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Abstract—With the advances in Social Internet of Things
(SIoT) and Federated learning (FL), smart devices are now able
to cooperatively and locally perform learning tasks to protect
sensitive data by Differential Privacy (DP). On the other hand,
Hierarchical FL (HFL) clusters SIoTs into multiple local training
groups to reduce communication overheads by local aggregation.
In this paper, we explore SIoT Training Group Construction
(STGC) for HFL to minimize the total SIoT computation, com-
munication and hiring costs, and the privacy cost for exploiting
DP. We prove that STGC is NP-hard and inapproximable within
any factor unless P = NP. Then, we design an algorithm with the
ideas of Coverage Efficiency Indicator, Data Balance-aware Dual
Adjustment, and Privacy-Aware Rerouting to choose and cluster
SIoTs and to determine the aggregator for local training and
SIoT routing in each cluster. Simulation results manifest that the
proposed algorithm outperforms state-of-the-arts regarding the
total cost, model accuracy, and convergence time.

I. INTRODUCTION

With the advances in Artificial Intelligence (AI), the notion

of Social Internet of Things (SIoT) has emerged to create

and maintain the collaborative social relations among smart

IoT devices [1].1 First, SIoTs possessed by the same owner

can share ownership object relation. Next, they can build co-
location object relation and co-work object relation if they

are located in adjacent areas and designed to manage similar

events, respectively. For example, SIoTs with ownership or

co-work object relations in hospitals can cooperatively perform

learning tasks (i.e., federated learning [2], [3]) for smart health

monitoring and patient tracking of COVID-19 [4], [5].

Federated Learning (FL) [2], [3] is a novel machine learning

paradigm which allows SIoTs to locally train learning models,

and the SIoTs only exchange their model weights with the cen-

tral server, executing Federated Averaging (FedAvg) for model

aggregation, to prevent accessing others’ private data. In order

to reduce communication overheads, Hierarchical FL (HFL)

[6]–[8] was proposed to cluster SIoTs into multiple local

training groups, where each group includes an aggregator (AG)

to execute a number of local aggregations before uploading the

aggregated model to the central server for global aggregation.2

Liu et al. [6] designed a client-edge-cloud learning framework

1For ease of presentation, we will use (S)IoTs to represent (S)IoT devices.
2The communication cost is reduced since the local aggregation exploits

short-range communications like D2D for exchanging the model with the AG.

with low communication costs. Mhaisen et al. [7] chose users

for each training group according to the distribution distance

of data labels. Wang et al. [8] derived the optimal cluster for

minimizing resource consumption in HFL. However, the above

works ignored the SIoT selection, clustering, and routing for

HFL, to support each SIoT with a different privacy demand

and to collect data with different labels and quality.

Greater data coverage (i.e., multifarious training data that

includes a number of labels [9]) brings out better training re-

sults (e.g., high-accuracy event identifications) [2]. To increase

the variety of data, a potential way is to hire users’ private

SIoTs via human social networks [10], [11], and the employer

will pay the reward for participants [10], [11]. For exam-

ple, Google calls for Gboard users to participate in training

language models for next word prediction. Jamaican exploits

the social relations between public (provided by governments)

and private SIoTs to cooperatively monitor criminal events.3

However, privacy leakage will occur if the hired SIoTs are

malicious to recover private data from their relayed model

weights by Generative Adversarial Networks (GANs) [12].

To preserve privacy, Differential Privacy (DP) adds Gaussian

noise to the model weights according to the required privacy,4

which can be set based on SIoT social relations (e.g., trust

between neighbor SIoTs) [16], to prevent attackers from re-

covering private data [13]–[15]. Nevertheless, Bagdasarya et
al. [15] indicated that the accuracy degrades under DP-based

model training, and it requires additional training rounds to

restore the required accuracy [12], [17]. Abadi et al. [13]

evaluated the privacy loss for DP, and Wei et al. [14] analyzed

the FL convergence with DP. However, the above works did

not explore the SIoT selection and clustering with different

data coverage, and they also ignored the heterogeneous privacy

demands of SIoTs according to their social relations.

