
Reinforcement based Communication Topology
Construction for Decentralized Learning with

Non-IID Data
Yi-Cheng Lin§, Jian-Jhih Kuo†, Wen-Tsuen Chen§, and Jang-Ping Sheu§

§Dept. of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
†Dept. of Computer Science & Information Engineering, National Chung Cheng University, Chiayi, Taiwan

E-mail: s108062646@m108.nthu.edu.tw, lajacky@cs.ccu.edu.tw, {wtchen,sheujp}@cs.nthu.edu.tw

Abstract—Federated Learning (FL) allows Internet-of-Things
(IoT) devices to train a global model collaboratively and cir-
cumvent the security issue. However, the current FL framework
has three main drawbacks, the huge network overhead, single
point of failure, and accuracy degradation in non-independent-
and-identically-distributed (non-IID) data distribution. We propose
a novel Deep Reinforcement Learning (DRL) based Decentralized
Learning (DL) framework, DeepSelect, to 1) reduce the network
overhead of conventional FL, 2) construct a good communication
topology adaptively to mitigate the effect of non-IID data, and
3) accelerate the DL training by balancing the effects of hitting
time (HT) and data bias. Moreover, DeepSelect with a subtly-
designed DRL agent is reusable with different levels of non-IID
data distributions. To the best of our knowledge, this paper is the
first one to indicate that proper neighbor selection for exchanging
parameters (not raw data) can counterbalance the data bias’s
effect and improve the DL convergence with non-IID data. The
experiment results show that DeepSelect can reduce 18%–51%
training rounds than the other heuristics on FashionMNIST and
CIFAR-10 with non-IID data distributions.

Index Terms—Deep Reinforcement Learning, Decentralized
Learning, Communication Topology, Federated Learning

I. INTRODUCTION

The Internet-of-Things (IoT) is an important paradigm in
5G, which has a large number of devices and provides ubiq-
uitous services in our daily life and generate tremendous data
(e.g., voices, photos, positions). Many Machine Learning (ML)
models are thus developed to analyze user data and make
suitable strategies, while training the models centrally causes
user data’s security issue. To jointly benefit from the immense
user data and circumvent the security issue, Federated Learning
(FL) is proposed to distribute the training process into the user
devices [1]. However, FL has the following drawbacks. 1) FL
suffers from a single point of failure. If the parameter server
crashes, the model aggregation will be terminated as well as
the training process accordingly. 2) The network overhead
between the user devices and the central parameter server is
severe since extensive model parameters are uploaded to the
central parameter server [2]. 3) The users’ data distributions
are usually non-independent-and-identically-distributed (non-
IID) [3]. The skewed data distributions may seriously degrade
the model accuracy and postpone the training convergence [4].

Decentralized Learning (DL) emerges to overcome the first
two drawbacks of FL [5]. Specifically, each node performs
on-device training and exchanges the model parameters with
its neighboring nodes according to the given communication
topology [6], [7]. Therefore, only few data exchanges occur

TABLE I
EFFECT OF DIFFERENT HT ON

NUMBER OF ROUNDS

Target Accuracy 82%
Topology 1 (HT: 32) 112
Topology 2 (HT: 44) 169
Topology 3 (HT: 18) 99

TABLE II
EFFECT OF NEIGHBOR SELECTION

ON NUMBER OF ROUNDS

Target Accuracy 80%
IID 41

non-IID CBA(2,0) 286
non-IID R 395

among nodes, and thus the central parameter server is no
longer needed. The network overhead is mitigated accordingly
[2]. However, the third drawback is still challenging for DL.
Researchers have spent a lot of effort handling the non-IID
problem in the literature. Chiu et al. proposed an aggregate
strategy named Federated Swapping to swap the training mod-
els among end-devices in each round [3]. Wang et al. presented
the concept of choosing some nodes with the suitable data
distribution to counterbalance the global model [4]. However,
the above methods are designed only for FL. To the best of our
knowledge, no method focuses on the non-IID issue for DL,
thereby providing the motivation of this paper to make the first
attempt to explore how to mitigate the non-IID issue for DL.

