
Cooperative Distributed Deep Neural Network
Deployment with Edge Computing

Cian-You Yang‡, Jian-Jhih Kuo†, Jang-Ping Sheu‡, and Ke-Jun Zheng§
‡Dept. of Computer Science, National Tsing Hua University, Hsinchu, Taiwan

†Dept. of Computer Science & Information Engineering, National Chung Cheng University, Chiayi, Taiwan
§Dept. of Information Systems and Applications, National Tsing Hua University, Hsinchu, Taiwan

s106062584@m106.nthu.edu.tw, lajacky@cs.ccu.edu.tw, sheujp@cs.nthu.edu.tw, s108065536@m108.nthu.edu.tw

Abstract—Deep Neural Networks (DNNs) are widely used to
analyze the abundance of data collected by massive Internet-of-
Thing (IoT) devices. The traditional approaches usually send the
data to the cloud and process the DNN inference on the powerful
cloud servers, but suffer from long network latency. Therefore,
edge computing has emerged to reduce network latency by
offloading the computation from the cloud to the edge. However, a
single resource-constrained edge device is unable to process real-
time DNN inference. Thus, we devise a collaborative edge com-
puting system CoopAI to distribute DNN inference over several
edge devices with a novel model partition technique to allow the
edge devices to prefetch the required data in advance to compute
the inference cooperatively in parallel without exchanging data.
Subsequently, we present a new optimization problem to minimize
the completion time of distributed DNN inference. An innovative
algorithm is then proposed to intelligently partition the model into
the proper number and sizes of blocks, deploy them on a suitable
number of edge devices, and run them in different rounds. The
numerical results manifest that our algorithm outperforms the
traditional approach by 20%−30% on the completion time.

Index Terms—Distributed deep neural network, edge comput-
ing, dynamic programming

I. INTRODUCTION

Recently, the ever-faster-growing computing architectures
have facilitated Deep Neural Networks (DNNs) to achieve
impressive success in various applications [1] such as image
recognition, speech recognition, and natural language process-
ing. Typically, the Internet-of-Things (IoT) devices (e.g., IP-
enabled cameras) continuously generate and upload data (e.g.,
video) to the cloud, and the cloud employs DNNs to extract
accurate information from data streams of IoT devices to
make an inference with powerful servers [2]. However, the IoT
devices are increasing sharply and thus generate a considerable
surge of data.i The traditional paradigm is pushed to the limit
and has the following issues. First, time-sensitive applications
like virtual/augmented reality (VR/AR) and smart traffic light,
may suffer from long transmission latency since the cloud
is often far from the IoT devices. Second, uploading a large
amount of data may overwhelm the backhaul network due to
the explosive increase in IoT devices and applications [4]. Last,
uploading data to the cloud may cause privacy issues [5].

To remedy these issues, we employ the following two
concepts: 1) Edge computing [4]: Edge computing has emerged
to offload the computation from the cloud to the edge to
take services closer to users. 2) Model partition and layer

iInternational Data Corporation predicts that IoT devices grow to 41.6 billion
and generate 79.4 zettabytes of data [3] by 2025.

slicing [6]–[10]: The idea is to compute the DNN model with
multiple devices in parallel to accelerate the inference. With
the concepts, a novel system termed CoopAI is then presented
to speed up the inference of DNNs. In CoopAI, the IoT devices
monitor the targets and continuously transmit data to gateway
for inference, and the gateway coordinates the edge devices to
cooperate in inference (detailed in Section II).

Model partition divides a model into several blocks and
processes each block in a different round as shown in Fig.
1. Layer slicing aims to divide the computation in a block
into independent tasks performed by different edge devices in
parallel. Specifically, the convolutional layer (CL) in a block
is sliced into grids, each of which processes a horizontal slice
of an input image independently as shown in Fig. 2 (i.e.,
data parallelism), whereas the fully-connected layer (FL) in
a block is sliced into several clusters, each of which generates
a part of or a subset of output independently as shown in
Figs. 3 and 4 (i.e., data or model parallelism).ii The gateway
collects intermediate results of each round from edge devices
and then relays the results to the edge devices for computing
the next block. However, traditional systems limit the blocks to
only one layer each (i.e., layer-by-layer partition) [6]–[10] for
simplicity, which may cause frequent data exchange between
the edge devices and significantly slow down the inference.