In this paper, we explore joint SIoT selection, clustering,

and routing in HFL with privacy preservation for minimizing

the total 1) computation and communication costs of SIoTs,

2) hiring cost for incorporating private SIoTs [10], [11], and

3Google: https://reurl.cc/82NNlg, Jamaica eye: https://jamaicaeye.gov.jm/
4DP adds noise to the model weights, instead of training data, since

only the weights are exchanged in FL [12]–[15]. When AG executes FedAvg,
the noise will induce a biased training result, which undermines the model
accuracy.
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3) privacy cost of DP.5 However, the problem introduces

the following new challenging issues. 1) Tradeoff in data
coverage and privacy. A personal private SIoT with good data

coverage may induce a larger privacy cost due to the need for

a higher privacy protection when it has poor social relations

with others. 2) Joint consideration of data balance and data
quality. Imbalancing data quantity between different clusters

induces the bias of training models and worse convergence

[18]. However, the data quality (estimated by empirical risk

[19], [20], detailed later) of the SIoTs with abundant data may

be diverse, and the training result will be poor when choosing

those SIoTs with worse quality for ensuring the data balance.

3) AG selection and routing with privacy. To minimize the

total communication cost, it is more favorable to choose the

SIoT, with the minimum sum of the costs for communicating

with the other SIoTs via the minimum-cost paths in the cluster,

as an AG. However, SIoTs on a minimum-cost path may have

poor social relations, leading to a larger privacy cost. Hence,

it is required to jointly choose an AG and the route of each

SIoT in a cluster.
To address the above issues, we formulate a new opti-

mization problem, SIoT Training Group Construction (STGC),

for HFL to minimize the total communication, computation,

hiring, and privacy costs. We prove that STGC is NP-hard,

and there does not have any algorithm with a finite approx-

imation ratio for STGC unless P = NP . Afterward, we

design an algorithm, named Privacy-aware SIoT Selection,

Clustering, and Routing (PSSCR), with the ideas of Cov-
erage Efficiency Indicator (CEI), Data Balance-aware Dual
Adjustment (DBDA), and Privacy-Aware Rerouting (PAR)

1) to choose and cluster SIoTs with greater data coverage

and quality and 2) to determine the AG and SIoT routing

to minimize the total communication and privacy costs, by

carefully examining the social relation between each pair of

SIoTs in each cluster. Simulation results manifest that PSSCR

can effectively reduce more than 60% of the total cost and

convergence time compared with state-of-the-art algorithms.
The remaining of this paper is organized as follows. Section

II describes the system model and STGC, and Section III

presents the algorithm PSSCR. Section IV summarizes the

simulation, and Section V concludes this paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model
Due to the limited space, the notation table is presented in

[21]. Following [6]–[8], we consider an HFL system consisting

of a single central server for global aggregation and a set of

SIoTs for local training and aggregation. Let G = (V,E) be

an SIoT network, where V is the set of SIoTs, and E is the set

of edges. An edge en,m ∈ E exists between SIoTs n and m
if they have social relations and can communicate with each

other with cost μn,m [1]. Let SRn,m be the social relation

5According to [12], [17], the cost is related to the model convergence
since DP adds noise to the model weights according to the required privacy
of SIoTs, which can be set based on SIoT social relations [16], and it will
introduce additional training rounds to restore a certain accuracy.

