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Abstract—Device-to-device (D2D) communication is one of the
promising solutions to improve spectrum efficiency and alleviate
the mobile traffic explosion. However, interference mitigation
and resource allocation in the underlying cellular network is a
challenging task. In this paper, we propose a distributed deep
reinforcement learning (DRL) based scheme to solve the inter-
ference mitigation and resource allocation problem. According to
the channel status, each cellular user (CU) and D2D transmitter
(D2D TX) will determine the appropriate reused channel and
transmit power to maximize the system throughput. We propose a
distributed DRL scheme and integrate two hotbooting algorithms
into the scheme to improve the system throughput at the early
stage of training. Simulation results show that the proposed
distributed DRL with hotbooting outperforms the baselines
regarding running time, message overhead, and throughput.

I. INTRODUCTION

Device-to-Device (D2D) communications have been ex-
ploited to allow nearby devices to communicate directly in
order to improve the spectrum efficiency in cellular networks
[1]. However, channel reuse causes the mutual interference
between D2D and cellular transmission. When multiple D2D
users reuse the channels of cellular users (CUs), cross-tier in-
terference will occur between CUs and D2D users, and co-tier
interference will occur between D2D users [1], which severely
degrades transmission rates. To enhance system throughput,
multicast D2D allows a transmitter to deliver data to multiple
receivers simultaneously on a single channel, whereas they
choose different transmission rates for each link to alleviate
interference [2]–[4]. Meshgi et al. [2], who maximized the total
throughput of CUs and D2D groups under QoS requirements,
formulated multicast D2D communications with channel reuse
as a mixed-integer nonlinear programming problem [3]. Wu et
al. [4] jointly allocated radio and power resources to reduce
interference and increase total throughput. However, the above
methods are not designed to optimize the resources effectively
for dynamic D2D networks with mobile users.

To adapt to dynamic D2D networks, Reinforcement Learn-
ing (RL) and Deep Reinforcement Learning (DRL) [5] have
been leveraged to allocate resources, where an agent (e.g.,
base station) interacts with the networks and observes the
interaction results to maximize the reward function. Specifi-
cally, differing from traditional algorithms [2]–[4] that repro-
cess the whole algorithm to find the optimal solution, DRL

adaptively makes decisions to optimize the reward based on the
observed environmental information. Tan et al. [6] proposed
a distributed DRL algorithm to maximize the weighted sum
rate for D2D communications. Ye et al. [7] dynamically
adjusted the power and channel allocation for vehicle-to-
vehicle communications by distributed DRL. Zhang et. al [8]
optimized energy-efficiency for hybrid unicast and multicast
traffic in 5G by a DRL-based framework. Zhang et. al [9] put
forward a DRL-based semi-decentralized algorithm to jointly
select transmission mode and allocate resources for vehicle-
to-everything communications. However, the above approaches
cannot ensure the enhanced performance for dynamic multicast
D2D before the AI model is well-trained, which leads to
poor performance when users move. In contrast, we design
a distributed DRL-based multicast scheme with the designed
multicast hotbooting algorithms (detatiled later) to improve the
system performance at the early stage of training.

