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Abstract—In recent years, the Ultra-wideband (UWB) system
has been investigated for indoor localization and navigation by
academia and industry. However, the UWB localization accuracy
deteriorates when the signal propagates under severe non-line-
of-sight (NLoS) conditions. We use two deep learning network
models, the long short-term memory (LSTM) network and deep
neural network (DNN), to analyze five different UWB signal
features. The five features are received signal strength indication
(RSSI), time of arrival (ToA), time difference of arrival (TDoA),
first path (FP) amplitude from channel impulse response (CIR),
and metric Mc (the ratio of the first path amplitude to peak
amplitude). Then, we combine the five features into six different
datasets for our deep learning models. Based on the prediction
accuracy of the deep learning models for each combined feature,
we propose a weighted indoor positioning (WIP) algorithm. The
experiment results show that the WIP algorithm has better
positioning accuracy than baseline works.

Index Terms—Indoor positioning, ultra-wideband, fingerprint,
deep learning, time difference of arrival.

I. INTRODUCTION

Location-based service has been used for various scenarios,
such as communication, sensing, robotics control [1], localiza-
tion, behavior, and health analysis for elderly persons [2]. In
recent years, UWB has become a promising communication
technique. UWB is a technology for transmitting information
across a wide bandwidth exceeding 500 MHz. It uses nano-
second (ns) to pico second (ps) level non-sine wave narrow
pulses to transmit data and has a more precise positioning
ability. Benefit from the high data rate transmission and
nanosecond timestamp recording. The UWB indoor localiza-
tion systems can make precise signal measurements, such as
time of arrival (ToA) or time difference of arrival (TDoA),
which can achieve the centimeter-level error of indoor posi-
tioning even in a critical multipath environment. In addition,
due to the large bandwidth, their signals have low transmission
power to avoid interference with other wireless signals in the
same frequency spectrum. However, the UWB localization
accuracy still deteriorates when the signal propagates under
a severe non line-of-sight (NLoS) environment [3].

Existing indoor localization systems can be divided into two
categories: fingerprint-based and range-based. The fingerprint-
based localization uses a matching algorithm to estimate the
target position by comparing the online and offline signal
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characteristics with Wi-Fi [4] or Bluetooth [5]. The signal
characteristics include Received Signal Strength Indication
(RSSI) [6] and Channel State Information (CSI) [7]. The
range-based localization calculates the distances between the
anchors and targets [8]. The distance can be estimated based
on the time of arrival (ToA) [9] or the time difference of arrival
(TDoA) [10].

However, the significant challenge in fingerprint-based lo-
calization is how to handle the unstable fluctuation of signals,
and the difficulty of range-based localization is the uncertainty
of signal propagation in NLoS and multipath environments.
The TDoA/ToA measurement will result in significant lo-
calization error since the multipath effect deteriorates the
accuracy of synchronization errors in sensor positions [11].
Recently, using deep learning to estimate positions becomes
increasingly popular. For example, the recurrent neural net-
work (RNN) with long short-term memory (LSTM), deep
neural network (DNN), and convolutional neural network
(CNN) can increase the robustness of the fingerprint-based
and range-based localization methods [12]. Deep learning can
extract relevant features embedded in the signals and represent
initial data better than the original features. We can train neural
networks and obtain critical features to enhance localization
performance.

In [13], the authors use RSSI to calculate the position
of the tag through a neural network, based on a multilayer
perceptron, which is trained and tested with a radio map and
learns to compute the position of the tags. In [14], the authors
demonstrate a large-scale DNN architecture with a scalable
stacked denoising auto-encoder for fingerprint-based indoor
localization. In [15], the authors propose an improved local-
ization algorithm called for source localization using LSTM
to address a TDoA measurement error or missing data in an
asynchronous localization. In [16], the authors propose a beam
estimation for applying DNN that derives the angle of arrival
by phase differences. The authors in [17] develop a UWB
system with arbitrary target orientation and optimal anchor
location. The UWB system implements a genetic algorithm
(GA) to minimize the average positioning error. Besides,
the adaptive NLoS mitigation with deep learning models is
introduced to improve the accuracy of wireless positioning
and tracking in a dense multipath environment. However, all
the above methods extract shallow features that only represent
trivial information and result in a rough estimation.