Thereby, our system CoopAI innovates multi-layer partition,
which allows multiple layers to be grouped into a block (see
Section II) to process multiple layers in a round. Edge devices
that work together on multiple layers yet require intermediate
results from each other, which was achieved by frequent data
exchange and layer-by-layer partition in traditional systems. To
address the issue, CoopAI permits each edge device to prefetch
extra data to compute the required intermediate results by
itself for avoiding data exchange during a round with multiple
layers (detailed in Section II-A). However, model partition for
the proper number and sizes of blocks (i.e., rounds) and the
influence of edge device number on the completion time (i.e.,
computing and transmission time) have not been investigated
before. In addition, layer slicing for multiple layers in a
block has not been studied in the literature to ensure that
edge devices do not exchange data with each other during a
round. Hence, each grid (or cluster) sliced from layers can
be executed independently. Thus, the time-aware partition for
DNNs via edge computing that jointly decides model partition
and layer slicing has not been explored to partition the model

iiSection III of [11] presents more details about data and model parallelism.

Block 1

Block 2

Block 3

Block 4

14-layer model

Fig. 1. A model divided into blocks.

1st layer
input
1st layer
output

2nd layer
output

2nd layer
input

Grid 1
Grid 2
Grid 3

Grid 1
Grid 2
Grid 3

Fig. 2. Layer-by-layer CL partition.

into moderate-size blocks (i.e., rounds), slice the layers into a
proper number of grids (or clusters), and deploy the grids (or
clusters) on the edge devices to minimize the completion time.

In this paper, therefore, we make the first attempt to explore
the time-aware partition for DNNs via edge computing. Simul-
taneously optimizing model partition and layer slicing raises
three new challenges as follows. 1) Elastic model partition:
Partitioning a model into fewer blocks (i.e., fewer rounds) tends
to reduce the number of communications between the gateway
and devices. However, the edge devices have to compute more
prefetched data for a larger block during a round to acquire
the intermediate data by themselves. The extra computing time
may cause overlength completion time and deteriorate user
experience of time-sensitive applications. 2) A Suitable number
of devices: Intuitively, the more involved edge devices may
enjoy the more powerful total computing capability but share
the limited bandwidth of the gateway, which may induce longer
transmission time and further prolong the completion time of
distributed DNN inference. 3) The Best mode selection: A DNN
model typically consists of CLs and FLs.iii Compared to FLs,
CLs are more likely to be grouped into a block to reduce the
number of rounds (i.e., avoid frequent communications). The
reason is that data prefetching makes each edge device compute
all required intermediate result by itself (see Section II-A), and
then edge devices can compute grids independently in a round.
By contrast, it is difficult to have more than two FLs in a block
because deriving a result of a neuron in a FL requires all the
results of the neurons in the preceding layer (see Section II-B).
Therefore, time-aware partition for DNNs via edge computing
is quite challenging since it has to jointly determine whether,
where, and how to compute model partition and layer slicing.

To address these challenges, we first formulate a new
optimization problem termed Cooperative DNN Deployment
via Edge Computing (CODE). With the given parameters:
1) a DNN model with layer information and 2) the number
of candidate edge devices, CODE aims to 1) partition the
model, 2) slice the layers, and 3) coordinate the edge devices
such that the completion time for inference is minimized. We
then study the different modes of layer slicing, derive four
feasible cases of blocks, and acquire the recursive recurrence
for CODE. Subsequently, a dynamic programming algorithm
termed Multi-Layer Partition and Slicing (MLS) is proposed
based on the four feasible cases of blocks to address suitable
number of devices, elastic model partition, and best mode
selection. Specifically, MLS first examines every possible block
with different consecutive layers and records their completion

iiiThis paper mainly considers the CLs and FLs since they are the most
resource-consuming part of DNN models compared with the other layers such
as pooling layers [6], [12].

Input Output

Device 1 Device 2

Fig. 3. Data parallelism for a FL

Input Output

Device 1 Device 2 Shared

Fig. 4. Model parallelism for a FL

Input Data
Output Result

IoT
Device Gateway

Edge Device

Edge Device

Edge Device

Fig. 5. Overview of CoopAI

time (including computing and transmission time). Then, with
the recursive recurrence, the solution of every sub-problem
can be obtained by combining the solution of a smaller
sub-problem with one additional block. Finally, we conduct
extensive simulations with the data of real platforms and well-
known DNNs to verify the performance of MLS.