Distributed learning enables devices to collaboratively learn
a shared prediction model, while keeping all the training data
in the devices to reduce data transmission overhead and main-
tain privacy [9], [10]. This paper explores the throughput op-
timization problem for distributed underlying multicast D2D,
called D2D Channel Assignment and Power Allocation Prob-
lem (DCAPAP). We model DCAPAP as a Markov Decision
Process (MDP), where each CU and D2D TX acts as a DRL
agent and takes its action (resource allocation) based on its
local observation. Then, we present a distributed DRL-based
algorithm to assign the channel and allocate power for each
D2D transmitter (D2D TXs) and CU. To accelerate the training
process and enhance the system throughput, we propose two
distributed multicast hotbooting algorithms, 1) Decentralized
Interference-based Multicast Resource Allocation (D-IMRA)
algorithm and 2) Decentralized Energy-efficient Multicast Re-
source Adjustment (D-EMRA), by exploiting the personalized
user experience of each device. Different from the ε-greedy
[5] algorithm taking actions randomly to solve MDP, D-
IMRA spatially clusters CUs and D2D TXs to avoid mutual
interference and examines their channel gains to configure an
initial channel and power allocation. D-EMRA then adjusts the
channel and power of CUs and D2D TXs according to their
energy efficiency, defined as the ratio of UE’s data rate to its
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power consumption, to elevate system performance, and this
improvement experience is collected to accelerate the DRL
training process. Simulation results show that the proposed
distributed DRL with hotbooting outperforms the baselines
regarding running time, message overhead, and throughput.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a cellular network with a single BS and under-
lying multicast D2D communications. The network includes
K cellular users (CUs) denoted by K = {1, . . . ,K} and N
D2D multicast groups denoted by N = {1, . . . , N}. Each CU
can directly communicate with the BS [11] and is assigned a
unique channel [2]–[4], whereas each D2D user communicates
with each other via a direct wireless link. In a D2D multicast
group, a D2D transmitter (D2D TX) multicasts messages to the
receivers (D2D RXs), and each D2D RX belongs to only one
multicast group [2]–[4]. Let gi denote the RX set belonging
to the i-th multicast group, and |gi| represents the number of
RXs in the group. Following [2], we assume there are K uplink
channels, and each channel is occupied by a CU predetermined
by the BS. Therefore, the uplink channel and CU have a one-
to-one correspondence, and index k indicates both of them. For
channel reuse, each D2D TX can reuse an uplink channel of a
CU, and a channel can be reused by multiple D2D TXs, i.e.,∑

k∈K
yi,k ≤ 1,∀i ∈ N , where the binary variable yi,k ∈ {0, 1}

indicates if D2D TX i reuses channel k, and yi,k = 1 if D2D
TX i reuses channel k; otherwise, yi,k = 0.

Let pBS
k,k and pD2D

i,k be the decision variables representing
the transmit power of the k-th CU and the i-th D2D
TX, respectively. Let GBS

k denote the channel gain
from CU k to the BS and GD2C

i,k be the channel gain
from D2D TX of group i to the BS at channel k. The
instantaneous signal-to-interference-plus-noise ratio (SINR)
of the received signal at the BS from CU k is expressed
as SINRBS

k =
GBS

k pBS
k,k∑

i∈N
yi,kGD2C

i,k pD2D
i,k +σ2 , ∀k ∈ K, where

σ2 is the background noise. The data rate (bit/sec/Hz)
of CU k is RBS

k = log2(1 + SINRBS
k ), ∀k ∈ K.

Similarly, the SINR of D2D RX m in the i-
th D2D group at channel k is SINRD2D

i,m,k =
GD2D

i,m,kp
D2D
i,k

GC2D
i,m,kp

BS
k,k+

∑

i′∈N ,i′ �=i

yi′,kG
D2D
i′,m,k

pD2D
i′,k +σ2 , ∀i ∈ N , k ∈ K,m ∈ gi,

where GD2D
i,m,k is the channel gain to the receiver m from

D2D TX in group i at channel k, GC2D
i,m,k is the channel

gain from CU k to the receiver m in group i, and GD2D
i′,m,k

is the channel gain from D2D TX of group i
′

to the
receiver m of group i over channel k. Since the data rate
of multicast is bounded by the D2D RX with the worst
channel quality [12], the data rate (bit/sec/Hz) of D2D TX i
is RD2D

i = |gi|
∑

k∈K
yi,klog2(1 + SINR∗

i,k), ∀i ∈ N , where

SINR∗
i,k = minm∈giSINRD2D

i,m,k is the SINR of D2D TX i.
To ensure reliable cellular and D2D multicast transmission,

let γBS and γD2D respectively be their minimum SINR
requirements, which can be specified by the service provider

[13]. For CU k and D2D TX i, the SINR constraints are
SINRBS

k ≥ γBS and SINR∗
i,k ≥ yi,kγ

D2D, respectively.
The power constraints for CUs and D2D TXs are pBS

min ≤
pBS
k,k ≤ pBS

max and pD2D
min ≤ pD2D

i,k ≤ pD2D
max , respectively. By

discretizing the transmit power range into (pmax−pmin

ΔO + 1)
levels [14], we denote PBS and PD2D as the transmit power
level set of CUs and D2D TXs, respectively. Equipped with
the above models, DCAPAP can be formulated as follows.