To better understand the rationale behind the DL, the ex-
periments are conducted as follows. Firstly, we observe the
relation between the convergence rate and the hitting time
(HT). The experiment setting is detailed in Section IV. Figs.
1(a), 1(b), and 1(c) are a 2-regular topology (Topology 1),
a 2-regular topology with one more edge (Topology 2), and
a 4-regular topology (Topology 3) with HT of 32, 44, and
18, respectively. The effect of different HT on model accuracy
(with independent and identically distributed (IID) distribution)
is shown in Fig. 2(a). Topology 3 (red line) clearly outperforms
the others after the 300-round training since it has the smallest
HT among them. Specifically, Table I shows that Topology 3
requires 99 rounds to achieve the 82% accuracy. It is worth
noting that the difference of one edge (i.e., Topologies 1 and
2) may have a great impact on HT and convergence rate.
To reach the target accuracy, Topology 1 takes 112 rounds,
which is only 67% of the rounds required by Topology 2 (i.e.,
169 rounds). The above results conform to the observation
that the convergence in DL is asymptotically proportional
to the HT of the given communication topology [8]. Thus,
an adequate method for communication topology construction
should consider the topology structure carefully.

Secondly, we wonder whether neighbor selection on the
communication topology may make a great impact on conver-

978-1-7281-8104-2/21/$31.00 ©2021 IEEE

GL
O

BE
CO

M
 2

02
1

- 2
02

1
IE

EE
 G

lo
ba

l C
om

m
un

ic
at

io
ns

 C
on

fe
re

nc
e

|
97

8-
1-

72
81

-8
10

4-
2/

21
/$

31
.0

0
©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

GL
O

BE
CO

M
46

51
0.

20
21

.9
68

52
41

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on March 09,2022 at 08:29:36 UTC from IEEE Xplore. Restrictions apply.

0 1

7

6

5

2

3

4

(a) Topology 1

0 1

7

6

5

2

3

4

(b) Topology 2

0 1

7

6

5

2

3

4

(c) Topology 3

Fig. 1. An illustration of the cases of the communication topology.

Fig. 2. Motivating experiment results.

gence when the users’ data distributions are non-IID. To verify
the effect, we deploy 32 nodes on a 2-regular communication
topology to train a classification model for the FashionMNIST
dataset. In Fig. 2(b), the purple line (non-IID R) represents
that the neighbors for each node are randomly assigned, while
the green line (non-IID CBA(2,0)) adopts the subtly-selected
neighbors for each node to counterbalance the effect of data
bias (detailed in section III-A). Table II explicitly shows that
non-IID R needs 395 rounds to achieve 80% accuracy, while
non-IID CBA(2,0) only takes 286 rounds to reach the same
accuracy, which reduces 28% of the number of training rounds
and implies neighbor selection can mitigate the non-IID issue.

By the above experiments and observations, we find acceler-
ating the convergence of DL in natural non-IID environments
has the following new challenges. 1) Trade-off between topol-
ogy regularity and neighbor selection. The more regular com-
munication topology usually leads to a smaller HT and a better
convergence rate. However, moderately adding a suitable set of
edges into the communication topology to counterbalance the
effect of data bias could facilitate the convergence rate, even
if such a communication topology violates the regularity and
increase the HT. 2) Trade-off between the network overhead
and the degree of regular topology.1 Increasing the degree
of regular topology can decrease the HT and thus speed
up the convergence. Nevertheless, the network overhead will
increase accordingly since the number of neighbors of each
node increases. Fig. 3 shows the relationship between the
degrees of regularity and the network overhead, where the solid
lines denote the accuracy of different regular topologies while
the dotted lines indicate the cumulation of network overhead.
Although the 16-regular topology achieves the highest accuracy
after 500 rounds, it also causes the highest network overhead.
Overall, this problem is very challenging since it has to jointly
examine the HT (i.e., regularity) and the data bias to subtly
balance their effects when tailoring an adequate communication

1For a regular topology, the degree of regular topology denotes the number
of each node’s neighbors.

topology to speed up the convergence.
To address the above challenges and solve the mentioned

drawbacks of conventional FL, we propose the DL Framework
with Deep Reinforcement Learning based Neighbor Selection
(DeepSelect) and present a new optimization problem named
Efficient Communication Topology Construction in IoT for
Decentralized Learning (CoCoDL). Given 1) a set of training
nodes, 2) a training model, and 3) the network information,
CoCoDL asks for a set of links to construct a communication
topology to speed up the convergence. To solve CoCoDL,
DeepSelect contains a Deep Reinforcement Learning (DRL)
based control agent to construct the communication topology
on the fly to 1) reduce the network overhead of conventional
FL, 2) construct a communication topology adaptively that can
mitigate the influence of non-IID data, and 3) accelerate the
DL training by balancing the effects of HT and data bias. The
contributions of this paper are summarized as follows.
1) To the best of our knowledge, this paper is the first one

to indicate that proper neighbor selection for exchanging
parameters (not raw data) can counterbalance the data bias’s
effect and improve the DL convergence with non-IID data.

