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Abstract—Social Internet of Things (SIoT) has become an
emerging network paradigm, where IoT devices with Artificial
Intelligence (AI) and social relations can automatically establish
a collaborative group to identify events locally. On the other
hand, mobile users can act as ubiquitous and versatile sensors
to improve the accuracy of SIoT event detection. In this paper,
we explore the SIoT Collaboration with Crowdsourcing (SCC)
problem to jointly select SIoT devices and hire users to monitor
events and locations with accuracy requirements, while minimiz-
ing the total SIoT communication and computation costs and the
user hiring cost. We prove that SCC is NP-hard and cannot be
approximated by any factor unless P = NP. Then, we propose
a new algorithm, Accuracy- and Social-aware SIoT and User
Selection (ASSUS), with the idea of Collaborative Tree (CT) and
Accuracy Profit (AP), where CT exploits users’ social relations to
properly choose intermediate SIoTs. Simulation results manifest
that ASSUS can effectively reduce more than 50% of the total
cost compared with state-of-the-art algorithms.

I. INTRODUCTION

Social Internet of Things (SIoT) has emerged to coop-
eratively process data and identify local event by a set of
IoT devices with social relations [1], [2].1 First, SIoTs pro-
duced by the same manufacturer can share parental object
relation, whereas those possessed by the same owner can
share ownership object relation. Next, SIoTs can build co-
location object relation and co-work object relation if they are
neighbors and designed to manage similar events, respectively.
For example, the SIoTs with co-location and co-work object
relations can collaboratively identify the traffic congestion
and crowd gathering regions to figure out why and how that
happens [2]. Moreover, researchers have recently exploited
the social relations between mobile devices [3] and SIoTs [4]
jointly to trace and spot undocumented patients and infectious
places for containing COVID-19. To precisely identify events,
a monitored location is usually covered by multiple SIoTs to
enhance the fault tolerance and reliability of SIoTs. However,
nearby SIoTs may not always meet the accuracy requirement
for monitoring each location due to the noise and uncertainty
of measurement.

Online social networks (OSNs) provide plentiful informa-
tion to capture society dynamics and enable people to act
as ubiquitous and versatile sensors to report (post) their

1For ease of presentation, we use (S)IoTs to represent (S)IoT devices.

observations [5], [6]. To improve SIoT detection, a promising
way is to hire users online via OSNs (so-called crowdsourcing
[7]) to observe desired locations. Since performing sensing
tasks requires users to devote their time and mobile device
resources (e.g., battery), it is desirable to motivate participants
by rewarding them with a certain quantity of payment [8].2

However, malicious users may spread fake information on
OSNs, affecting the correctness of event identification. To
this end, Daniel et al. [9] explored the truth discovery under
users’ reliability, report credibility, and historical behaviors to
avoid misinformation spread. Jun et al. [10] proposed a peer
prediction-based trustworthy service rating to identify mali-
cious and unreliable users. Kardelen et al. [11] extracted the
features of OSNs to estimate the accuracy of event detection
from users. Nevertheless, the above works did not consider the
accuracy of SIoTs and users jointly to select SIoTs and hire
users for ensuring the accuracy requirement of event detection
and location monitoring. For example, the coastal monitoring
system in the Poetto beach in Italy needs users’ feedback to
improve the quality of SIoT detection [12].

Different from previous works focusing on only SIoTs [1],
[2] or OSNs [5], [6], this paper exploits crowdsourcing via
OSNs to help SIoTs search and monitor events to minimize the
total costs, including SIoT communication and computation
costs and the user hiring cost (i.e., payment for hiring users
[8]). However, the problem is challenging due to the following
research issues. 1) Tradeoff in cost and accuracy. An SIoT
of a user (i.e., ownership object relation) may be able to be
employed by her friends when the user agrees [13]. However, a
trustful user possessing SIoTs may require a larger hiring cost
due to a long distance to the monitored location.3 Moreover,
when a user has fewer SIoTs, it may be necessary to involve
more users to exploit more SIoTs (with a large total cost) for
satisfying the accuracy requirement. 2) Collaborative group
construction for SIoTs. To identify an event, it needs to build
connected SIoTs to ensure that SIoTs can communicate with
each other. However, some closeby SIoTs cannot be adopted
when they belong to untrusted users, and distant SIoTs of

2Crowdsourcing platforms, like Uber (https://www.uber.com) and Amazon
Mechanic Turk (https://www.mturk.com/), reward users for their participation.