This paper combined five key signal features into six
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different datasets for our deep learning models. The five
features are RSSI, ToA, TDoA, first path (FP) amplitude
from channel impulse response (CIR), and DW1000 metric
Mc [18]. We collect the RSSI with the DW1000 UWB
transceiver to estimate the receive strength level. The TDoA
measurements are calculated by ASync-TDoA [19] model,
which can measure the time difference between the target
node and anchor nodes directly based on the timestamps. The
ToA is modeled by a single side two-way ranging algorithm
[20]. DW1000 transceiver measures the first path (FP) peak
amplitude from the channel impulse response (CIR) on the
DW1000 transceiver. And it uses a DW1000 metric, Mc,
representing the ratio FP amplitude to peak amplitude, which
can indicate whether the indoor environment is LoS or NLoS.
We combine the five features into six different datasets: (i)
RSSI, (ii) TDoA, (iii) ToA, (iv) RSSI and TDoA, (v) FP and
TDoA, and (vi) Mc, RSSI and TDoA. We use the six datasets
to train the LSTM and DNN networks. Based on the prediction
accuracy of the six datasets, we propose a weighted indoor
positioning (WIP) algorithm. Experiment results show that
our deep learning models with the WIP algorithm have better
positioning accuracy and robustness than baseline works.

The rest of this paper is organized as follows. Section II
describes the background of RSSI, TDoA, ToA, DW1000 met-
rics, and two neural network models, DNN and LSTM. Section
III presents the system architecture and WIP algorithm. The
performance of our method is presented in Section IV. Finally,
conclusions are drawn in Section V.

II. BACKGROUND

This section introduces the DW1000 metrics and the
schemes we use to estimate RSSI, TDoA, and ToA. Further-
more, we describe the detail of the deep learning models, DNN
and LSTM.

A. Channel Impulse Response (CIR) and DW1000 metrics

Observing the channel impulse response (CIR) at each
UWB antenna, we can determine the CIR amplitudes contain-
ing the multipath effect [18]. In the LoS situation, the signal
propagation from the transmitter to the receiver only in its
direct path also called the first path (FP). In the DW1000
accumulator, the FP amplitude is always equal to the peak
amplitude and decreasing with time series. In the NLoS
situation, the signal propagation from the transmitter to the
receiver has an obstacle in its direct path, and the reflection
happened. In the DW1000 accumulator, the FP amplitude is
deteriorated by an obstacle, but the reflection path amplitude
is not. Therefore, the peak amplitude corresponds to one of the
reflection path amplitudes, and the peak amplitude is always
higher than the FP amplitude.

We can measure the FP amplitude Ampfp and the peak
amplitude Amppk from the DW1000 accumulator. From [18],
we can detect the occurrence of the saturation with a DW1000
metric Mc as:

Mc =
Ampfp
Amppk

(1)

If Mc is greater than 0.9, we can conclude that the saturation
has occurred. Then it is likely that there is an LoS path
between the transmitter and the receiver.

B. Received Signal Strength Indicator (RSSI)

The following formula can calculate an estimate of the
received signal strength indicator (RSSI) [18]:

RSSI = 10× log10
(
C × 217

N2

)
−A (in dBm), (2)

where C is the CIR power value, N is the DW1000 preamble
accumulation count = 128, and A is the constant 113.77. The
CIR power value is a 16-bit value reporting the sum of the
squares of the accumulator’s magnitudes from the estimated
highest power portion of the channel related to the receive
signal power.

C. Time Difference of Arrival (TDoA)

We utilize the ASync-TDoA model to make the TDoA
measurements [19]. The steps of ASync-TDoA are as follows.
The reference anchor sends the signals to the anchors at regular
intervals. It needs to record timestamps from the tag and
the reference anchor for an anchor and then send them to
the server. For each reference anchor, the server can directly
measure the TDoA between the tag and the anchors.

D. Time of Arrival (ToA)

Unlike the ASync-TDoA model, the measurement of ToA
is highly dependent on the Times-of-Flight between the trans-
mitter and receiver. Although the anchors have accurate timing
references, tags use coarse crystals still bring out severe clock
offsets, causing a huge-ranging error. Hence, time synchro-
nization is a critical issue for precise ToA measurements. The
single side two-way ranging [20] algorithm can reduce the
ranging error by using the relative clock offset.