2) A DRL-based agent for DL along with DeepSelect is
proposed to dynamically determine the set of suitable edges
to overcome the issue caused by non-IID data distributions.

3) The performance of DeepSelect based on DRL is shown to
make better actions than the other heuristic edge construction
algorithms and outperform them in two well known datasets,
FashionMNIST and CIFAR-10 with non-IID data.

4) DeepSelect with subtly-designed DRL agent is reusable
with different levels of non-IID data distributions.

II. PRELIMINARIES, MOTIVATION, AND PROBLEM MODEL

A. Decentralized Learning (DL)
DL is an emerging learning framework where each par-

ticipant node i ∈ K locally solves the optimization prob-
lem with their own loss function fi : X → R [2]. Let
f : X → R denote the global loss function with the form
f(x) := 1

|K|
∑
i∈K fi(x). The nodes aim to collaboratively

find the optimal parameters x∗ ∈ Rd that minimizes the global
loss function, i.e.,

f(x∗) = min
x∈Rd

1

|K|
∑
i∈K

fi(x). (1)

Algorithm 1 illustrates the detailed steps in DL. First, all
nodes compute local stochastic gradient descent (SGD) [9] in
parallel (line 2). Next, each node sends the updated model
parameters (or gradient) to their neighboring nodes in the
communication topology and receives the models from them
(line 4). Then, each node follows the Lazy Metropolis-based
update (see Definition 1) to merge the received models (line
5). The above operations will be repeated until the stopping
criteria match.

Nedic et al. have shown that the convergence of the model is
proportional to the HT [8]. For ease of reading, the calculation
of the HT of a topology G is briefly described as follows. First,
we have to derive the Lazy Metropolis-based Communication
Matrix M(G) (see Definition 1). Then, M(G) can be used to

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on March 09,2022 at 08:29:36 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Effect of different degree of regular topology on accuracy and network
overhead (NO) with non-IID data distributions in FashionMNIST dataset.

Algorithm 1 Decentralized learning (DL)
Input: x0i , i ∈ K: Initial values of each node; G = (K,E):

communication topology; η: SGD step size;
1: for t = 0 to T − 1 do in parallel for all nodes i ∈ K
2: yti ← xti − η∇fi(xti);
3: for each node i ∈ K do
4: Send yti and receive ytj to/from node j if (i, j) ∈ E;
5: xt+1

i ←
∑
j∈K mijyj ;

6: end for
7: end for

compute the HT Matrix H(G) (see Definition 2). Lastly, the
hitting time of G is the largest entry in H(G).

Definition 1 (Lazy Metropolis-based Communication Matrix
[8]). Given a set of training nodes K and communication
topology G = (K,E). The entries mij of the communication
matrix M(G) ∈ [0, 1]|K|×|K| are defined as

mij =

1−

∑
k∈K\{i}mik, if i = j;

1
2max{deg(i),deg(j)} , else if (i, j) ∈ E;

0, otherwise.

(2)

Definition 2 (Hitting Time Matrix). Given a topology G with
its communication matrix M(G) from eq. (2), the entries hij
of the hitting time matrix H(G) ∈ R|K|×|K| are define as

hij =

{
0, if i = j;
1 +

∑
k∈K,k 6=jmik · hkj , otherwise.

(3)

where hij is the hitting time from node i to node j.

B. Influence of non-IID data and Neighbor Selection
Recall that Section I introduced an experiment to show that

non-IID data distribution may slow down the convergence in
DL. In Fig. 2(b), DL only needs to take 41 rounds to reach
the target accuracy for the IID situation, while it takes more
than 250 rounds to reach the same accuracy for the non-
IID data distribution. On the other hand, Fig. 2(b) further
shows that different neighbor selection will lead to different
convergence results, even if the two communication topologies
have the same nodes and the same HT. The topology with a
random neighbor selection requires 395 rounds to reach the
80% accuracy, while the topology with a proper neighbor
selection for counterbalancing the data bias only needs 286
rounds to reach the same accuracy.