3The hiring cost is proportional to the moving distance (i.e., the effort that
the user makes to reach the location) [14].



trusted friends with larger communication costs are required
in this case. 3) Tradeoff in SIoT connectivity and OSN social
relations. A user with good social centrality is able to employ
the SIoTs of more friends. However, these SIoTs may be
located in various places and thereby are difficult to ensure
the SIoT connectivity.

To effectively address the above issues, this paper formu-
lates a new optimization problem, named SIoT Collaboration
with Crowdsourcing (SCC), to select SIoTs and users (i.e., hire
users to help monitor an event or a location) for minimizing
the total SIoT communication and computation costs, as well
as the hiring cost of friends and crowdsourcing. We prove that
SCC is NP-hard and inapproximable within any factor unless
P = NP . Then, we design an algorithm, called Accuracy- and
Social-aware SIoT and User Selection (ASSUS), to construct
a Collaborative Tree (CT) of SIoTs and choose users to
jointly detect events and monitor locations for improving SIoT
detection accuracy. For the first challenge, ASSUS introduces
the notion of Accuracy Profit (AP) to examine the accuracy
increment per unit cost for each SIoT and user. For the second
challenge, AP carefully evaluates the computation cost of each
SIoT and the communication cost of the corresponding path to
attach to the CT, as well as the hiring cost of users possessing
those SIoTs. ASSUS then extracts SIoTs and users based on
AP to ensure the accuracy requirements and minimize the total
cost. Afterward, ASSUS tailors CT by replacing some SIoTs
and their paths connected to CT with those inducing smaller
costs. For the third challenge, ASSUS removes the users whose
activated SIoTs4 are no longer required by examining their
social relations. Afterward, ASSUS trims the CT to minimize
the communication cost and pairwisely swaps users’ monitored
locations to reduce the hiring cost.

The rest of this paper is organized as follows. Section
II formulates SCC and presents the hardness result. Section
III proposes ASSUS. Section IV summarizes the simulation
results, and Section V concludes this paper.

II. PROBLEM

A. System Model

The system model includes SIoTs and OSNs. For SIoTs, we
denote by GSIoT = (V SIoT , ESIoT ) a network with a set of
SIoTs V SIoT and a set of social links ESIoT . Each SIoT n ∈
V SIoT includes a computation cost βn. A link en,m ∈ ESIoT
with communication cost αn,m exists if SIoTs n,m ∈ V SIoT
have social relations and can communicate with each other [1],
[2]. Due to the ownership object relations [1], [2], some SIoTs
are private (belong to some users) and the others are public. If
an SIoT is private, it requires to be activated (detailed later) to
employ it. Let L be the set of monitored locations, and each
SIoT n ∈ V SIoT is associated with coverage Cn ⊆ L and
accuracy anl for monitoring location l ∈ Cn.

For OSNs, we denote by GOSN = (V OSN , EOSN ) an OSN
with a set of users V OSN and a set of social links EOSN

4An SIoT owned by a user is activated if she or her friends with sufficiently
strong social relations are selected (detailed later). An activated SIoT can be
employed to monitor locations or act as a relay to connect to other SIoTs.
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Fig. 1. An example of OSN and SIoT coverage.