E. Deep neural network (DNN)

DNN is a more in-depth version of the artificial neural
network (ANN) that consists of an input layer, multiple hidden
layers, and an output layer. There are multiple layers of
neurons in a directed graph, each fully connected to the next
one. Although the DNN is a primary deep learning method,
we would like to use DNNs to estimate our target position,
and compare the prediction results to LSTM, and utilize the
prediction results to our proposed algorithm.

F. Long short-term memory (LSTM)

LSTM is a recurrent neural network (RNN) architecture.
Unlike the traditional network, the output results depend not
only on the current input value but also on the historical data.
During the training phase, the LSTM model learns to leverage
the latent motion features and trajectories from a sequence of
locations and their corresponding datasets of signal features.
The model can then predict the tags’ current position with raw
signal features during the online phase.
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Fig. 1: The Architecture of localization system.

III. SYSTEM MODEL

A. System overview

Fig. 1 shows the architecture of the proposed system. The
indoor localization system is generally categorized into three
phases: offline phase (training phase), online phase (predicting
phase), and positioning phase. In the offline phase, we pre-
define the tags for different locations and collect many signal
characteristics at each location, such as RSSI, TDoA, and ToA,
and we stored them in a database. We then train six classifiers
using the DNN (LSTM) network model corresponding to the
six datasets (i) RSSI, (ii) TDoA, (iii) ToA, (iv) RSSI and
TDoA, (v) FP and TDoA, (vi) Mc, RSSI, and TDoA. Thus,
we have twelve classifiers, six for the DNN model, and six
for the LSTM model. In the online phase, we predict the
location with different classifiers for the random location of
the tags from testing data. In the positioning phase, we can
accurately predict the unknown location with the proposed
weighted indoor positioning (WIP) algorithm to determine the
final location of the tags.

B. Offline phase

In the offline phase, we construct the classifier and make
a rough estimation of the tag’s location at each data point,
which will be utilized to determine the tag’s final position
in the positioning phase. The offline training includes data
collection and the classifier trained by the DNN and the
LSTM models. We use the methods mentioned in section II to
measure the signals of RSSI, TDoA, ToA, FP, and Mc. Then,
build our database via rescaling all the min-max normalization
measures, which is the most common way to normalize data.
Each feature is transformed into the interval [0, 1].

The database is separated into two partitions: the training
set and the testing set. The former is used for model learning
and to fit the parameters of a neural network. The latter is
applied to validate the model error and evaluate the neural
network model. We utilize a fingerprint approach for indoor
positioning. Let NAN be the number of the anchor nodes, NT

be the number of the tags, and Rs,i be the RSSI on the s-th tag
received signal from the i-th anchor. The FP on the s-th tag
received signal propagation from the i-th anchor is fps,i. The

Fig. 2: The proposed LSTM model.

ms,i is the Mc on the s-th tag received from the i-th anchor.
The T s,i and τs,i are TDoA and ToA between the s-th tag and
the i-th anchor, respectively. Each fingerprint F s collected at
the s-th tag has the signatures as shown in Table I.

TABLE I: The Offline Database of Fingerprints

Feature Corresponding Fingerprint
RSSI FRSSI

s =
{
Rs,1, Rs,2, ..., Rs,NAN

}
, for s = 1, ..., NT

FP FFP
s =

{
fps,1, fps,2, ..., fps,NAN

}
, for s = 1, ..., NT

PK FPK
s =

{
pks,1, pks,2, ..., pks,NAN

}
, for s = 1, ..., NT

Mc FMc
s =

{
ms,1,ms,2, ...,ms,NAN

}
, for s = 1, ..., NT

TDoA FTDoA
s =

{
T s,1, T s,2, ..., T s,NAN

}
, for s = 1, ..., NT

ToA FToA
s =

{
τs,1, τs,2, ..., τs,NAN

}
, for s = 1, ..., NT

After collecting the above signal features, the database is
reorganized into six datasets: (i) FRSSI

s ; (ii) FTDoA
s ; (iii)

FToA
s ; (iv) FRSSI

s and FTDoA
s ; (v) FFP

s and FTDoA
s ; (vi)

FMc
s , FRSSI

s , and FTDoA
s , and each dataset is used as

classifiers’ training input. For the LSTM and DNN models, we
train each classifier corresponding to each dataset to observe
the indoor multipath effect. The prediction results will apply
to the positioning phase. We design our LSTM model, which
captures the target location correlations at each moment by
referring to the previous five locations. Then it can critically
select the relevant previous information for predictions of the
target location.