Fig. 4. Effect of HT and data bias

TABLE III
DATA BIAS AND HT WITH
DIFFERENT c IN CBA(4,c)

CBA(4,C) HT Data Bias
c = 0 227.69 143.94×106
c = 1 236.06 143.80×106
c = 2 241.06 143.51×106
c = 3 248.39 143.09×106
c = 4 250.58 142.53×106

Therefore, we wonder which topology is more beneficial to
speed up the convergence for non-IID data distributions, 1)
a regular topology (i.e., lower HT) that may not consider the
effect of data bias or 2) a non-regular topology (i.e., higher HT)
that can counterbalance the effect of data bias. To explore the
relation, we devise a heuristic named counterbalance bias algo-
rithm (CBA) to add some edge into a given regular topology.
The edge addition can help each node counterbalance the effect
of its data bias on its local model parameters by aggregating
the subtly-selected neighbors’ local model parameters but at the
price of higher HT. To calculate the data bias of each node, we
treat each node and its neighbors as a set, then calculate the
data bias of each set (eq. (5) in Definition 3) as the node’s data
bias. The heuristic starts from a 4-regular topology. Then, it
iteratively selects the node with the largest data bias, say v, and
connects v to the other node which is not in v’s set but can
decrease v’s data bias the greatest. For ease of presentation,
let CBA(d, 0) denote the original d-regular topology, and let
CBA(d, 1) be CBA(d, 0) plus one more edge selected by CBA,
and so on.

Fig. 4 compares the convergence of the topologies with
different additional edges selected by CBA, where 32 nodes
are exploited to train the CNN model with non-IID data
distributions on FashionMNIST dataset in 250 rounds. Table III
shows the HT and data bias of each node in different topologies
generated by CBA. We can find that the CBA(4, 0) has the
smallest HT and the largest data bias while achieving the worst
accuracy. In contrast, the CBA(4, 4) has the largest HT and
the smallest data bias while reaches the third highest accuracy.
It implies that a smaller data bias benefits the convergence.
However, the CBA(4, 2) with the second smallest HT and the
third largest data bias can lead to the best accuracy. There
may be a nonlinear relationship among HT, data bias, and
convergence. Thus, in Section III-B, we propose a DRL-based
method to explore the implicit relationship to select neighbors.

C. System Model and Problem Formulation of CoCoDL
We assume that the DL framework exploits a set of nodes

K in an IoT system, where a platform is set up to monitor
all participant nodes [10], to train the model collaboratively.
Different from conventional FL, the platform does not collect
and aggregate the model. Instead, the platform only determines
the communication topology. Since the platform exchanges
little information with nodes, it does not become the training
bottleneck. Suppose each node transmits its data distribution
(i.e., the amount of data for each class) to the platform in the
beginning. The platform determines the communication topol-
ogy based on the data distributions and the other information

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on March 09,2022 at 08:29:36 UTC from IEEE Xplore. Restrictions apply.

collected later. Each node i ∈ K has limited bandwidth Bi and
computing Ci and thus can only construct Ei edges. CoCoDL
is as follows:

minimize
1

|K|
∑
i∈K

fi(x
t) (4a)

subject to Ei ·
Y

Bi
+
Y

Ci
≤ T ∀i ∈ K (4b)

Ei ∈ [2, |K| − 1] ∩ Z, ∀i ∈ K (4c)∑
j∈K\{i}

ytij ≤ Ei, ∀i ∈ K (4d)

ytij = ytji, ytij ∈ {0, 1}, ∀i, j ∈ K, i 6= j (4e)

Eq. (4a) aims at the model parameter xt to minimize the
average loss of each training node. Eq. (4b) indicates that the
degree of each node i (i.e., Ei) multiplied by transmission time
(i.e., Y/Bi, where Y is model size and Bi is bandwidth limit
of node i) and then add model training time (i.e., Y/Ci, where
Ci is computing capability of node i) must be no more than
a given time threshold T . Eq. (4c) limits the degree of each
node to range from two to the number of connectable nodes.
Eq. (4d) implies that at most Ei edges can be selected for the
each node i ∈ K, where ytij denotes if edge (i, j) is selected
for node i at time t. The last one shows the constraints of ytij .