TABLE I
AN EXAMPLE OF CM

an1
l1

identified result
θ1 θ2 θ3 θ4

true
event

θ1 410 10 30 50
θ2 10 250 30 10
θ3 34 25 700 41
θ4 10 70 80 240

topology, where a link eu,v ∈ EOSN with weight (i.e., the
strength of social relation) φu,v exists if users u, v ∈ V OSN
are friends. According to the trust transitivity property [15],
[16], the social relation between two users can be aggregated
(e.g., if A trusts B and B trusts C, then A trusts C to some
extent). The social relation ru,v of u and v is expressed as
ru,v = maxeu,u′∈EOSN φu,u′ · ru′,v [16]. Each user u includes
an accuracy aul for monitoring location l ∈ L5 and owns a set
Du ⊆ V SIoT of SIoTs (i.e., ownership object relations). For
example, ru1,u3 = 0.75 × 0.7 = 0.525 and D1 = {n2, n3}
since u1 owns {n2, n3} in Fig. 1(a).6

We exploit the confusion matrix (CM) [17] to represent
the accuracy of SIoTs [18] and users [19] according to the
historical records. The accuracy anl (aul ) of SIoT n (user u)
monitoring location l is defined as the proportion of correct
identifications (classifications) to the total identified instances,7

anl =
∑N

i=1 CM
n
l (i,i)∑N

i=1

∑N
j=1 CM

n
l (i,j)

. CMn
l = [Mi,j ]N×N represents the

identification results of SIoT n monitoring location l. Mi,j

is the identification result that the SIoT identifies event i as
event j, and N is the total number of identifications. Each
row in CM indicates the instances in a true event, while each
column represents the instances in an identified result. Fig.
1(b) shows an example, where each circle and star represent
the SIoT coverage and monitored location, respectively. SIoT
n1 covers (l1, l2, l3, l4, l5), and it can identify 4 events (i.e.,
θ1, θ2, θ3, θ4) for l1, with the CM shown in Table I. For
true event θ1, n1 correctly identifies it as θ1 410 times
({10, 30, 50} for {θ2, θ3, θ4}) in the overall 500 times (i.e.,
410 + 10 + 30 + 50 = 500). Hence, the accuracy of an1

l1
is

410+250+700+240
500+300+800+400 = 0.8.

B. Problem Formulation

Equipped with the SIoT, OSN and accuracy model, we
formulate SCC as follows. The objective is to minimize the

5The users’ opinions on a specific event can be collected on the OSNs
(e.g., Facebook users’ interactions on user walls) [11], and the credibility
assessment system can evaluate the accuracy of users’ judgment [9].

6In Fig. 1(a), each circle and triangle represent user and SIoT, respectively.
7For simplicity, we only describe the accuracy of SIoTs and omit users

since they are associated with the same formula.



total SIoT communication, computation, and the hiring cost.
Let xn,m and yn denote if edge en,m ∈ ESIoT is selected
for communication and SIoT n is chosen for monitoring loca-
tions,8 respectively. The total communication and computation
costs of SIoTs is CSIoT =

∑
en,m∈ESIoT xn,m · αn,m +∑

n∈V SIoT yn ·βn. For crowdsourcing, let binary variables zu
and wu,l denote if user u is chosen and if user u is assigned to
monitor location l, respectively.9 The total hiring cost of users
is COSN =

∑
u∈V OSN zu · γu + ρ

∑
u∈V OSN ,l∈L wu,l · su,l,

where γu is the basic payment (cost) for choosing user u for
monitoring or using u’s SIoTs [14], ρ is the unit distance cost,
and su,l is the distance between user u and monitored location
l. SCC minimizes the total cost CSIoT + COSN .

SCC includes the following constraints. 1) SIoT connectivity
constraint. The selected SIoTs forming a collaborative group
are required to be connected on GSIoT to ensure that they
can communicate with each other [2]. 2) Accuracy constraint.
The average accuracy of selected SIoTs and users that cover
each monitored location l ∈ L with the accuracy exceeding a
threshold λ. Following [11], [18], for each monitored location
l, the average accuracy a(l) is

a(l) =

∑
n∈V SIoT anl · yn +

∑
u∈V OSN aul · wu,l∑

n∈V SIoT |l ∩ Cn| · yn +
∑
u∈V OSN wu,l

≥ λ. (1)

3) Social trust constraint. To preserve privacy [13], the SIoT
set Dv owned by user v (i.e., ownership object relations) can
be activated by choosing v or u if and only if social relation
ru,v of users u and v exceeds a threshold δ [15].