II. NOVEL SYSTEM MODEL - COOPAI

The system CoopAI is an edge computing environment,
which consists of IoT devices, a gateway, and edge devices.
The overview of CoopAI is depicted in Fig. 5. To enable the
time-sensitive applications (e.g., real-time image recognition
applications) such as VR/AR gaming experience, elderly care,
smart traffic light, the IoT devices (e.g., IP-enabled cameras)
continuously transmits the data (e.g., images) to the gateway for
inference by adopting a pre-trained DNN model. We assume
that the DNN model is stored in each device and does not
require frequent updates. Thus, the download time of the DNN
model from the gateway to the edge devices can be ignored.

The gateway decomposes the inference task and coordinates
the nearby devices to cooperate in inference. To speed up the
inference, it partitions the model into several blocks and slices
the CLs (or FLs) into multiple girds (or clusters). The grids
(or clusters) in a block should be computed by the devices
in parallel, and each device is only allowed to communicate
with the other devices via the gateway at the beginning and the
end of a round. In addition, each edge device only requests the
missing data (i.e., not the output computed by itself) required in
the next round. However, different from the traditional systems,
CoopAI innovates multi-layer partition rather than employs
layer-by-layer partition. Thus, each block may include a subset
of consecutive layers, each grid processes a horizontal slice of
an input image for CLs, and each cluster generates part of
output or a subset of output for FLs. In the following, we
introduce advanced slicing for multiple layers in CoopAI.

A. Layer slicing for multiple CLs

Fig. 6 shows layer slicing for multiple CLs. According to
[11], CoopAI aims to slice multiple CLs in the same block
into grids with data parallelism such that the grids can be
computed by different edge devices in parallel. Similar to
slicing a single layer in Fig. 2, each gird in a layer requires the
output data of the neighboring grids in the preceding layer to be

1st layer
input

2nd layer
output

1st layer output
&

2nd layer input
Grid 1
Grid 2
Grid 3

Fig. 6. Multi-layer partition for CLs.

Device 1 Device 2 Shared

Fig. 7. Hybrid model for two FLs.

its input data in each round. Therefore, slicing multiple layers is
more complicated since each device requires some intermediate
results from the other devices for computing succeeding layers
but edge devices cannot exchange data during a round (i.e.,
compute independently). For example, in Fig. 2, grid 2 in the
2nd layer inevitably requires the output data of grid 1 and grid
3 in the 1st layer (i.e., the light gray areas of 2nd layer input).

To resolve the problem, CoopAI innovates the notion, data
prefetching, which allows an edge device to prefetch the addi-
tional input data in the other grids at the beginning of a round
such that the input data of later layers can be computed by
itself. For example, the device processing grid 2 will prefetch
the additional input data in advance as shown in the dark gray
areas of 1st layer input in Fig. 6. Thus, the edge devices, each
of which process a different grid, can compute the output in the
block by themselves in parallel without data exchange during
a run. Nevertheless, there is a trade-off between layer-by-layer
partition and multi-layer partition for the model partition of
CLs. Layer-by-layer partition has more communication rounds
(i.e., longer transmission time) but has less computing overhead
(i.e., shorter computing time) compared to multi-layer partition,
which leads to the challenge, elastic model partition.

B. Layer slicing for multiple FLs

Compared with CLs, it is difficult to group more than two
FLs into a block, because deriving the output of a neuron in a
FL requires all the output of the neurons in the preceding layer.
Moreover, slicing two consecutive FLs by leveraging only data
parallelism or only model parallelism is unrealistic since they
cannot avoid data exchange during a round. However, two
FLs in a block can be sliced by the hybrid mode, i.e., model
parallelism on the 1st FL and data parallelism on the 2nd FL.

Specifically, the output of a cluster in the 1st layer sliced by
model parallelism contains only a subset of the original output
data, whereas the output of a cluster is exactly the input of
the cluster in the 2nd layer sliced by data parallelism. In other
words, each edge device can compute its corresponding cluster
in the two layers without data exchange with the other devices.
Fig. 7 depicts an example of two FLs grouped into a block
and the two layers in a block are sliced into two clusters being
computed by two devices in parallel. Finally, the output of the
2nd layer will be summed by the gateway to derive the final
output. Thus, CoopAI groups at most two FLs into a block.