(trust) between SIoTs n and m, which can be set according

to the trust between their owners in social networks [11].6

In order to avoid privacy leakage when an SIoT trans-

mits the training model to the local AG, DP is proposed

to add noise to the training model weights of each SIoT

before transmitting them [13], [14]. Following [16], [22],

we employ a trust-to-privacy model to transform the trust

SRn,m between SIoTs n and m into a privacy degree, and

a lower trust yields a lower degree. Accordingly, the privacy

degree PDn,m for the communication between n and m is

defined as PDn,m =
SRn,m

SRn,m+τ · ε [16], where τ ∈ [0, 1] and

ε > 0 are controllable parameters for bounding the privacy

degree in a certain range and for ensuring privacy intensity,

respectively.7 For each cluster, when SIoTs upload their trained

model weights, DP adds noise to the weights according to the

privacy degree to ensure the privacy demand of each SIoT pair

on a communication path for avoiding any privacy leakage

during the transmission [13], [14]. Therefore, following [14],

the privacy degree in the cluster with AG a is dominated by

the worst relation between the two SIoTs on a communication

path toward a, i.e., PDa = minn∈Sa {minm∈Pn,a
{PDn,m}},

where Pn,a is the communication path between SIoT n and

AG a, and Sa is the set of SIoTs in cluster a.8 Since DP may

reduce the performance of training, additional training rounds

are required to attain the expected accuracy [15]. Following

[12], [17], the privacy degree is mapped to the privacy cost

ρ(PDa) = (1−PDa/ε) · δ, where δ is the cost for additional

training rounds [15], and a higher privacy degree (due to a

higher trust) induces a smaller cost.
For HFL, each SIoT n ∈ V senses its surroundings to

collect training data, and it has a computation cost κn for local

training (and aggregation).9 If n is chosen as AG, it further

requires a communication cost νn for uploading the training

model to the central server [3]. Let L be the set of training

data labels (classes), and Dl
n ⊆ Dn is the set of data with

label l ∈ L collected by SIoT n, where Dn is the set of total

data in SIoT n and |Dn| =
∑

l∈L
|Dl

n|. We follow [19], [20]

to employ the historical Empirical Risk (ER) of an SIoT to

evaluate the quality of its collected data, and the ER of SIoT

n is denoted by γn.10

B. Problem Formulation
Equipped with the above model, we formulate STGC as

follows. The objective is to minimize the total 1) computation

6We consider public and private SIoTs and assume the owner of public
SIoTs is the fully trust government (i.e., SRn,m → ∞ if n or m is public).

7A smaller ε leads to a lower privacy degree, and DP will add more noise
to the model weights for a higher privacy. The privacy demand of an SIoT n
can also be decided by the owner, and we can directly set the privacy degree
PDn,m, ∀m ∈ V according to the owner’s demand.

8Since each cluster includes an AG, unless stated otherwise, we use the
same index of AG to represent a cluster.

9The computation cost of an SIoT can be set according to the computing
power and the number of iterations for training the SIoT’s local data [3].

10Data quality is affected by the precision of data collection and the
correctness of data labeling, which are related to the sensing and computation
abilities of SIoTs. ER finds the outliers of data and measures the average
training error over the training set in an SIoT, which can reflect the data
quality, and a higher ER indicates worse quality [19], [20].
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and communication costs of SIoTs, 2) hiring cost for hiring

private SIoTs, and 3) privacy cost for DP. Specifically, let

binary variables xn and yn represent if SIoT n is selected as

a cluster member and an AG for model training, respectively.

We denote by A the set of chosen AGs, and each member n
needs to communicate with an AG for local aggregation (i.e.,

they are grouped into the same cluster). Let zn,a be a binary

variable indicates if SIoT n and AG a are in the same cluster.

The total computation and communication costs of SIoTs are

CC =
∑

n∈V xn ·κn+
∑

n∈V yn ·νn+
∑

n∈V,a∈A
zn,a ·c(Pn,a),

where c(Pn,a) =
∑

en,m∈Pn,a
wn,m · μn,m is the communica-

tion cost between SIoTs n and a on Pn,a, and wn,m indicates

if edge en,m is chosen. The total hiring cost for hiring private

SIoTs is CH =
∑

n∈V pr xn · ψ · |Dn|,11 where V pr ⊆ V is

the set of private SIoTs, ψ is the hiring cost of unit data [3],

[10], and |Dn| is the quantity of data provided by SIoT n.