Definition 1. Given a set of cellular users K = {1, . . . ,K}, a
set of D2D multicast groups N = {1, . . . , N}, and their cor-
responding channel states, SINR requirements γBS and γD2D,
and the power constraints pBS

min, p
BS
max, p

D2D
min , and pD2D

max , our
goal is to maximize the long-term system throughput,

max
Y,P

T∑

t=0

Rt
sys(Y,P) = max

Y,P

T∑

t=0

(
∑

k∈K
RBS,t

k +
∑

i∈N
RD2D,t

i ),

(1)
where Y = [yi,k, i ∈ N , k ∈ K] is a channel assignment matrix
and binary variable yi,k = 1 if D2D TX i reuses channel k;
otherwise, yi,k = 0. P = [pBS

k,k , p
D2D
i,k , i ∈ N , k ∈ K] is the set

of transmit power of CUs and D2D TXs, and Rt
sys is the total

system throughput of CUs and D2D TXs in time slot t. RBS,t
k

and RD2D,t
i are the data rates of CU k and D2D TX i in time

slot t, respectively.

III. PROPOSED ALGORITHM

Most conventional algorithms are designed for static net-
works [2], [3], and they are not optimized for dynamic
networks since they require a lot of time to execute the whole
process when the network changes. To adapt to dynamic D2D
multicast, we first follow [6]–[8] to model DCAPAP as an
MDP and propose a distributed DRL-based algorithm CAPA to
maximize system throughput. Then, we propose the hotbooting
algorithms D-IMRA and D-EMRA to accelerate the training
speed and improve the performance of CAPA at the early stage.

A. MDP

In the following, we first define the MDP state space, action
space, and reward function of CUs and D2D TXs.

1) State-space S: For each CU k, it observes the state stCU,k

in time slot t containing 1) the current (i.e., time slot t − 1)
transmit power pBS,t−1

k = {pBS,t−1
k,1 , ..., pBS,t−1

k,K } of CU k

at each channel, 2) the interference Itk = {Itk,1, ..., Itk,K}
(observed by CU k) on each channel from D2D TXs to
the BS in time slot t, 3) the received interference IBS,t

k =

{IBS,t
1 , ..., IBS,t

K } of the BS on each channel in time slot
t, 4) the channel gain GBS,t

k from CU k to the BS in
time slot t, and 5) the instantaneous SINR , SINRBS,t

k

of CU k in time slot t. Therefore, the state is given as
stCU,k = {pBS,t−1

k , Itk, IBS,t
k , GBS,t

k , SINRBS,t
k }.

Different from CU, the observed state of D2D TX further
includes the interference and channel gain of the D2D RX with
the worst channel quality in the group and the number of D2D
RXs satisfying the SINR constraint since the multicast data
rate is bounded by the D2D RX with the worst channel quality.
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Specifically, for each D2D TX i, the observed state in time slot
t contains 1) the current transmit power pD2D,t−1

i of D2D TX
i at each channel, 2) the interference I∗,ti = {I∗,ti,1 , ..., I

∗,t
i,K}

of the D2D RX with the worst channel quality in D2D
group i on each channel in time slot t, 3) the interference
Iti = {Iti,1, ..., Iti,K} on each channel observed by D2D TX i
from other D2D TXs in time slot t, 4) the received interference
IBS,t
i of the BS on each channel in time slot t, 5) the channel

gain GD2C,t
i from D2D TX i to the BS in time slot t, 6) the

channel gain G∗,t
i from D2D TX to the D2D RX with the worst

channel quality in D2D group i in time slot t, 7) the worst in-
stantaneous SINR SINR∗,t

i of D2D group i in time slot t, and
8) the number of D2D RXs dti satisfying the SINR constraint
in D2D group i in time slot t. Therefore, the state is given as
stTX,i = {pD2D,t−1

i , I∗,ti , Iti, IBS,t
i , GD2C,t

i , G∗,t
i , SINR∗,t

i , dti}.
2) Action-space A: We denote by atCU = {pt} ∈ ACU

the power allocation of CU, where pt ∈ PBS is the transmit
power level, and ACU is the action space of CU. Let ΔO be the
transmit power offset, and the size of ACU is (

pBS
max−pBS

min
ΔO

+1).
To reuse the CUs’ channel, the action of D2D TXs further
includes channel assignment. Let atTX = {ht, pt} ∈ ATX be
the action of a D2D TX, where ht ∈ {K ∪ {0}} is the index
of reused channel and ht = 0 is for the case that a D2D
TX does not choose any reused channel. pt ∈ PD2D is the
transmit power level, and ATX is the action space of D2D
TX. The size of ATX is K(

pD2D
max−pD2D

min
ΔO

+1)+1, because there
are K reused channels that can be allocated to D2D TXs and
(
pD2D
max −pD2D

min
ΔO

+ 1) levels for power allocation, where the plus
of 1 is for ht = 0.