III. DL FRAMEWORK WITH DRL-BASED NEIGHBOR
SELECTION (DEEPSELECT)

DeepSelect’s one-episode training has two phases. The 1st

phase constructs a 2-regular topology as the communication
topology based on the data bias of each node. In the 2nd

phase, the DRL agent adaptively adds or removes edges on the
communication topology constructed by the 1st phase during
the DL. After training, we introduce the DRL agent’s workflow.

A. Construct the 2-regular topology based on the data bias

Recall that neighbor selection based on users’ data distri-
butions for constructing the regular topology can mitigate the
effect of data bias. Therefore, each node i ∈ K uploads its
data distribution Si to the platform in the beginning.2 Then, the
platform examines the data bias of each node (see Definition
3) to select the suitable neighbors for each node to form a
2-regular topology.

Definition 3 (Data Bias). Given a set of data with a distribu-
tion P and labels H . The data bias of P is defined as

DataBias(P) =
H∑
l=1

(cl − c)2 (5)

where c =
∑H
l=1 cl/H denotes the average amount of data per

label, and cl denotes the amount of data in each label l.

Specifically, the process is presented step by step as follows.

2The nodes do not upload the raw data directly. Instead, they upload
only their data distributions for data privacy concern. Moreover, the data
distributions can be further disturbed by adding random noises (i.e., deferential
privacy (DP) [11], [12]) for privacy concern. User privacy can be secured to
some extent.

16

5

4

2

3

60.6

32.6

38
34

26

3224

42.6

112.6

0.6

18
44.6

4.6

8.6

14

(a) Auxiliary complete graph

12

5

6

4

3

32

4.6112.6

34

24
0.6

(b) Constructed 2-regular topo.

Fig. 5. Example of Step 1

Step 1: Sets up an auxiliary complete graph Gc = (K,L),
where the weight of each edge (i, j) ∈ L is set to the
data bias (Definition 3) of the set of {i, j}. For example,
given a set of nodes K = {1, 2, 3, 4, 5, 6}, the auxiliary
complete graph is constructed as shown in Fig.5(a). Take
edge (1, 6) for example. Assume that there are three labels,
and node 1’s data distribution is [3, 6, 5] while the node 6’s
data distribution is [2, 9, 9]. From eq. 3, the data bias of edge
(1, 6) (i.e., the set {1, 6}) is (5 − 11.3)2 + (15 − 11.3)2 +
(14− 11.3)2 = 60.6. The weight of (1, 6) is 60.6.

Step 2: Pick a starting point and add an edge with the smallest
data bias into the edge set L. For example, the node 1 is
picked as the starting point, and edge (1, 4) with the data
bias of 4.6 (i.e., blue line) is selected.

Step 3: Continue to select an unselected edge with the small-
est data bias from the last covered node and add it to L.
Repeat Step 3 until the 2-regular topology is constructed.
For example, the edge (4, 3) with the data bias of 0.6 is
selected from node 4 (i.e., red line). The next picked edge
is (3, 6) with the data bias of 34 (i.e., green line). The last
two edges selected are (6, 5) with the data bias 24 and (5, 2)
with the data bias 112.6 (i.e., yellow and purple lines).

Step 4: Finally, to construct the 2-regular topology, the edge
connecting the first covered and the last nodes are selected.
For example, the constructed 2-regular topology follows the
selection order 1, 4, 3, 6, 5, 2 as shown in Fig. 5(b).

B. Deep Q-Network for Neighbor Selection

After the 1st phase generates a d-regular topology, the 2nd

phase uses a DRL agent to select a valid action (i.e., add or
remove an edge) in each round to change the communication
topology for DL. DeepSelect trains a Deep Q-Network (DQN)
as the DRL agent with the Adam optimizer based on the state,
action, reward, and new state from the replay buffer. The state,
action, and reward are described exhaustively as follows.