The total privacy cost is CP =
∑

n∈V,a∈A
zn,a · ρ(PDa). The

objective of STGC is to minimize the total cost CC+CH+CP .

STGC has the following constraints. 1) Data balance con-
straint. Following [18], [23], the difference of data quantity

between each pair of clusters is required to be limited to

prevent the biases of the models trained by different clus-

ters,12 i.e., |Da| − |Db| ≤ D, ∀a, b ∈ {1, 2, . . . , |A|}, where

|Da| =
∑

n∈V zn,a · |Dn| is the total data quantity of cluster

a, and D is the maximum difference of data quantity. 2) Data
coverage constraint [7], [9]. To ensure training quality with

various data labels, the total data quantity of each label must

be at least Q [24], i.e.,
∑

n∈V xn · |Dl
n| ≥ Q, ∀l ∈ L, where

Q is the least data quantity of each label, which can be set by

the empirical nonlinear classification error model [24]. 3) Data
quality constraint. Following [19], [20], the average ER of the

selected SIoTs cannot exceed a certain threshold to ensure data

quality for training, i.e.,
∑

n∈V xn·γn·|Dn|∑
n∈V xn·|Dn| ≤ R,13 where R is

the tolerance of ER. 4) SIoT connectivity constraint [1], [11].

The SIoTs chosen in the same cluster need to be connected

to ensure that they can communicate with each other. 5) SIoT
clustering constraint indicates that each SIoT is assigned to

only one cluster [6], [7], i.e.,
∑

a∈A
zn,a ≤ 1, ∀n ∈ V .

Definition 1. Given an SIoT network G = (V,E) with 1)

computation cost κn, cost νn for communicating with the

central server, hiring cost ψ · |Dn|, data set Dn, and ER γn
for each SIoT n ∈ V , 2) communication cost μn,m for each

edge en,m ∈ E, and 3) the trust SRn,m between SIoTs n
and m, STGC is to select and cluster a subset of SIoTs V
and to determine an AG and the routing of SIoTs in each

cluster such that the data balance, data coverage, data quality,

SIoT connectivity, and SIoT clustering constraints are met. The

objective is to minimize the total cost CC + CH + CP .

11The hiring cost is zero if SIoT n is public.
12A cluster with large data quantity will dominate the training process

and dilute the training results of the other clusters. Moreover, the cluster
with insufficient (small) data quantity will undermine the convergence [18].
Therefore, it is desired to balance the data quantity among different clusters.

13Note that DP adds noise to the model weights instead of training
data. Hence, it affects the training convergence time (i.e, requiring additional
training rounds to achieve a certain accuracy) instead of data quality.

Theorem 1. STGC is NP-hard and cannot to be approximated
by any factor unless P = NP .

Proof. Due to the limited space, the proof is provided in [21].

III. ALGORITHM

To address STGC, an intuitive approach is to iteratively

extract SIoTs with the maximum total data quantity of labels

until the data coverage constraint is met, and then the SIoTs

are clustered by the K-means method [8], [25], where the

SIoT with the minimum cost to communicate with the central

server is chosen as the AG in each cluster. However, the above

approach ignores the data balance requirement when clustering

SIoTs, and it may choose the SIoTs with good data coverage

but diverse quantity, inducing the bias of training models

and worse model convergence. In the following, we propose

PSSCR to address the challenges listed in Section I. For the

first challenge, we introduce Coverage Efficiency Indicator
(CEI) to evaluate the data coverage per unit computation,

hiring and privacy costs for each SIoT, and PSSCR, to itera-

tively select the SIoT with the maximum CEI. For the second

challenge, Data Balance-aware Dual Adjustment (DBDA)

iteratively removes or adds an SIoT into a cluster by evaluating

its data quality for improving model training and data balance

simultaneously. For the last challenge, PSSCR chooses the

AG with the minimum communication and privacy costs for

communicating with the cluster members, and Privacy-Aware
Rerouting (PAR) iteratively reroutes SIoTs to traverse the paths