III. PROBLEM FORMULATION

We formulate the problem as an optimization problem
termed Cooperative DNN Deployment via Edge Computing
(CODE) for our system CoopAI as follows. In CODE, the edge

computing environment consists of D ∈ Z
+ identicaliv edge

devices (e.g., Raspberry Pi 3/4) with the computing capability
F ∈ R

+ (i.e., floating-point operations per second) and a
gateway with the bandwidth capacity G ∈ R

+ (i.e., Mbps). The
IoT devices (e.g., cameras) monitor the targets and transmit the
data (e.g., images or video) to the gateway for inference. The
data is analyzed by a given L-layer DNN model that typically
consists of CLs and FLs, where L ∈ Z

+. Note that each
CL j has Cij input channels and Coj output channels with
the filter size Fr. The height and width of each CL j are
denoted by Hj and Wj , whereas the input and output size
of each FL j are denoted by Nij and Noj . CoopAI has to
answer the following questions to minimize the completion
time (including the computing and transmission time).

First, CODE has to partition the DNN model into B
moderate-size blocks and each block is allowed to have a
different number of layers, where B ∈ Z

+ ∩ [1, L]. In other
words, the inference is partitioned into B rounds and each
round should process a moderate number of layers. Second,
CODE asks for the suitable number k of edge devices to
process different grids or clusters sliced from the layers in
the block for each round in parallel, where k ∈ Z

+ ∩ [1, D].
Note that the more involved edge devices have the more total
computing capability (i.e., k · F), while sharing the limited
bandwidth capacity (i.e., G

k for each selected edge device).
Last, CODE aims to select the best mode for slicing multiple
layers in every block. The modes of any two consecutive
rounds (i.e., data parallelism, model parallelism, or hybrid
mode introduced in Section II) should be jointly examined to
select those that balance the computing and transmission time
to minimize the completion time of all rounds.

The following constraints should be carefully addressed.
Each grid or cluster sliced from the layers in a block should
be executed by an edge device without data exchange with the
other devices during the round. That is, the edge devices are
only allowed to communicate with each other via the gateway
at the beginning and end of each round. In addition, for each
device, it suffices to communicate with the other devices for
the missing data (i.e., not the output computed by itself) that is
required in the next round. Finally, each grid or cluster should
have a similar computing overhead to avoid overwhelming one
of edge devices while idling the other edge devices.

IV. ALGORITHM DESIGN

We propose an algorithm termed Multi-Layer Partition and
Slicing (MLS) to carefully address all the challenges of CODE.
MLS exploits dynamic programming by first computing and
recording the optimal solution of each smaller sub-problem in
CODE, and then reusing these solutions to iteratively solve a
larger sub-problem. For each sub-problem, MLS obtains the
optimal solution by effectively combining 1) each one related
to the previous solution that groups a specific number of layers
in preceding rounds with 2) one extra round that groups the
remaining layers to explore different combinations effectively.

ivTo explore the intrinsic property of CODE, it is reasonable to assume that
the computing capability of edge devices in the system is identical since the
edge computing platforms are usually built by users (e.g., Raspberry Pi 3/4).

That is, MLS carefully examines every possible combination
to decide the number of blocks (i.e., rounds) and the sizes of
blocks (i.e., elastic model partition) to reduce the number of
communications while maintaining an acceptable prefetched
data size. Moreover, all possible numbers of edge devices are
examined to find the suitable number of devices. The recursive
recurrence for MLS is introduced in Section IV-A. Besides, to
achieve the best mode selection, MLS inspects the slicing mode
of every layer in each round (i.e., data/model parallelism or
hybrid mode) to optimize the computing and transmission time
in Section IV-B. Due to the page limit, more details, examples,
and pseudocode are presented in the technical report [11].