State: The state’s design aims to make the DRL agent to
overview 1) the current topology and 2) the feature extracted
from node’s model, which can reflect the node’s data distribu-
tion to some extent. For the first goal, the neighbor information
of each node i ∈ K at time t is encoded into a connection
vector gti ∈ {0, 1}|K|. For example, at time t, if node 1
has only two neighbors, nodes 0 and 2, then its connection
vector is gt1 = {1, 0, 1, ..., 0}. For the second goal, the model
parameters of each node i ∈ K at time t is reduced to a
|K|-dimension vector by principle component analysis (PCA),
i.e., wti ∈ R|K|. Thus, the state of round t is represented
by a vector st = (gt0, ..., g

t
|K|−1, w

t
0, ..., w

t
|K|−1). The DRL

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on March 09,2022 at 08:29:36 UTC from IEEE Xplore. Restrictions apply.

agent can consider the above information to construct the most
suitable topology and reduce the training rounds.

Action: The DRL starts with a 2-regular topology as the
based topology. It aims to approximate the optimal action-
value function Q∗(st, a). At the beginning of each round, the
DRL agent selects a valid action with the highest value. Note
that DRL is not allowed to remove the edge in the 2-regular
topology, and thus the number of the edges that can be added
or removed is (

(|K|
2

)
− 2 · |K|). The actions can be classified

into 3 categories, 1) construct an edge, 2) remove an edge,
and 3) do nothing. Thus, the total size of the action space is
(
(|K|

2

)
− 2 · |K|) · 2 + 1. Remark that the action “construct

an edge” is invalid if the edge exists in the communication
topology now. Similarly, the action “remove an edge” is valid
only if the edge exists in the communication topology.

Reward: Recall the HT and data bias affect the convergence
significantly. The reward’s design aims to make DRL agent
select the action that can 1) accelerate the training, 2) lower
the HT, and 3) reduce the data bias. Eq. (6) is the reward
function for DeepSelect, which evaluates the result and returns
a reward at the end of each round. The reward function contains
the three terms, T1, T2, and T3. The first term T1 is related
to the testing accuracy of the models. Factor τ is a constant,
which ensures that T1 grows exponentially. Factor ζ is the
target accuracy, while ωt denotes the average accuracy of the
two nodes with the selected action at round t. If the action
is doing nothing, the DRL agent will sample random 25%
nodes for average to get the value of ωt. The term T1 is
substantially important to the DRL agent since the reward with
higher accuracy is far more than that with a lower one, which
encourages the DRL agent to achieve the higher accuracy as
soon as possible. The second term T2 is about the HT, where ht
represents the HT of the communication topology at time t and
hmax denotes the HT of the maximum degree of the regular
topology that can be built under the network bandwidth limit.
The term T2 urges the DRL agent to do the action that can
decrease the HT, since the convergence in DL is asymptotically
proportional to the HT. The last term T3 is data bias, where pi
denotes the data bias of each node i ∈ K with their neighbors,
and di, i ∈ K is the number of data in each node. The term
T3 stimulates the DRL agent to reduce the data bias of each
node. Without the assistance of the terms T2 and T3, DRL
agent may not grasp the implicit relation between HT and data
bias sooner.

rt = (τωt−ζ − 1)︸ ︷︷ ︸
T1

− (
ht − hmax
hmax

)︸ ︷︷ ︸
T2

− (

√∑|K|−1
i=0 pi∑|K|−1

i=0 di
)︸ ︷︷ ︸

T3

(6)

The sum of the three terms is a negative number, which
encourages the DRL agent to reach the target accuracy in fewer
rounds. It is because the more rounds the DRL agent takes, the
less total return it acquires.

C. The Workflow of DeepSelect
After training the DRL agent, the trained DRL agent will

facilitate DeepSelect to select edges subtly. Specifically, the
entire process of DL with DeepSelect is shown as follows.

Suppose the nodes K train a model with size Y . Each node
i ∈ K has limited bandwidth Bi and limited computing Ci.
Step 1: All the nodes K initialize the model in the same way.

Based on Bi, Ci, and model size Y , the platform first deter-
mines the maximum degree Ei = b(T − Y/Ci) · (Bi/Y)c
for each node i ∈ K and the value of

d =

{
d1 = maxi∈K Ei, if d1 mod 2 = 0;

d2 = d1 − 1, otherwise.
(7)

Step 2: The platform selects the neighbors for each node
i ∈ K based on their initial data distributions and the
value of d to construct a d-regular topology3 as the initial
communication topology.