Definition 1 (SCC). Given 1) a set of monitored locations L
with accuracy requirement λ, 2) an SIoT network GSIoT =
(V SIoT , ESIoT ) with computation cost βn, accuracy anl and
coverage Cn for each SIoT n ∈ V SIoT , and weight αn,m
for each link en,m ∈ ESIoT , and 3) an OSN GOSN =
(V OSN , EOSN ) with possessed SIoTs Du, basic cost γu,
distance su,l and accuracy aul for each user u monitoring
location l ∈ L, weight φu,v for each link eu,v ∈ EOSN and
social relation threshold δ, SCC aims to select a subset of
V SIoT and V OSN to minimize CSIoT + COSN , whereas the
SIoT connectivity, accuracy, and social trust constraints hold.

Theorem 1. AASUS is NP-hard and cannot be approximated
by any factor unless P = NP .

Proof. Due to the space constraint, the detailed proofs of NP-
hardness and inapproximability are presented in [20].

III. ALGORITHM DESIGN

To solve SCC, an intuitive approach is to assign each user
to the nearest monitored location and then iteratively select the
SIoT with maximum coverage until the accuracy requirement
of each monitored location is met [21]. However, a user with a
low distance cost may be associated with a large hiring cost,

8An SIoT may be chosen as a relay only for ensuring the SIoT connectivity,
and its computation cost in this case is ignored.

9A user may be chosen only for activating her or her friends’ SIoTs, but
she is not assigned to monitor any location. Accordingly, two binary variables
are required to differentiate them.

and an SIoT with good coverage may induce unacceptable
accuracy and large computation and communication costs.
Moreover, the approach ignores the OSN social relations and
SIoT connectivity. To address these issues, we propose ASSUS
with the following phases: 1) Collaborative SIoT and User
Selection (CSUS), 2) SIoT Replacement (SR), and 3) CT
Pruning and User Swapping (CTPUS). CSUS first introduces
Accuracy Profit (AP) to estimate the accuracy increment per
unit cost for each SIoT and user. It then jointly selects
SIoTs and users with the maximum AP to meet the accuracy
requirements, where the selected SIoTs are connected via
minimum-cost paths to construct a Collaborative Tree (CT)
to maintain SIoT connectivity. Next, SR replaces some SIoTs
and their paths connected to CT with those incurring smaller
costs, where the social relations of the corresponding users are
carefully examined to ensure trust. Finally, CTPUS evaluates
ownership object relations to trim the CT for reducing the
communication cost and pairwisely swaps users’ monitored
locations to lower the hiring cost. The time complexity of
ASSUS is O(|V SIoT |2 log |V SIoT | + |V OSN |2|L|). Due to
the space constraint, the detailed complexity analysis and
pseudocode are provided in [20].

1) Collaborative SIoT and User Selection (CSUS): CSUS
first constructs a collaborative tree (CT) for SIoTs to ensure
the SIoT connectivity. The accuracy profit (AP) of SIoTs and
users are evaluated jointly to ensure the accuracy requirements
and minimize the total cost. Specifically, the AP of each SIoT
and user is defined as the ratio of its accuracy increment
to its induced cost for satisfying the accuracy requirements
with the minimum cost. CSUS iteratively extracts the SIoT
(or user) with the maximum AP and finds the minimum-cost
path connected to the CT to ensure the SIoT connectivity. In
the following, we first define the AP of each SIoT and user.