with better social relations (i.e., higher privacy degree) for

SIoTs to further reduce the privacy cost of DP. Due to the

limited space, the pseudocode of PSSCR is presented in [21].
1) SIoT Selection and Clustering (SSC): To ensure the data

coverage and SIoT connectivity, SSC iteratively chooses an

SIoT pair (or an SIoT) with the maximum Coverage Efficiency
Indicator (CEI) for creating a new cluster (or incorporating

the SIoT into an existing cluster). Note that only the pair of

adjacent SIoTs (and the SIoTs that can connect to the cluster

by one-hop) will be considered in SSC in order to ensure

connectivity. In the following, we first define CEI of an SIoT

pair and an SIoT for incorporating it into an existing cluster.
For ensuring the data coverage by the minimum total cost,

CEI is defined as the ratio of the effective data coverage (EDC)

of SIoTs to their induced costs, where EDC of an SIoT n is

the sum of data coverage of different labels increased by n
until reaching the least data quantity Q.14

EDC(Dn) =
∑
l∈L

El
n, E

l
n =

{ |Dl
n|, dl < Q,
0, dl > Q, (1)

where El
n is the number of effective data with label l, and

dl is the total data quantity of label l provided by currently

selected SIoTs. Therefore, CEI of an SIoT pair (n,m) is

CEI(n,m) =
EDC(Dn ∪ Dm)

C(n,m)
, (2)

14Recall that the data coverage constraint in Section II is to ensure that the
total data quantity of each label can exceed Q, i.e.,

∑
n∈V xn · |Dl

n| ≥ Q.
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TABLE I: An example of data quantity for labels

|D1
n| |D2

n| |D3
n| |D4

n| ωn |D1
n| |D2

n| |D3
n| |D4

n| ωn

n1 4 5 4 5 1.2 n8 4 7 6 4 1.1
n2 4 6 5 4 0.7 n9 4 4 5 4 0.7
n3 5 4 5 6 0.6 n10 6 7 7 6 0.6
n4 4 5 5 4 0.9 n11 3 5 5 6 1.0
n5 6 7 7 6 1.0 n12 5 5 4 6 0.6
n6 7 6 6 7 0.8 n13 3 5 7 5 0.7
n7 5 5 4 4 1.0 n14 6 5 3 6 0.9

where C(n,m) = (κn+κm)+(μn,m+ν)+ψ ·(|Dn|+|Dm|)+
2ρ(PDn,m) is the total cost after choosing SIoTs (n,m), and

ν = max{νn, νm} is the communication cost for uploading the

model to the central server.15 For the EDC of an SIoT chosen

for an existing cluster, we can regard the cluster as a macro

SIoT m with the computation cost κm = 0, communication

cost for returning the model νm = 0, and hiring cost ψ ·
|Dm| = 0, since they have been examined when constructing

the cluster. In addition, μn,m is set to the communication cost

for connecting SIoT n to the nearest SIoT in cluster m, which

is the neighbor of n for SIoT connectivity, and PDn,m is set

according to the worst social relations between the two SIoTs

in cluster m with n joined.16

At the beginning, SSC first chooses an SIoT pair (n,m)
with the maximum CEI to create the first cluster. In each

iteration afterward, SSC simultaneously considers two cases:

1) choosing an SIoT pair for creating a new cluster and 2)

incorporating an SIoT into an existing cluster. SSC finds the

case with the maximum CEI. To build the communication

topology, SSC directly connects the SIoT pair for the first case,

while it connects the chosen SIoT to its nearest neighbor in the

cluster via one-hop transmission to ensure SIoT connectivity

for another case. SSC stops when the total data quantity of

each label is at least Q.

Example 1. Fig. 1(a) presents an illustrative example. Each

triangle is an SIoT, and the number beside each triangle and

edge is the computation and communication cost, respectively.