3) Reward function: The reward function rt includes the
system throughput and the QoS requirement conditions of CUs
and D2D TXs to reflect the objective of DCAPAP.

rt =ω1R
t
sys − ω2

∑

i∈K
J(RBS

min −RBS,t
k )

− ω3

∑

i∈N
J(RD2D

min −RD2D,t
i ),

(2)

where RBS
min and RD2D

min are the minimum data rates of CUs and
D2D TXs, respectively and J(x) is a piecewise function that
is used to calculate penalties. J(x) = x, if x > 0; otherwise,
J(x) = 0. ω1, ω2, and ω3 are tuning knobs to adjust the
importance of different factors.

B. Preliminaries on DRL
Deep Q-Networks, one of the DRL techniques, exploits a

neural network denoted by Q(st, a
′; θ) to estimate Q-value,

where st is the state in time t, a′ is the action, and θ
is the network parameter (weights). In DRL, a long-term
optimization problem is modeled as an MDP, typically includes
a state space S, an action space A, and a reward function. In
each time t, a DRL agent observes state st and then chooses
the action at leading to the best Q-value.

at = argmax
a′∈A

Q(st, a
′; θ). (3)

After taking an action at, the agent gets an immediate reward
rt, enters state st+1, and updates the Q-value as Q(st, at; θ)+

lr [rt + βmaxa′∈A Q(st+1, a
′; θ)−Q(st, at; θ)], where lr ∈

[0, 1] is the learning rate, β ∈ [0, 1] is the discount factor
to determine the importance of future rewards, and rt +
βmaxa′ Q(st+1, a

′; θ) is the temporal difference (TD) target
estimated by TD prediction [5]–[9]. The agent maintains a
replay memory to store the seen experiences (also called
transitions) (st, at, rt, st+1) into the replay memory D. In each
time slot, the agent randomly samples a mini-batch from D,
and a gradient descent backpropagation algorithm based on
the loss function L(θ) is executed to update parameter θ.

L(θ) =
∑

(s,a)∈D

(y −Q(s, a; θ))2, (4)

where y = r + βmaxa′∈A Q(s′, a′; θ−) is the target Q-value
and r is the corresponding reward. Q(s, a; θ) is the output
of the current Q-network, which is used to evaluate the Q-
value of the current state action pair, and Q(s, a; θ−) is the
output of the target network, which is updated every F steps
with parameter θ−. An ε-greedy [5] is usually used in DRL to
improve learning efficiency, where ε is a probability annealed
during training. The agent takes the best action according to (3)
with probability 1− ε; otherwise, the agent chooses a random
action with probability ε. However, this approach may select
a worse action, leading to poor system throughput.

C. Distributed DRL Scheme

We first propose a distributed DRL-based multicast frame-
work, named Channel Assignment and Power Allocation
(CAPA), and the proposed hotbooting algorithms will be
detailed later. Since the multicast transmit power is dominated
by the worst channel gain in a multicast group, it is crucial
to evaluate the interference between multiple users. Different
from previous DRL [6] ignoring the influence between the
decisions of different users, the BS in CAPA periodically
clusters CUs and D2D TXs according to their locations by
the K-means method to avoid mutual interference [15]. The
BS designates the closest CU or D2D TX in each cluster
as the cluster head, which is responsible for channel and
power allocation to alleviate the computation loads of the BS.
Then, it sequentially sends the information of corresponding
cluster members and the candidate reused channels to each
cluster head according to the descending order of the number
of candidate reused channels, because the cluster with more
candidate reused channels can allocate channels more flexibly.
When each cluster head receives the notification, it performs
D-IMRA (detailed later) to allocate the channel and power for
its cluster members and then sends the result to the BS and its
members. When the BS receives the result, it informs the next
cluster head. After all cluster heads perform D-IMRA, the BS
updates the throughput threshold RTH (detailed later). Differ-
ing from the ε-greedy [5] taking an action randomly, CAPA
ensures the enhanced throughput in each training iteration.