For an SIoT n, the costs include the communication and
computation costs, as well as the hiring cost of a user that is
involved for choosing n due to the ownership object relations.
Let a(l) be the accuracy of monitored location l, and CT (n)
denotes the SIoT on the CT nearest to n. We denote by
PSIoTn,CT (n) the minimum-cost path between n and CT (n) on
GSIoT , and the induced communication cost thereby is the
total cost of links, c(PSIoTn,CT (n)) =

∑
en′,m′∈PSIoT

n,CT (n)
αn′,m′ .10

The induced hiring cost for selecting SIoTs on the path
PSIoTn,CT (n) is

∑
u∈Un,CT (n)\U γu, where Un,CT (n) is the set of

users owning the SIoTs on PSIoTn,CT (n) \ {CT (n)}, and U is the
set of chosen users to 1) monitor locations or 2) activate their
SIoTs to be employed. The AP of SIoT n is

AP (n) =

∑
l∈Cn

(anl − a(l))

c(PSIoTn,CT (n)) + βn +
∑
u∈Un,CT (n)\U γu

. (2)

The AP of user u includes two cases since u can be chosen
for activating SIoTs or monitoring a location l. Specifically,

10If n is on CT or the first selected SIoT (i.e., the root), PSIoT
n,CT (n)

= n

and c(PSIoT
n,CT (n)

) = 0.



TABLE II
AN EXAMPLE OF SIOT ACCURACY

l1 l2 l3 l4 l5 l1 l2 l3 l4 l5
n1 0.8 0.78 0.76 0.77 0.82 n6 0.82 0.8 0.84 0.76
n2 0.78 0.76 0.77 0.85 n7 0.72 0.8
n3 0.7 0.85 n8 0.65 0.88
n4 0.65 0.88 n9 0.81 0.82 0.8
n5 0.8 0.82 0.78 n10 0.77 0.81

TABLE III
AN EXAMPLE OF γu , aul AND su,l

γu aul1 aul2 aul3 aul4 aul5 su,1 su,2 su,3 su,4 su,5
u1 1 0.3 0.5 0.4 0.6 0.5 10 9 11 8 10
u2 1 0.6 0.6 0.5 0.81 0.81 50 60 55 3 3
u3 4 0.6 0.5 0.6 0.84 0.85 66 65 60 2 2
u4 2 0.5 0.4 0.5 0.82 0.83 50 60 60 3 4
u5 2 0.92 0.9 0.8 0.9 0.9 110 95 110 95 95

the AP of user u for monitoring location l is

AP (u, l) =

{
aul −a(l)
ρ·su,l

,∀u ∈ U \W,
aul −a(l)
γu+ρ·su,l

,∀u ∈ V OSN \ U,
(3)

where W ⊆ U is the set of users chosen for monitoring
locations. If user u has been chosen for activating her SIoTs
(i.e., the basic cost γu has been added), only the distance cost
ρ · su,l of u moving to monitored location l is considered;
otherwise, both the basic cost and distance cost are necessary
to be examined.

CSUS iteratively chooses the SIoT (or user) with the max-
imum AP to ensure the accuracy requirements with the mini-
mum cost and construct a CT accordingly. More specifically, if
SIoT n with the maximum AP (n) is chosen for monitoring,11

CSUS also selects the SIoTs (and their corresponding owners)
on PSIoTn,CT (n) as relays to ensure the SIoT connectivity, i.e., the
selected SIoT is connected to CT via PSIoTn,CT (n). On the other
hand, if the user u with the maximum AP (u, l) is chosen,
CSUS assigns user u to monitor location l. If there are more
than one user with the same maximum AP, CSUS extracts
the one that activates more SIoTs. Specifically, we define
Qu = Du ∪

⋃
v|ru,v≥δ Dv,∀u ∈ V

OSN as the set of activated
SIoTs when u is chosen, and QU =

⋃
u∈UQu. CSUS chooses

the user with the maximum |Qu \QU| to activate more SIoTs.
Afterward, CSUS updates the accuracy a(l) of each location
l ∈ Cn considered above according to (1). CSUS stops when
the accuracy requirement of each monitored location is met.

Example 1. Figs. 1(a) and 2(a) present an illustrative example.
The weight of the triangle is the SIoT computation cost, and
the weight of the edge is the communication cost between
SIoTs. Parameters δ, λ and ρ are set to 0.8, 0.8 and 1,
respectively, and other parameters are summarized in Table
II and Table III. Since AP (n1) = 0.8+0.78+0.76+0.77+0.82

0+6+0 =
0.655 is the largest, CSUS first selects n1 as the root of
CT . Similarly, it assigns u3 to monitor l4 since it gener-
ates the maximum AP, and U = {u3} and W = {u3}.
Afterward, CSUS selects n6 and connects it to CT via path

11Note that if n has been selected as a relay in the previous iteration,∑
u∈Un,CT (n)\U

γu = 0 since Un,CT (n) = ∅.
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Fig. 2. An illustrative example of SCC.

