ = (

∑k
i=1 wiyi∑k
i=1 wi

), (9)

where x̂ and ŷ are the user’s coordinate in the environment,
wi is the probability of the user in the grid i, and (xi, yi)
is the coordinate of the grid i. We pick k = 10 to compute
the predicted location in our experiments. Finally, the mean
localization error of the testing set is computed by Root Mean
Square Error (RMSE), which is shown below:

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2, (10)

where ŷ and y are the predicted location and actual location
of the testing set, respectively, and N is the number of the
testing data.

IV. EXPERIMENTS

To evaluate the performance of our system, we set multiple
evaluation cases, including the classification case, localization
case, and case of fingerprint data sent from UAV as training
input. We will introduce our experiment setup in the following
subsection.

A. Experiment Setup

In the following experiments, we use a notebook installed
with windows 10 as a WiFi AP, an HTC U12 cell phone as a
target device (UE), and two PI4s with kernel version 5.4 and
Nexmon framework as monitors to collect the CSI packets
when the cell phone is receiving packets from AP. A GPU
server with TensorFlow is used to improve the training time.
Our devices are running on 802.11ac 80 MHz. A total of 256
sub-carriers can be acquired. We take the amplitude of CSI
from the selected 234 sub-carriers as the input of our proposed
MIFI model.

In this paper, the real-world indoor localization experiments
are in the basement and 7F corridors of the Electrical Engi-
neering and Computer Science (EECS) building in National
Tsing Hua University (NTHU) as shown in Fig. 2(a) and Fig.
2(b), respectively. The area size of the basement is 7.15 m ×

3.3 m. The space of 7F corridors consists of two corridors.
One is 18.15 m × 1.65 m, and the other is 3.85 m × 1.65
m, respectively. To collect the data, we divide the area into
grids. Then we localize the collected data into these grids as
the reference points (RPs). RPs in the two regions are divided
into two sets, one is for training, and another one is for testing.
Training points are marked as blue color, and testing points
are marked as red color.

In Fig. 2(a), we divide the area into grids, and the size of
each grid is 0.55 m × 0.55 m. We pick 60 grids for training
and 18 grids for testing. In Fig. 2(b), the size of each grid is
0.55 m × 0.55 m, and 120 grids are collected in total. We pick
100 grids for training and 20 grids for testing. We collected
500 packets at the center of each grid. MIFI needs only 1.33
seconds to compute 500 packets collected from each PI4 to
provide fast localization results to users.

B. Determining the Number of PI4s

According to our evaluation, the processing time of data
collected by one PI4 is 47% of the data using two PI4s.
However, the convergence speed of using one PI4 is slower
than that of two PI4s and cannot converge to 100% accuracy.
This result shows that the data collected by one PI4 cannot
provide enough features for machine learning. For the data
collected by two PI4s, the accuracy of the validation set can
converge to almost 100%. So, we use two sets of CSI data
[PI41, PI42] collected by two PI4s and design MIFI as a two-
input model. In addition, combining the characteristics of the
fingerprints collected by two PI4s can degrade the ambiguity
of the data.

C. Classification and Localization Performance

To evaluate the performance of MIFI, we first test with a
classification case. We separate the original training set data
into 80% of the sub-training set and 20% of the sub-testing
set, which means that the locations in the sub-testing set and
the sub-training set are the same. This experiment case aims
to test whether MIFI can classify the CSI data collected at
locations that it has learned.

With the sub-testing set, MIFI can reach 100% accuracy in
the basement and corridors of the EECS building, which means
that fingerprints at the trained locations have been learned.
Compared to other approaches with the same data set, such as
KNN, Random Forest, XGBoost, and SVM. The classification
results are shown in Table. II. We can observe that MIFI has
better classification accuracy than the other models. Though
random forest and XGBoost have better performance than
KNN and SVM due to the technique of decision trees, all
of them cannot process the data with lots of dimensions. So,
their classification performance is lower than MIFI.