For the model training in Fig. 1, the BS maintains two
shared prediction models for CU and D2D TX and initializes
the weights θCU and θTX of the Q-networks. Afterward, it
multicasts the weights to CUs and D2D TXs. Each CU and
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Fig. 1: Distributed learning architecture.

D2D TX then trains its own DQN model by the received
weights and its local data. If the total throughput obtained
from the learning is lower than the throughput threshold RTH ,
each cluster head sequentially performs D-EMRA (detailed
later), according to the descending order of the number of its
candidate reused channels. In other words, the agent switches
the strategy from ε-greedy to D-EMRA when the system
throughput is lower than RTH during training to ensure
enhanced performance. Each CU and D2D TX then sends
its weights of local models to the BS. Afterward, the BS
performs federated averaging [9] for updating the weights of
the global model and multicasts the updated weights. A com-
mon federated averaging method is minibatch-based stochastic
gradient descent [9]. The BS updates the global model of
CUs by θt+1

CU ←
∑

k∈K

Bk

B θtCU,k, where θt+1
CU and θtCU,k are

the weights of the global model of CU and local model of CU
k, respectively. Bk and B are the local minibatch size of CU
k and the total minibatch size of all CUs. Similarly, the BS
update the global model of D2D TXs by θt+1

TX ←
∑

i∈N

Bi

B θtTX,i,

where θt+1
TX and θtTX,i are the weights of the global model of

D2D TXs and local model of D2D TX i, respectively. Bi and
B are the local minibatch size of D2D TX i and the total
minibatch size of all D2D TXs.

D. Hotbooting

To avoid the performance loss in the early training stage
and adapt to network dynamics, we design a new multicast
hotbooting technique [16] to initialize the Q-network param-
eters through the historical experience of similar scenarios.
Specifically, we propose D-IMRA and D-EMRA to allocate
the channel and power of CUs and D2D TXs at the early stage
of DQN training. Then, the experiences obtained by D-EMRA
are used for DQN model training.

1) D-IMRA: From the SINR formula of CU, a higher chan-
nel gain GD2C

i represents that the D2D TX i is closer to the BS
and more easily interferes with the uplink communications of
the corresponding CU. Hence, D-IMRA allocates the channels
and transmit power to D2D TXs in the cluster in ascending
order of GD2C

i since a larger GD2C
i tends to cause greater in-

terference to the uplink communications. For each D2D TX i,
D-IMRA examines the next feasible channel until the channel
allocation for D2D TX i is successful or all feasible channels
have been examined. When GC2D,∗

i,k and GD2D,∗
i′,i are higher,

CU k and D2D TX i′ tend to interfere with the multicast

communication of D2D TX i, where GC2D,∗
i,k and GD2D,∗

i′,i are
the maximum channel gain from CU k and D2D TX i′ to D2D
TX i, respectively. Different from the ε-greedy [5] ignoring
the interference from nearby users, D-IMRA considers the
interference caused by the corresponding CU of the reused
channel and other D2D TXs in the cluster, which is estimated
from the transmit power and channel gain of them. Let K′

be the feasible channel set that only considers the CUs which
meet the SINR constraint and belong to the candidate reused
channel set. For each cluster Cc, D-IMRA evaluates the criteria
k∗ = arg min

k∈K′
(pBS

k GC2D,∗
i,k +

∑

i′∈N∩Cc,i
′ �=i

pD2D
i,k GD2D,∗

i′,i yi′,k) for

finding the channel that receives the minimum interference
from CU k and all other D2D TXs in the cluster using the
same channel, where Cc is the c-th cluster set. After finding
the channel k∗ for D2D TX i, D-IMRA allocates proper
transmit power to D2D TX i by iterating through all potential
power in PD2D. Then, it calculates the total data rate and
SINR of CU k∗ and D2D TXs in the cluster to ensure the
minimum SINR requirements. Then, D-IMRA updates the
channel assignment matrix and transmit power set and removes
the allocated channel from the feasible channel set for the
next iteration. D-IMRA stops after finding a channel for D2D
TX i, or if no feasible channels can be assigned to D2D
TX i. After all D2D TXs in the cluster are allocated in
order, D-IMRA will terminate. Finally, we obtain the channel
assignment for D2D TXs and power allocation for CUs and
D2D TXs and the system throughput, and the BS updates the
throughput threshold RTH to the current throughput for the
DQN switching strategy from ε-greedy to D-EMRA.