Step 3: Each node trains the local model, sends and receives
the model to/from its neighbors based on the communication
topology, and aggregates the received models via Lazy
Metropolis-based Communication Matrix (Definition 1).

Step 4: If the model has not converged yet, the DRL agent
selects an action base on the state st on time t to modify
the communication topology. Then, it repeats steps 3 and 4.
Otherwise, the DL training stops.

IV. EVALUATION

A. Simulation Settings
Datasets and models: Our experiments are conducted with

two well-known datasets, FashionMNIST and CIFAR-10.
1) FashionMNIST: FashionMNIST consists of 60, 000 train-

ing examples and 10, 000 testing examples. We use a con-
volutional neural network (CNN) network with two 5 × 5
convolutional layers. The 1st layer has 6 output channels,
while the 2st layer has 12. Both layers are followed by a
2×2 max pooling.

2) CIFAR-10: CIFAR-10 includes 50,000 images for training
and 10,000 images for testing. We also use a CNN network
with two 5 × 5 convolutional layers. The 1st layer has
6 output channels, while the 2st has 16. Both layers are
followed by a 2× 2 max pooling.
Non-IID data distributions: Following [4], we use data

skewness σ to generate different levels of non-IID data distri-
butions. For example, σ = 0.8 implies that 80% of training
data belong to one label, while the remaining 20% training
data belong to the other labels evenly.

Network scale and bandwidth limit: Following [13], we
adopt 32 nodes (i.e., K = 32) to evaluate the DeepSelect’s
performance. We assume that nodes may use one of NB-IoT,
WiFi, and LTE, and thus the each nodes’ bandwidth Bi is
set randomly from 10 to 80 Mbps. The nodes’ training time
ranges from 0.2 to 0.08 s. Thus, we set d to 4 according to
Eq. (7) since the global model size Y is about 250 KB (i.e.,
(1− 0.2) · 10 · 1000/8/250). Note T in Eq. (4b) is set to 1 s.

Performance metrics: Two metrics are adopted to evaluate
performance: 1) loss function and 2) testing accuracy. Note
that each result is averaged over 10 trials.

3Constructing a d-regular topology is similar to constructing a 2-regular
topology, where d mod 2 = 0. The only difference is at the 1st phase’s
Steps 2 and 3 in Section III-A. It should select the edges connecting the last
covered d/2 nodes to the d/2 nodes with the lower data bias.

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on March 09,2022 at 08:29:36 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. Effect of different level of non-IID data on FashionMNIST dataset

Fig. 7. Effect of different level of non-IID data on CIFAR-10 dataset

Training the DRL Agent: We train the DRL agent on
FashionMNIST and CIFAR-10 datasets with 32 nodes, respec-
tively. The Deep Q-Network model in DRL agent consists of
three fully connected layers. The input size is 2048, where
a part of 32 × 32 is the communication topology, and the
other part of 32 × 32 is the nodes’ reduced model weights
by sklearn.decomposition.PCA. The size of the output layer
(i.e., actions) is (

(
32
2

)
− 2 · 32) + 1. The target accuracy ζ is

set 80% in FashionMNIST and 43% in CIFAR-10. Each DRL
agent is trained for 300 episodes, and each episode stops if the
target accuracy reaches.

B. Effect of Different Levels non-IID Data Distributions

Recall that CBA(d, c) denotes the d-regular topology with
c additional edges selected by CBA. We compare the perfor-
mance of DeepSelect with the method CBA(d, c) proposed in
section II-B. Since different levels of non-IID data distribu-
tions lead to different convergence rates, we set the differ-
ent target accuracy for each different σ. For FashionMNIST
with different non-IID settings σ = 0.8, 0.5, 0.3, we set our
target accuracy to 83.1%, 85%, 86%, respectively, as shown
in Fig. 6(a). For CIFAR-10 with different non-IID settings
σ = 0.8, 0.5, 0.3, we set our target accuracy to 44%, 54%,
54%, respectively. We can find that in Fig. 7(a), CBA(d, 0)
performs worse than CBA(d, 2) when σ = 0.8. On the other
hand, in 6(a) σ = 0.8, CBA(d, 0) outperforms CBA(d, 2),
which implies again that the accuracy, HT, and data bias have