The proposed LSTM model is shown in Fig. 2. The LSTM
network consists of one input layer, two hidden layers, and
one output layer. The input layer’s neurons depend on the
number of the anchor nodes NAN and the type of fingerprints.
It consists of NAN neurons for datasets (i), (ii), and (iii),
2NAN neurons for datasets (iv) and (v), and 3NAN neurons
for the dataset (vi). Each hidden layer consists of five LSTM
units. The output layer neurons depend on the number of the
target node NT . We can obtain the probability that every target
node is predicted to the correct location through the softmax
function. Here, we treat mean square error (MSE) as the loss
function, which is denoted as:

LossMSE(y, ŷ) =
1

N

N∑
i

(yi − ŷi)2 (3)
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Fig. 3: The proposed DNN model.

The proposed DNN model consists of one input layer, three
hidden layers, and one output layer, as shown in Fig. 3 The
input layer and output layer are the same as the LSTM net-
work. The hidden layers are composed of three fully connected
layers 80, 60, and 30 neurons. To avoid the vanishing gradient
problem of the sigmoid function, the ReLU function activates
the neurons after the linear operation. Regarding the indoor
localization as multiclass classification problems, we consider
the cross-entropy function as a loss function, which is denoted
as:

LossCE(y, ŷ) = -
1

N

N∑
i

[yi log ŷi + (1− yi) log(1− ŷi)]

(4)
Therefore, the location can be predicted through the twelve
classifiers. Different classifiers with corresponding data can
reveal different features in neural networks. By doing so,
we can increase the accuracy of our localization system and
achieve better learning.

C. Online phase

In the online phase, we predict the tag’s location by feeding
the testing data to all classifiers. Some tags are placed in
LoS, and some of them are placed in NLoS. We predict
the tags’ location from the twelve classifiers in the LoS and
NloS, respectively. Then, the accuracy of each classifier with
LoS and NLoS will be used as the weights to determine
the tags’ final location. The set of weights are defined as
WLoS={w1, w2, ..., w12} and WNLoS={ẃ1, ẃ2, ..., ẃ12} for
LoS and NLoS environment, where w1 to w6 (or ẃ1 to ẃ6)
are the weights calculated by the LSTM classifiers with the
corresponding dataset (i) to (vi), and w7 to w12 (or ẃ7 to
ẃ12) are the weights calculated by the DNN classifier with the
corresponding dataset (i) to (vi). The weights can be calculated
by

wi =
Accuracy of classifieri∑N
i=1Accuracy of classifieri

(5)

D. Positioning phase

After online testing, we find out some classifiers have
good performance in particular situations. For instance, the
classifier with the RSSI data has better accuracy than the

Algorithm 1: Weighted Indoor Positioning Algorithm
Input: Data signal features of a tag: RSSI R, TDoA T , ToA
τ , FP fp and Mc m
Output: The final location LE

1: In the online phase, we compute the weights
WLoS={w1,w2,. . . ,w12} and WNLoS={ẃ1,ẃ2,...,ẃ12}
through the LSTM and DNN models.

2: Predict the tag’s possible locations L={l1,l2,. . . ,l12} ac-
cording to all classifiers.

3: Compute the final location LE

4: if m > 0.9 then /* LoS environment */
5: LE = w1l1+w2l2+...+w12l12
6: else /* NLoS environment*/
7: LE = ẃ1l1+ẃ2l2+...+ẃ12l12
8: end if
9: return LE ;

one with the TDoA data in the NLoS indoor environment.
We will show the experiment results in the next section.
Therefore, we design a weighted indoor positioning algorithm
called WIP. We separated the testing dataset into LoS dataset
and NLoS dataset in the online phase, then calculated all
classifiers’ accuracy with the prediction results. Furthermore,
we computed the weight WNLoS and WLoS by the accuracy
of all classifiers in the NLoS and LoS environments. We use
the Mc metric to distinguish whether a tag is in the NLoS
environment during the positioning phase. If Mc is bigger than
0.9, we use the weight WLoS to determine the final location
of the tag, on the opposite, we use the weight WNLoS to
determine the final position of the tag. The pseudo-code of
our algorithm is given in Algorithm 1. In severe multipath
interference, using the WIP algorithm can avoid overfitting in
the training phase and have good robustness in our system.