Secondly, we evaluate the localization ability of MIFI in the
basements and corridors. The locations in the training set and
the testing set are different. We use the weighted average to get
the predicted location of the testing set. The RMSE between
the predicted results and true target locations of the basement
and corridors are shown in Table III. The MIFI has a 0.90 m
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(a) Basement of EECS Building (b) 7F Corridors of EECS Building

Fig. 2: Experiment Environments

TABLE II: Classification Accuracy

MIFI KNN Random Forest XGBoost SVM

Basement of EECS Building

Grid Size = 0.55 m × 0.55 m 100% 96.85% 98.97% 98.85% 85.04%

Corridors of EECS Building

Grid Size = 0.55 m × 0.55 m 100% 98.57% 99.7% 99.8% 84.87%

mean error better than KNN, Random Forest, XGBoost, and
SVM in the basement case. In the 7F corridors, the MIFI has
a 2.28 m mean error between the predicted results and the
target’s locations, which is better than other approaches in our
experiments. The mean error of the corridors is worse than the
basement because the area size of the corridor is larger than
the basement and the multipath and shadowing of corridors is
more affected than the basement. The cumulative distribution
function (CDF) of the RMSE results for the basement and
corridors are shown in Fig. 3(a) and Fig. 3(b), respectively.
The CDF of MIFI is better than other approaches that utilize
weighted average to compute predicted location.

TABLE III: RMSE Results for the Basement and Corridors

MIFI KNN Random Forest XGBoost SVM

Basement of EECS Building

Grid Size = 0.55 m × 0.55 m 0.90 m 1.90 m 1.30 m 1.34 m 1.64 m

Corridors of EECS Building

Grid Size = 0.55 m × 0.55 m 2.28 m 3.36 m 2.7 m 2.86 m 2.86 m

D. Performance Evaluation with Help of UAV

UAVs are helpful for ILS because of their mobility. UAVs
usually utilize an ultrasonic sensor to calculate their height.
However, it will contain errors due to the height difference and
fluctuate collected data. Moreover, in indoor environments, the
auto-hover system of the UAV will not work, causing the drift
of the UAV’s location. So, the ILS with the UAVs must remove
the fluctuation of the data and be robust enough to classify the
data.

The following experiment is executed in the basement area.
To test the performance of MIFI with the help of UAV, we
train MIFI with the data sent from the cell phone mounted on

(a) CDF with Grid Size = 0.55 m × 0.55 m
in Basement of EECS Building

(b) CDF with Grid Size = 0.55 m × 0.55 m
in Corridors of EECS Building

Fig. 3: CDF of Localization Result

the UAV and test with the CSI data sent from the human. The
flying height of the UAV is 50 cm ∼ 60 cm. Due to the drift
problem of UAV, the grid size that we collect data is 1.1 m
× 1.1 m, avoiding packets being wrong labeled if the size of
the grid is too small. The UAV utilized in our experiment is
shown in Fig. 4.

The RMSE of using UAV and human work to send data are
shown in Table IV. Due to the ability to process data fluctua-
tion caused by UAV, MIFI outperforms other approaches. For
the MIFI scheme, the mean error results of using UAV and
human are 1.28 m and 1.09 m, respectively. Compared the
localization results that data sent from UAV, with the localiza-
tion results that data sent from human, a little performance is
lost due to the drift problems of UAV. So, utilizing UAV for
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Fig. 4: UAV Photo of Experiment

localization can reduce human effort and preserve satisfying
localization accuracy in the indoor localization scenario. Fig.
5(a) and Fig. 5(b) show the CDF of the RMSE results
for different approaches with the help of UAV and human,
respectively. The MIFI is outperforming other methods due to
the ability of processing complex data. In addition, the CDF
with human help is more stable than the CDF with UAV help.

TABLE IV: RMSE Results with UAV and Human Effort

MIFI KNN Random Forest XGBoost SVM

Collect Data with the UAV Help

Grid Size = 1.1 m × 1.1 m 1.28 m 2 m 1.55 m 1.94 m 1.83 m

Collect Data with the Human Help

Grid Size = 1.1 m × 1.1 m 1.09 m 1.89 m 1.33 m 1.47 m 1.71 m

(a) CDF with UAV Help in Basement of
EECS Building

(b) CDF with Human Help in Basement of
EECS Building

Fig. 5: CDF of Localization Results with UAV and Human
Effort

V. CONCLUSION

This paper proposes an indoor localization system MIFI
based on the depthwise separable convolution layers using
CSI fingerprints. Based on our experiments, MIFI utilizes
CSI data collected by two PI4s to yield robust fingerprints
in our experiment environments. Our model can reduce the
computational cost of the network to solve the classification
and localization problems. The experiment results show that
the locations classification accuracy and mean localization
error of MIFI are better than baselines. In addition, with the
help of a UAV, the MIFI can reduce human effort significantly
and preserve satisfying performance.
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