TABLE IV
NUMBER OF ROUNDS TO REACH THE TARGET ACCURACY

Method Non-IID level FashionMNIST CIFAR-10
CBA(4,0) σ = 0.8 260 (1.35x) 301 (2.04x)
CBA(4,2) σ = 0.8 301 (1.56x) 218 (1.48x)

DeepSelect σ = 0.8 192 (1x) 147 (1x)
CBA(4,0) σ = 0.5 144 (1.22x) 205 (1.70x)
CBA(4,2) σ = 0.5 183 (1.55x) 195 (1.62x)

DeepSelect σ = 0.5 118 (1x) 120 (1x)
CBA(4,0) σ = 0.3 220 (1.25) 106 (1.16)
CBA(4,2) σ = 0.3 224 (1.28) 105 (1.15)

DeepSelect σ = 0.3 175 (1x) 91 (1x)

the implicit non-linear relationship. In contrast, DeepSelect can
always strike the balance between data bias and HT to achieve
the target accuracy with the minimum loss within the fewest
rounds for the same setting as shown in Figs. 6(b) and 7(b).
Table IV further shows that DeepSelect can reduce training
rounds by 18%–51% while reaching the target accuracy.

V. CONCLUSION

In this paper, we propose a new DRL-based DL framework,
DeepSelect, to tackle two drawbacks of the FL framework,
the huge network overhead and single point of failure. Be-
sides, DeepSelect also mitigates the effect of the non-IID data
distributions on the convergence, which is one of the most
tricky issues in the on-device training. The paper indicates that
a subtly-selected set of neighbors can help us speed up the
model convergence rate substantially in non-IID environment.
It should jointly balance the effect of topology regularity and
neighbor selection while trade off the network overhead and
degree of regular topology. Therefore, DeepSelect can reduce
18%–51% training rounds compared with the other heuristics
for FashionMNIST and CIFAR-10 datasets.

REFERENCES

[1] J. Konečný et al., “Federated learning: Strategies for improving commu-
nication efficiency,” in NIPS Workshop on PMPML, 2016.

[2] X. Lian et al., “Can decentralized algorithms outperform centralized
algorithms? a case study for decentralized parallel stochastic gradient
descent,” in NIPS, 2017.

[3] T.-C. Chiu et al., “Semisupervised distributed learning with non-IID data
for AIoT service platform,” IEEE Internet of Things J., vol. 7, no. 10,
pp. 9266–9277, 2020.

[4] H. Wang, Z. Kaplan, D. Niu, and B. Li, “Optimizing federated learning
on Non-IID data with reinforcement learning,” in IEEE INFOCOM, 2020.

[5] I. Hegedűs, G. Danner, and M. Jelasity, “Gossip Learning as a Decen-
tralized Alternative to Federated Learning,” in IFIP DAIS, 2019.

[6] C.-W. Ching et al., “Efficient communication topology via partially
differential privacy for decentralized learning,” in IEEE ICCCN, 2021.

[7] J.-J. Kuo et al., “Energy-efficient topology construction via power alloca-
tion for decentralized learning via smart devices with edge computing,”
IEEE Trans. on Green Comm. and Networking (Early Access), 2021.

[8] A. Nedić, A. Olshevsky, and M. G. Rabbat, “Network topology and
communication-computation tradeoffs in decentralized optimization,”
Proceedings of the IEEE, vol. 106, pp. 953–976, 2018.

[9] Q. V. Le et al., “On optimization methods for deep learning,” in ICML,
2011.

[10] G. Yang et al., “A health-IoT platform based on the integration of
intelligent packaging, unobtrusive bio-sensor, and intelligent medicine
box,” IEEE Trans. Industr. Inform., vol. 10, no. 4, pp. 2180–2191, 2014.

[11] M. Abadi et al., “Deep learning with differential privacy,” ACM SIGSAC
CCS, 2016.

[12] K. Wei et al., “Federated learning with differential privacy: Algorithms
and performance analysis,” IEEE Trans. Inf. Forensics Secur., vol. 15,
pp. 3454–3469, 2020.

[13] A. Koloskova, T. Lin, S. U. Stich, and M. Jaggi, “Decentralized deep
learning with arbitrary communication compression,” in ICLR, 2020.

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on March 09,2022 at 08:29:36 UTC from IEEE Xplore. Restrictions apply.

		2022-01-26T12:20:32-0500
	Certified PDF 2 Signature