IV. EXPERIMENT RESULTS

This section uses a desktop computer with Intel Core i7-
6700K and GeForce GTX 750 Ti to train and evaluate the
accuracy of our network models. The version of the Tensor-
Flow backend is 1.9. In addition, we adopt the DecaWave
DWM1001 modules as transceivers, which is compliant with
the IEEE802.15.4 standard. Then, we use the proposed models
with WIP algorithm for UWB indoor positioning to demon-
strate our experiments. We do the experiments to evaluate our
method’s accuracy for localization in both the NLoS and LoS
environments. To test the proposed method’s performance,
we consider a two-dimensional localization model in a 10×6
m2 office room containing the NLoS and LoS environments.
Finally, we predict the localization error in this environment
and compare it with other models.

A. Experimental Environment

In the office room, there are one reference node, four anchor
nodes, and 57 tags. Besides, a gateway and a server are
deployed in the room as shown in Fig. 4. Every tag has an
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Fig. 4: The experimental environment.

identification number from 1 to 57, where no. 1 to no. 8 are
placed on the floor of the corridor, no. 9 to no. 28 placed on
the floor of the office room, no. 29 to no. 48 placed in the
ceiling of the conference room, no. 49 to no. 57 placed in
the ceiling of the outer corridor, i.e., no. 1 to no. 28 are in
the NLoS environment, and no. 29 to no. 57 are in the LoS
environment. The reference anchor transmits the UWB signal
periodically to the anchor nodes, recording timestamps and
sending them to the server through the gateway.

The experiment steps are as follows: (a) Collect and com-
pute the signal characteristic data, like RSSI, TDoA, ToA, and
CIR amplitude. We combine the five features into 12 datasets:
(i) RSSI, (ii) TDoA, (iii) ToA, (iv) RSSI and TDoA, (v) FP
and TDoA, and (vi) Mc, RSSI, and TDoA in the case of LoS
and NloS, respectively. (b) The 12 datasets is used to train the
LSTM and DNN networks independently to obtain the final 24
classifiers. (c) According to the classifiers’ prediction results,
we compute each classifier’s positioning weight based on its
accuracy. (d) Using the WIP algorithm to predict the final
position of the tags. To obtain enough training data, we set 57
tags located one meter apart to get 140 samples for each tag.
We collect 7981 samples with their actual coordinates. Then,
we use 7183 samples for the training model and 798 samples
for evaluation.

B. Prediction performance

To determine the classifiers’ weights, we compute the classi-
fiers’ prediction accuracy for the tags’ location. Table II shows
each classifier’s prediction accuracy with the corresponding
datasets from 798 samples, and Fig. 5 shows the mean error
of each classifier’s position prediction. We analyze the accu-
racy of predictions to evaluate the performance of different
classifiers. After feeding 130 data points, the performance of
the LSTM model with FMc

s , FRSSI
s , and FTDoA

s datasets
outperform the others in the NLoS environment, and the DNN
model with Ampfp and FTDoA

s datasets outperforms the
others in LoS environment. We find that DNN can extract
more relevant NLoS features from the RSSI data as shown in
Table II. The performance of the classifier with FRSSI

s is at
least 13% better than the classifier with FTDoA

s . The RSSI
data plays an important role in our experiments, and even it is

Fig. 5: The mean error of different classifiers’ predictions.

unreliable by its unstable signal characteristic. From the whole
area perspective, the LSTM model with FMc

s , FRSSI
s , and

FTDoA
s datasets have the highest accuracy, but its performance

in the LoS environment is less than the DNN model with FFP
s

and FTDoA
s datasets. All the results in Table II can be used

to compute the positioning weights WLoS = {0.051, 0.081,
0.090, 0.081, 0.08, 0.090, 0.072, 0.09, 0.092, 0.092, 0.092,
0.089} and WNLoS = {0.069, 0.056, 0.09, 0.088, 0.081, 0.1,
0.089, 0.064, 0.093, 0.09, 0.081, 0.1}.

In Fig. 5, we compare the mean error of different classifiers
with their corresponding datasets. The LSTM model with
FMc
s , FRSSI

s , and FTDoA
s datasets can achieve the lowest

error of 3 cm in our experiments. Furthermore, the error can
be reduced to 2 cm with the WIP algorithm in the final position
estimation. However, all the datasets are collected under the
fixed positions (i.e., no.1 to no.57) as shown in Fig. 4. In
the following experiments, we will evaluate the accuracy in
randomly selected positions.