PSIoTn6,CT (n6)
= n6 → n3 → n4 → n1 and AP (n6) =

(0.82−0.8)+(0.8−0.78)+(0.84−0.76)+(0.76−0.82)
9+5+1 = 0.004, where

c(PSIoTn6,CT (n6)
) = 2 + 2 + 5 = 9 and βn6

= 5. Since n6 ∈ D3

and n3 ∈ D1 on PSIoTn6,CT (n6)
\{CT (n6)}, it is required to select

Un6,CT (n6)\U = {u1}. With the same process, the final results
of CT and user selection (to monitor locations) are shown in
Fig. 2(b). The result of U = {u1, u3, u4}, W = {u3, u4} and
the set of SIoTs for monitoring and relaying are {n1, n6, n9}
and {n3, n4, n8}, respectively. The total cost CSIoT+COSN =(
(5+2+2+2+1)+(6+5+4)

)
+
(
(4+2+1)+(4+2)

)
= 40

and the accuracy of monitored locations (l1, l2, l3, l4, l5) are
(0.81, 0.8, 0.8, 0.805, 0.8025).

2) SIoT Replacement (SR): SR replaces the selected SIoTs
with others that generate a smaller total cost and then lowers
the hiring cost by removing some users and their SIoTs. Let
CT = (V CT , ECT ) denote the CT with the selected SIoTs
V CT (including relays) and communication links ECT , and
CTL, CTB and CTM represent the set of leaves, branch nodes
(i.e., the nodes with at least three incident edges) and the mon-
itoring nodes (i.e., the SIoTs selected for monitoring locations)
on CT , respectively. Note that each leaf node n ∈ CTL must
be the SIoT selected for monitoring (i.e., CTL ⊆ CTM ), since
CSUS constructs CT by iteratively connecting a monitoring
SIoT via a path. Our idea is to iteratively evaluate each leaf
n and replace the corresponding path PCTn,B(n) by an improved
one PSIoTm,CT (m) with a smaller cost, where m /∈ CTM , B(n) is
the nearest upstream monitoring node or branch node of n on
CT ,12 and PCTn,B(n) is the minimum-cost path from n to B(n)
on CT .

More specifically, SR first prioritizes leaf nodes CTL in
descending order of their reduced costs if they are replaced.
The reduced cost RC(n) of a leaf node n ∈ CTL includes
the computation cost βn, communication cost from n to B(n)
on CT , and hiring costs of users that can be removed if their
SIoTs are no longer required after removing PCTn,B(n). That is,
RC(n) = c(PCTn,B(n)) + βn +

∑
u∈X γu, where X is the set of

users u that can be removed from U if u is not chosen for

12To ensure the SIoT connectivity, the branch node cannot be removed
directly even if it is chosen as a relay.



monitoring, and its activated SIoTs Qu are no longer involved
as the monitoring nodes or relays.

SR then iteratively replaces each path PCTn,B(n) by an
improved one with a smaller total cost. More specifically,
since the accuracy requirement of some locations may not be
satisfied after removing PCTn,B(n), SR iteratively chooses the
SIoT m ∈ V SIoT \ CTM that leads to the most accuracy
increment for those unsatisfied locations l ∈ Cn, whereas
the accuracy requirements of other locations are still met.13

In each iteration, SR finds the increasing cost IC(m) =
c(PSIoTm,CT (m)) + βm +

∑
u∈Um,CT (m)\U γu until the accuracy

requirement of each location is satisfied or
∑
IC(m) ≥

RC(n). If
∑
IC(m) ≥ RC(n), PCTn,B(n) will not be replaced,

and SR examines the next leaf node. Otherwise, it connects
PSIoTm,CT (m) to CT and updates CTM = CTM ∪{m}\{n} and
CTL = CTL \ {n}.14 The above process stops until all the
leaf nodes are examined.