We set ψ, δ, τ , ε, νn, Q, D, and R to 0.2, 30, 0.3, 15, 9, 45,

20, and 0.8, respectively, and Table I summarizes the other pa-

rameters. Assume that SRn5,n6
= 0.9 and SRn13,n14

= 1, and

therefore PDn5,n6
= 0.9

0.9+0.3 × 15 = 11.25 and PDn13,n14
=

1
1+0.3 × 15 = 11.54. Since the pair (n5, n6) has the largest

CEI(n5, n6) =
52

8+2+0.2×52+2×7.5+9 = 1.17, SSC selects n5

and n6 to create the first cluster and updates (d1, d2, d3, d4) to

(13, 13, 13, 13). SSC then finds n3 with CEI(n3,m1) = 1.06,

where m1 = {n5, n6} is the first cluster. Similarly, SSC

chooses (n13, n14) with CEI(n13, n14) = 1.00. Since n3 has

the largest CEI, SSC extracts n3 to and adds it to m1. The

final result of SSC is shown in Fig. 1(b).

2) Data Balance-aware Dual Adjustment (DBDA): To avoid

the bias of training models in different clusters and ensure data

quality, DBDA iteratively adjusts the clusters with the largest

and the smallest data quantity for balancing the data quantity

15We use the worst-case communication cost to evaluate CEI since DBDA
will adjust each cluster for data balance before choosing the AG.

16AG will be decided in DBDA, and we use the worst-case social relation
to evaluate PDn,m here.

(a) SIoT network (b) Initial clusters

(c) The result of DBDA (d) The result of PAR

Fig. 1: An illustrative example of PSSCR.

among these clusters according to Data Quality Improvement
Indicator (DQI).17 Specifically, let S be the set of selected

SIoTs, and ER(S) =
∑

n∈S
γn·|Dn|∑

n∈S
|Dn| is the average ER of SIoT

set S to evaluate its data quality [19].18 DQI of SIoT n is

defined as the difference in overall data quality before and after

removing (or adding) SIoT n. If an SIoT n is removed from

S, DQI(n) = ER(S)−ER(S \ {n}). Otherwise, DQI(n) =
ER(S)− ER(S ∪ {n}) if n is added to S.

To avoid disconnectivity, DBDA iteratively examines the

cluster k ∈ K with the largest data quantity, and it removes

the leaf SIoT with the largest DQI on the communication

topology of k, where K is the set of clusters constructed in

SSC. DBDA then updates the data quantity of k. If there

is no SIoT that can be removed due to the data coverage

constraint, DBDA examines the cluster k with the smallest

data quantity to add the SIoT (that can directly connect to

an SIoT in cluster k) with the largest DQI for reducing the

data quantity difference. The above procedure stops when the

data balance and data quality constraints are met. Afterward,

for each cluster, DBDA chooses the SIoT with the minimum

communication and privacy costs for communicating with

other cluster members as the AG. Let Gk = (Vk, Ek) be

the communication topology of cluster k, and C(m,Gk) =∑
n∈Vk

c(PGk
n,m)+νm+ |Vk| ·ρ(PDk) is the total communica-

tion and privacy costs of cluster k with SIoT m being the AG,

where Vk and Ek are respectively the set of SIoTs and the

set of communication edges in cluster k, and PGk
n,m is the path

between n and m on Gk. For each cluster k, DBDA extracts

the SIoT m with the minimum C(m,Gk) as the AG.

Example 2. Following Example 1, we denote by TQk the

total data quantity of cluster k, and cluster 1 and 2 are

respectively {n1, n2, n3, n5, n6, n7} with TQ1 = 124 and

{n11, n12, n13, n14} with TQ2 = 81. Since no SIoT can be

17To satisfy the data balance constraint, it is sufficient to ensure the
difference between the largest and smallest data quantity, since the data
quantity difference between any two clusters must be smaller than the
difference between the largest and smallest ones.