C. Robustness evaluation

Fig. 6 shows the cumulative distribution function (CDF) of
positioning errors, evaluating the classifier’s robustness. We
find that the robustness of the LSTM model is always better
than the DNN model. For instance, the range error of the
LSTM model with FMc

s , FRSSI
s , and FTDoA

s datasets are
within 0-1 m, but the DNN model results in 0-5 m. As it
turned out, the results indicate that the proposed LSTM model
can make good predictions by interpreting the localization
from the current features and the information of previous tags.
Thus, we can prove that the LSTM model makes a more
stable prediction than the DNN model attributed to the internal
hidden memory of the LSTM units.

We compare our proposed method with the support vector
machine (SVM) classifier, k-nearest neighbor (KNN) classi-
fier, and multi-lateration (MLAT) classifier. The former two
classifiers and proposed models use the same dataset, FMc

s ,
FRSSI
s , and FTDoA

s , while MLAT is a classical positioning
mechanism for determining a position based on measurement
of the times of arrival (ToAs) of energy waves, uses FToA

s to
estimate the locations of the tags.
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TABLE II: The Performance of Each Classifier with the Corresponding Dataset

Model LSTM DNN
FRSSI
s FFP

s FMc
s FRSSI

s FFP
s FMc

s

Dataset FRSSI
s FTDoA

s FToA
s FTDoA

s FTDoA
s FRSSI

s FRSSI
s FTDoA

s FToA
s FTDoA

s FTDoA
s FRSSI

s

FTDoA
s FTDoA

s

NLoS Acc. 67.24% 54.38% 87.09% 85.48% 79.03% 96.77% 86.88% 62.29% 90.38% 87.09% 79.03% 96.77%
LoS Acc. 55.10% 88.23% 97.89% 88.23% 86.27% 98.03% 78.01% 98.03% 99.24% 99.47% 99.67% 96.07%
Overall Acc. 58.40% 67.25% 89.38% 86.72% 82.30% 97.34% 81.41% 77.87% 92.03% 92.92% 88.49% 96.46%

(a) The LSTM model

(b) The DNN model

Fig. 6: The CDF of positioning errors with (a) the LSTM
model and (b) the DNN model.

Fig. 7 shows the indoor tracking experiment by a human
moving with 1 m/s. A human walks along the trajectory,
which is shown in the dotted line in Fig. 7. We collect 82
samples at each meter of the walk, 31 positions in total. The
tracking mean errors of the proposed models with the WIP
algorithm, SVM, KNN, and MLAT are 7.6 cm, 76.5 cm, 72.5
cm, and 37 cm, respectively. We can observe that when the tags
in the NLoS environment, the other models perform a poor
accuracy. To compare the performance of our WIP algorithm
with other baseline works, we collect 178 samples for each of
45 randomly selected positions, as shown in Fig. 8. Based
on 8010 testing data, Fig. 9 shows the CDF of the mean
errors between the WIP algorithm and other baselines. The
mean errors of the proposed WIP algorithm, SVM, KNN, and
MLAT, are 8.1 cm, 81.7 cm, 76.6 cm, and 38 cm. The results

Fig. 7: The trajectory of positioning between the
proposed method and the others.

Fig. 8: The randomly select positions in experimental
environment.

show that our WIP algorithm outperforms the other methods.
The experiments conclude that the proposed method can ac-

curately predict the location of the tags. The proposed network
models can effectively extract abstract location features by our
network design to enhance localization performance. In addi-
tion, we use the classifiers’ accuracy to implement our WIP
algorithm can improve the prediction accuracy. These results
demonstrate that the proposed method has better accuracy for
indoor positioning in NLoS and LoS environments.

V. CONCLUSION

This paper combines five signal features into six different
datasets for our deep learning models and proposed a WIP
algorithm to predict the indoor positions in the NLoS and LoS
environments. In the proposed algorithm, every dataset plays a
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Fig. 9: The CDF of mean error for the proposed method and
other methods in random positions.

significant role in our neural network models. Besides, we use
DNN to express features more abstractly at a higher level and
take advantage of LSTM units to enhance the accuracy of our
method. With random positions, we achieve the positioning
error within 8.1 cm in the experiments of indoor tracking. The
results show that the proposed models with the WIP algorithm
have better accuracy than baselines.
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