2) D-EMRA: A larger transmit power is beneficial to the
user’s data rate but causes greater interference to other commu-
nications. Different from the distributed learning with ε-greedy
[5] taking an action randomly without global knowledge, D-
EMRA iteratively adjusts the allocation of the CU or D2D
TX which has the worst energy efficiency in the cluster
for improving the overall system throughput. D-EMRA first
finds the UE with the worst energy efficiency in the cluster
by calculating the ratio of the user’s data rate to its power
consumption. For each CU, D-EMRA iterates through all
potential power in PBS to look for the optimal power of
the CU. It calculates the total data rate of CU j∗ and D2D
TXs in the cluster based on the potential power of CU j∗ and
examines their SINR and total data rate to ensure the QoS
requirements. For each D2D TX, D-EMRA iterates all possible
reused channels in K′

and power combinations of D2D TX
j∗ to find the optimal channel and power combination. If the
optimal allocation is found, the results are then put into the
replay memory of DQN for providing effective experiences to
help model training.

IV. SIMULATIONS

A. Simulation Setup

We consider a single cell network with a coverage area of
1000 × 1000 m2 [2] with the CUs and D2D groups being
deployed over the whole area. The D2D TXs are deployed
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over the whole cell randomly and each D2D TX has 3 ∼ 8
nearby D2D RXs to form a D2D group. The number of D2D
groups is set to 14 by default. The distribution of D2D RXs in
the D2D group follows the clustered distribution model in [17].
The transmission radius of D2D TX and the SINR requirement
are set to 50 m [2], [12] and 5 dB [18], respectively. The
network bandwidth is set to 20MHz and is equally divided into
20 channels. Following [19], the path loss models of cellular
link and D2D link are 128.1+37.6log(d) and 148+40log(d),
respectively, where d is the distance in kilometers and the noise
spectral density is set to -174 dBm/Hz. The minimum and
maximum transmit power of devices (i.e., pmin and pmax) are
10 and 20 dBm. We set the transmit power offset ΔO to 1 dB
and the transmit power range is discretized into (pmax−pmin

ΔO +
1) levels [14], [20]. Each D2D RX moves within the cluster,
randomly at a speed of 1 m/s ∼ 2.5 m/s.

We implement DQN with Python 3 and Pytorch on a
server with Intel i7-7700K 4.2-GHz CPU and 62-GB memory.
Following [7], [21], our DQN model is based on a four-
layer fully connected neural network with two hidden layers.
We set 300 neurons for each hidden layer. To initialize the
weights of each layer, we use the normal distribution with
mean 0 and variance 0.1 in our DQN model. ReLu is used as
an activation function [6], and the Adam optimizer with the
learning rate lr = 10−4 is used for training [9]. The discount
factor β = 0.5, the batch size is 64, the frequency for updating
the target network F = 100 and the size of replay memory
D = 104 [22]. For distributed learning, the training model
weights on different devices are averaged every 1000 time
slots. Following [5], we adopt the ε-greedy strategy to balance
exploration and exploitation for optimizing rewards. We set ε
to 1 at the beginning and then subtract it by ( 1−0.1

1×104 ) in each
time slot until it reaches 0.1. We compare CAPA with the state-
of-the-art distributed learning algorithm WSR-MADQN [6],
and optimization algorithms HRA-M2O [3] and HRA-O2O
[2]. Each simulation result is averaged over 105 samples.

B. Simulation Results

Fig. 2(a) compares the total data rate of D2D TXs, and
it shows that CAPA significantly outperforms the baselines
as the number of D2D TXs grows. In CAPA, each CU and
D2D TX observes its channel information and the interference
of neighbor D2D TXs during the training process to select
the reused channel and allocate power. When more channels
need to be reused, D2D TX can select channels with less
interference and allocates power based on the observations
to increase the total data rate of D2D TXs. In contrast, the
performance of HRA-O2O remains steady since it does not
allow multiple D2D TXs to reuse a single channel. In Fig. 2(b),
we set the number of D2D TXs to 14 and vary the number of
CUs from 10 to 20. Compared with Fig. 2(a), although CAPA
results in similar system throughput to HRA-M2O, it generates
much more D2D communication throughput since each cluster
head in CAPA distributionally examines the channel gains of
D2D TXs by evaluating received interference from neighbors
to optimize local D2D throughput.

(a) (b)

(c) (d)

(e) (f)

Fig. 2: Performance evaluation of different algorithms.