Example 2. Fig. 2(b) presents an illustrative example.
RC(n1) = c(PCTn1,B(n1)

) + βn1
= 5 + 6 = 11. RC(n6) =

c(PCTn6,B(n6)
) + βn6

+
∑
u∈X γu = 4 + 5 + 1 = 10, where

X = {u1} because u1 is not chosen for monitoring, and
her activated SIoTs {n2, n3} are no longer required after
removing PCTn6,B(n6)

. Since RC(n1) is the largest one, SR
removes PCTn1,B(n1)

, but a(l5) becomes unsatisfied. Hence,
SR selects n10 to complement a(l5) with increasing cost
IC(n10) = 2+2+2 = 6 since IC(n10) = 6 < RC(n1) = 11.
Fig. 2(c) shows the final CT and selected users, where
U = {u1, u3, u4, u5}, W = {u3, u4}, CTL = {n6, n9, n10},
CTB = {n4} and CTM = {n6, n9, n10}. The total cost is
reduced from 40 to 35.

3) CT Pruning and User Swapping (CTPUS): After SR
selects users to activate more SIoTs to improve the solution,
CTPUS first examines those SIoTs with ownership object re-
lations to trim the CT, and it then minimizes the hiring cost by
swapping users’ monitored locations. Specifically, CTPUS first
carefully examines the graph ḠSIoT = GSIoT \{QV OSN \QU}
to avoid incurring additional hiring costs (i.e., ḠSIoT consists
of only the public SIoTs or the activated SIoTs) when pruning
the CT.15 CTPUS sequentially removes the path PCTn,B(n) and
reconnects n to the nearest node m on CT via the minimum-
cost path if c(Pn,m) < c(PCTn,B(n)), to reduce the SIoT
communication costs, where Pn,m is the minimum-cost path
between n and m on ḠSIoT . CTPUS then minimizes the hiring
cost by pairwisely swapping users’ monitored locations (to
reduce their moving distances) and removing some users that
are no longer required. Specifically, let l(u) be the location
monitored by user u. CTPUS iteratively swaps users u and v
if 1) su,l(u) + sv,l(v) > su,l(v) + sv,l(u) and 2) the accuracy
requirements of l(u) and l(v) are satisfied after swapping, until
every user is examined. Afterward, CTPUS removes the users

13Note that an SIoT may deteriorate the accuracy of some locations due to
the longer monitoring distance or noises.

14To avoid the ping-pong effect, the removed nodes will not be considered
in the following iterations.

15Note that CT is on ḠSIoT since each node n ∈ CT is activated.

that are not involved for monitoring locations and activating
SIoTs to lower the hiring cost.

Example 3. Following Example 2, in Fig. 2(c), ḠSIoT =
GSIoT \{QV OSN \QU}, c(PCTn6,B(n6)

) = 4, and c(Pn6,n10) = 3,
where PCTn6,B(n6)

= n6 → n3 → n4 and Pn6,n10
= n6 → n10.

CTPUS removes PCTn6,B(n6)
and u1 because n3 ∈ Du1

, and it
connects n6 to CT since c(Pn6,n10

) = 3 < c(PCTn6,B(n6)
) = 4.

CTPUS then swaps the monitored locations of u3 (l4 ⇒ l5)
and u4 (l5 ⇒ l4) because su3,l(u4)+su4,l(u3) = 5 < su3,l(u3)+
su4,l(u4) = 6 and a(l4) and a(l5) are satisfied after swapping.
Moreover, Qu3

= {n6, n7, n10} since γu3,u4
= 0.9 ≥ 0.8

and γu3,u5
= 0.8 ≥ 0.8 such that u5 (activate Du5

= {n7})
can be removed to reduce the redundant hiring cost. The final
results of CT and user selections are shown in Fig. 2(d), where
U = {u3, u4}, W = {u3, u4}, CTL = {n6, n9} and CTM =
{n6, n9, n10}. Finally, the total cost is reduced to 30.