18Recall that we follow [19], [20] to estimate data quality by ER.
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removed in cluster 1, DBDA first chooses n10 with the largest

DQI(n10) = 0.845−0.818 = 0.027 to join cluster 2. Then, it

updates the clusters with the largest and the smallest data quan-

tity to cluster 1 with TQ1 = 124 and cluster 2 with TQ2 =
103, respectively, and (d1, d2, d3, d4) = (54, 60, 57, 61). Next,

DBDA selects n1 with the largest DQI(n1) = 0.032 and

removes n1 in cluster 1. The adjustment stops since the data

balance and data quality constraints are met. Then, DBDA

selects n3 as AG in cluster 1 since C(n3, G1) = 14+8+5×
8.82 = 66.1 and PD1 = 10.59. Similarly, DBDA chooses n13

as AG in cluster 2 since C(n13, G2) = 88.5 and PD2 = 8.75.

The final result of DBDA is shown in Fig. 1(c), with AGs (red

circle) and the total cost CC + CH + CP = 241.6.

3) Privacy-Aware Rerouting (PAR):
It is worth noting that the selected AG does not optimize

the privacy cost since Gk ⊆ G. PAR reroutes SIoTs by a

longer path composed of SIoTs with better social relations to

further reduce the privacy cost. Specifically, for each cluster k,

PAR first examines the social relation between each SIoT pair

(n,m) to find the one with the worst social relation, where

m is on the path from n to the AG.19 Since an SIoT may

be a relay for several SIoTs, rerouting an SIoT i will also

incur the routing of every SIoT that exploits i as a relay.

For the pair (n,m) with the worst social relation, PAR then

finds the edge ei,j with the largest communication cost on

the path from n to the nearest branch SIoT b (i.e., the SIoT

with multiple incoming edges) to avoid rerouting excessive

SIoTs. For minimizing the privacy cost, PAR reconnects i
to the neighbor node (except j) that induces the smallest

privacy degree minr∈Ri
{mins∈Pr,k

{PDr,s}} if the total cost

C(k,Gk) can be reduced, where Ri is the set of SIoTs that

exploit i as a relay for communicating with the AG. The above

process repeats until the total cost cannot be reduced.

Example 3. Following Example 2, PAR finds the pair

(n12, n14) with the worst social relation and the edge en12,n14

with the largest communication cost. Then, PAR reconnects

n12 to n13 with the smallest privacy degree, and the total cost

C(n13, G2) is reduced from 88.5 to 61.62. Fig. 1(d) shows the

final result, where cluster 1 has PD1 = 10.59 and AG = n3,

and cluster 2 has PD2 = 11.54 and AG = n13. The final total

cost is 214.72, which is optimal in this example.

Time Complexity. The time complexity of PSSCR is O(|V |2 ·
(Q|L| + |D|)), where |D| =

∑
n∈V |Dn| is the total data

quantity of all SIoTs. Due to the space constraint, detailed

complexity analysis is presented in [21].

IV. SIMULATION

A. Simulation Setup

Following [8], we consider an HFL system with a central

server, 40 users, and 300 SIoTs, where the trust between

19Recall that the privacy degree in a cluster is dominated by the worst
social relations between the two SIoTs on the communication paths toward
the AG. Therefore, we extract the one with the worst social relation to improve
for reducing the privacy cost.

users is generated according to [11], and each user owns 6
SIoTs in average. Following [1], the SIoT social relations and

trust are established according to the ownership relations. The

computation cost is assigned based on the SIoT computation

ability [3], [11], and the communication cost is set according

to the transmission rate and communication distance [1], [11].

For DP, parameters ε and δ are set to 25 [13] and 30 [17],

respectively. For HFL, we follow [6] to train a CNN model

with two 5 × 5 convolution layers and two fully connected

layers, where the batch size and learning rate are 64 and 0.002,

respectively. Each AG executes a local aggregation after 10
training rounds, and a global aggregation is executed on the

central server after 5 local aggregations in each cluster [8].

Following [2], we consider Non-Identically and Independently
Distributed (Non-IID) data setting by allocating 150 training

data, which is composed of 80% data with the same label [2],

to each SIoT. In addition to synthetic data, we also follow to

use two standard datasets, MNIST and Fashion-MNIST, for the

learning task in HFL. The constraint parameters D, Q, and R
are set to 500 [23], 1500 [24], and 0.8 [19], respectively.