Figs. 2(c) - 2(e) compare the performance of different
algorithms in dynamic networks (i.e., D2D TXs join and leave
the network). The D2D success rate is the ratio of the number
of D2D RXs whose QoS requirements are satisfied to the total
number of D2D RXs. The left y-axis compares the system
performance of different algorithms, and the right y-axis shows
the number of D2D TXs (black curve) in the simulation
time slots. In the beginning, there is no D2D TX, and we
deploy a D2D TX every 3,000 time slots (about 5 minutes).
The number of D2D TXs gradually rises until 45,000 time
slots, and we remove a D2D TX every 3,000 time slots after
355,000 time slots. The number of CUs is fixed at 10. CAPA
adapts to dynamic networks and achieves higher D2D and total
throughput in Figs. 2(c) and 2(d) since the CUs and D2D
TXs periodically exchange channel states of nearby devices
to avoid interference during channel and power allocation.
Moreover, the BS collects the local weights of the training
model and performs federated averaging to ensure the global
system performance (i.e., total throughput). In contrast, WSR-
MADQN leads to worse throughput since it makes decisions
based on only local observations and the interference may be
severe to degrade the total throughput. CAPA also achieves
better D2D throughput than WSR-MADQN and HRA-M2O.
In Fig. 2(e), CAPA achieves nearly 100% D2D success rate at
any moment, which is identical to the centralized optimization
algorithm HRA-M2O. This is because CAPA avoids mutual
interference when clustering CUs and D2D TXs, and it results
in a higher D2D success rate even when the network changes.
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TABLE I: Running time over 100, 000 time slots (Unit: min)

Number of D2D TXs
Algorithm 12 14 16 18 20

CAPA 42.98 76.08 93.19 95.51 101.12
CAPA (w/o HB) 0.68 0.66 0.53 0.62 0.60
WSR-MADQN 0.40 0.38 0.36 0.34 0.32

HRA-M2O 208.97 280.11 355.14 477.80 581.42
HRA-O2O 84.39 109.39 119.76 129.11 138.20

TABLE II: Message overhead (#messages, Unit: million)

Number of D2D TXs
Algorithm 12 14 16 18 20

CAPA 2.46 2.69 2.90 3.09 3.29
WSR-MADQN 13.2 18.2 24 30.6 38

However, HRA-M2O has a lower D2D throughput in Fig. 2(d)
since it may lower the transmit power of D2D TXs to elevate
the throughput of CUs for maximizing the total throughput.

Fig. 2(f) compares the convergence time of CAPA and
CAPA (w/o HB), where CAPA (w/o HB) represents CAPA
without hotbooting and the numbers of CUs and D2D TXs
are set to 10. The multicast hotbooting accelerates the train-
ing speed more than 80% to achieve the converged system
throughput of more than 420 bits/sec/Hz since it collects
transitions by the proposed D-IMRA and D-EMRA, instead of
acting randomly at the beginning. Table I evaluates the total
running time over 100,000 time slots under different number of
D2D TXs. CAPA (w/o HB) and WSR-MADQN have a shorter
running time since they directly make decisions according to
the learning result. Although the running time is similar, WSR-
MADQN results in much worse performance as shown in Figs.
2(b) - 2(f). In contrast, HRA-M2O and HRA-O2O require
much more time to search for the solution repeatedly when the
network is dynamic. Together with Fig. 2, it can be seen that
CAPA can achieve better performance with less running time.
We also evaluate the total message overhead of the distributed
learning algorithms in Table II. It shows that WSR-MADQN
generates much more overhead since it exchanges information
with every neighbor device. When the network size becomes
larger with more D2D TXs, the message overhead of CAPA
increases slightly since more devices join the training process
with more training weights returned to the BS for the global
model update. In general, CAPA can reduce more than 80%
overhead compared to WSR-MADQN.

V. CONCLUSION

In this paper, we study the resource allocation problem in an
underlaying D2D multicast network and formulate DCAPAP.
In the proposed distributed DRL scheme, each CU and D2D
TX allocates a reuse channel and the transmission power based
on its local and exchange channel information to maximize
the system throughput. To enhance the performance at the
early stage of training, we proposed D-IBRA and D-EERA
to ensure enhanced performance and accelerate the training
speed. Simulation results show that the running time of CAPA

is much shorter than that of the optimization algorithms, and it
achieves better system throughput with less message overhead.
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