IV. SIMULATION

A. Simulation Setup

We first uniformly distribute users and monitored locations
into a 400m× 400m square area according to [18]. To ensure
the accuracy requirement of each monitored location, we then
deploy some SIoTs with sufficient accuracy to cover it, while
the other SIoTs are evenly distributed over the whole area
[18]. The numbers of SIoT, users, monitored locations are set
to 1200, 100 and 1000 in default, respectively. The accuracy
requirement λ is set to 0.8 [22]. The social relations of
SIoTs are established based on the co-location and ownership
object relations [16], and the communication costs are assigned
according to their communication distances [23], while the
computation costs are set according to the SIoT identification
ability [24]. The OSN topology is generated by the Barabasi
Albert approach [25]. The weights of social links are generated
from 0 to 1, and the average number of SIoTs owned by a
user is set to 5 in default. The social relation threshold δ is
assigned to 0.8 [15]. Since there is no related work exploring
the interplay between SIoTs and OSNs, we compare ASSUS
with state-of-the-art SIoT and user selection schemes, Nearest-
first (NA) [21], Simple-Greedy (SG) [15], and BadZak-1 [26].
To evaluate ASSUS, we change the following parameters: 1)
the number of SIoTs, 2) OSN degree, and 3) social relation
threshold δ. We measure the following performance metrics: 1)
total cost, 2) communication and computation costs, 3) hiring
cost, 4) moving distance, and 5) SIoT coverage. Each result is
averaged over 200 samples. Due to the space constraint, more
simulation results are presented in [20].

B. Simulation Result

In Figs. 3(a) and 3(b), ASSUS significantly outperforms
the baselines (i.e., BadZak-1, NA and SG) regarding the total
cost and hiring cost, because it carefully examines the AP
of each SIoT and user to minimize the total cost, while the
accuracy requirements are satisfied. Moreover, CSUS replaces
the paths in the CT to reduce SIoT communication costs,
and CTPUS swaps users’ monitored locations to lower their
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Fig. 3. Simulation results. (a) Total cost vs the number of SIoTs. (b) Hiring
cost vs the number of SIoTs. (c) Hiring cost vs social relation threshold. (d)
Computation and communication costs vs OSN degree. (e) Moving distance
vs OSN degree. (f) SIoT coverage vs OSN degree.

moving distances and minimize hiring costs. In contrast, the
baselines do not jointly consider the accuracy of SIoTs and
users, inducing a much higher cost to ensure the accuracy.
In Fig. 3(c), ASSUS has more opportunities to select users
with better accuracy to satisfy the accuracy requirements, and
these users with good social centrality can activate more SIoTs,
when social relation constraint is looser. In Fig. 3(d), ASSUS
induces much smaller computation and communication costs
as OSN degree increases, since it can exploit friends’ SIoTs
with better AP to construct a CT. In contrast, the baselines
ignore OSN social relations to activate SIoTs. In Figs. 3(f)
and 3(e), ASSUS achieves a good balance between SIoTs and
OSNs to minimize the total cost (see Fig. 3(a)). It exploits
more activated SIoTs with better accuracy when OSN degree
grows. Although NA and SG induce smaller moving distances
by assigning users to monitor their nearest locations, they
ignore the accuracy of SIoT and lead to worse SIoT coverage.

V. CONCLUSIONS

To the best of our knowledge, this paper makes the first
attempt to explore the collaboration between SIoTs and OSN
users for accuracy-aware detection and monitoring. We first
formulate SCC to minimize the total communication and com-
putation costs of SIoTs and the total hiring cost of OSN users.
We prove that SCC is NP-hard and cannot be approximated
by any ratio unless P = NP . Then, we design ASSUS with
the idea of CT and AP to ensure the SIoT connectivity for
communications and accuracy requirements, where CT also
considers users’ social relations to activate possessed SIoTs.
Simulation results manifest that ASSUS can effectively reduce
the total cost by more than 50%.
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