Since there is no related work that explores joint SIoT selec-

tion, clustering, and routing for HFL with privacy preservation,

we compare PSSCR with three conventional SIoT scheduling

and clustering algorithms for FL/HFL, Traditional FL with

DP (TFL) [14], Hierarchical Aggregation FL (HAFL) [8] and

Semi-FL (SFL) [25]. TFL iteratively selects an SIoT at random

until the data coverage constraint is met, and HAFL and SFL

further cluster SIoTs by the K-means method. To evaluate

PSSCR, we vary the following parameters: 1) number of

SIoTs, 2) SIoT degree, and 3) δ, where SIoT degree is the

average number of neighbors of each SIoT. We measure the

following performance metrics: 1) total cost, 2) computation

and communication costs, 3) privacy cost, 4) average trust, and

5) model accuracy. Each simulation result is averaged over

300 samples. Due to the space constraint, we provide more

simulations in [21].

B. Simulation Results

In Fig. 2(a), when the number of SIoTs increases, PSSCR

induces a smaller total cost since it exploits CEI to create

clusters and choose SIoTs for ensuring data coverage by

smaller communication and computation costs. In Fig. 2(b),

TFL generates the largest computation and communication

costs since it ignores SIoT selection and clustering, and

every SIoT needs to upload the training model to the distant

central server. In contrast, PSSCR has more opportunities to

choose closer SIoTs to minimize the communication cost when

balancing data quantity among different clusters by DBDA.

The privacy cost of PSSCR only slightly increases in Fig. 2(c),

since it exploits PAR to reroute SIoTs to the paths including

the SIoTs with better social relations (i.e., they have higher

trust in 2(d)) to lower down the privacy degree for minimizing

the privacy cost. In contrast, the baselines choose the SIoTs

with better data coverage, but they ignore the privacy demands

of SIoTs when constructing training groups. It may make the

SIoTs with worse social relations (lower privacy degree) being

5278
Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on June 17,2024 at 16:09:30 UTC from IEEE Xplore.  Restrictions apply. 



(a) (b)

(c) (d)

(e) MNIST (f) Fashion-MNIST

Fig. 2: Performance under different parameters.

chosen in the same group, leading to a larger privacy cost. In

Figs. 2(e) and 2(f), we evaluate the training performance of

different algorithms with real datasets. Since Fashion-MNIST

(the clothing classification dataset) is a more complex dataset

than MNIST (the handwritten digital recognition dataset), the

model of MNIST is easier to be trained with high accuracy.

PSSCR generates the highest accuracy with the least conver-

gence time (i.e., the curve of PSSCR levels out after 100
rounds in Fig. 2(e)). This is because DBDA iteratively adds the

SIoT with the maximum DQI to the cluster with the smallest

data quantity to 1) increase total data quality and 2) reduce

the data quantity difference among clusters (for decreasing

the bias of the training model). In Fig. 2(f), with a more

strict data balance constraint D, the data quantity difference

among the clusters adjusted by DBDA is smaller, and the

training model of each cluster is more consistent, leading to

the higher accuracy and convergence rate. In summary, PSSCR

reduces the total cost and convergence time by more than 60%
compared with the state-of-the-arts.

V. CONCLUSIONS

To the best of our knowledge, this paper makes the first

attempt to explore DP for SIoT selection, clustering, and

routing for HFL. We formulate a new optimization problem

STGC to minimize the total computation, communication,

hiring, and privacy-preservation costs of SIoTs. We prove that

STGC is NP-hard and inapproximable within any ratio unless

P = NP . Then, we propose PSSCR with the ideas of CEI,

DBDA, and PAR to select and cluster SIoTs and to find the AG

and SIoT routing in each cluster. Simulation results manifest

that PSSCR effectively reduces the total cost and convergence

time by more than 60%.
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