A. Recursive Recurrence
Specifically, let T k

i denote the minimum completion time for
processing the first i layers (i.e., from layer 1 to layer i) of the
DNN model with k devices. Thereby, the minimum completion
time for processing the entire DNN model (i.e., L layers) with
at most D devices (denoted by T ∗

L) is

T ∗
L = min

∀k∈[1,D]
T k
L. (1)

It then suffices to derive T k
i , where 1 ≤ i ≤ L (i.e., every

sub-problem of T k
L). Generally speaking, it can be envisaged

that the solution of T k
i must deploy a specific number of

consecutive layers (i.e., from layer 1 to layer r) in the preceding
blocks and deploy the rest of layers (i.e., from layer r + 1 to
layer i) in an additional succeeding block. However, if the
number of edge devices is one (i.e., k = 1), then only 1) the
input data transmission for the first layer from the gateway to
the edge device and 2) the output data transmission for the last
layer from the edge device to the gateway are required. It is
because all the input data of layers 2 to L are computed and
output by the edge device itself. Therefore, MLS especially
employs the traditional approach to calculate the completion
time for the case of k = 1. To calculate the completion time
of the sub-problem, let bki,j denote the block including layers

i to j of the DNN model with k devices, and eki,j denote the

minimum completion time of bki,j , where 1 ≤ i ≤ j ≤ L.

Therefore, T k
i is derived by the following recursive recurrence.

T k
i =

⎧⎪⎨
⎪⎩

0, if i = 0;

T k
i−1 + eki,i, else if k = 1;

min0≤r<i(T
k
r + ekr+1,i), otherwise.

(2)

Note that the base case (i.e., if i = 0) returns zero since no
layer is processed. Before introducing how to derive eki,j in
Section IV-B, we analyze the time complexity of MLS and give
an example to illustrate the above steps in MLS as follows.

Time Complexity. Once all variables eki,j are found in ad-
vance, where 1 ≤ i ≤ j ≤ L and 1 ≤ k ≤ D, the time
complexity for computing the dynamic-programming-based
algorithm via eq. (1) is O(DL2). �

B. Minimum Completion Time for Computing a Block
The completion time for computing a block includes the

computing time and transmission time, and thus MLS derives
the minimum completion time eki,j for computing block bki,j in

eq. (2) by eq. (3). Let ζki,j(d) denote the number of floating-
point operationsv (FLOPs) for computing the grid (or cluster)
sliced from block bki,j assigned to device d, and let ϕk

i,j(d)
denote the data size transmitted between the gateway and
device d for computing block bki,j . After that, we have

eki,j = max
∀d∈[1,k]

ζki,j(d)

F
+

ϕk
i,j(d)
G
k

. (3)

Recall that each edge device has identical computing capability
F , whereas the bandwidth G of the gateway will be shared by
the selected edge devices. Thereafter, each edge device has
the bandwidth capacity G

k . For ease of reading, the computing

overhead ζki,j(d) and transmission overhead ϕk
i,j(d) are derived

later in Sections IV-B1 and IV-B2.

By eq. (3), MLS finds the best mode selection for each block,
and then derives the minimum completion time for k edge
devices to compute any block that consists of layers i to j
(i.e., eki,j), where 1 ≤ k ≤ D and 1 ≤ i ≤ j ≤ L. Meanwhile,
since the blocks partitioned from our model may not be sliced
into equally-sized grids (or clusters), the edge devices need
to wait for the slowest edge device among them to start the
next round. Moreover, by recursive recurrence in eq. (2), MLS
then iteratively solves a sub-problem by reusing the recorded
solutions of smaller sub-problems to achieve the elastic model
partition and derive the solution of T k

L . Finally, by eq. (1),
MLS determines the suitable number of devices for computing
the DNN cooperatively with multiple edge devices.

1) Computing Overhead for Computing a Block: To further
calculate ζki,j(d), MLS sums up the computing overhead of

each layer r (denoted by pki,j,r(d)) in the block bki,j , where
i ≤ r ≤ j. Therefore,

ζki,j(d) =
∑

r∈[i,j]

pki,j,r(d). (4)

MLS calculates pki,j,r(d) based on [14]. Recall that layer r
could be a CL or FL, and thereby MLS considers the two types
of layers separately. If layer r is a CL, the computing overhead
pki,j,r(d) is proportional to the number of times that edge

device d executes the filters of layer r. Otherwise, pki,j,r(d)
is proportional to the input size times the output size executed
on edge device d based on the selected mode (data parallelism,
model parallelism, or hybrid mode). Due to the page limit, the
derivation of pki,j,r(d) is presented in [11].

2) Transmission Overhead for Computing a Block: The size
of data transmission between the gateway and device d for
block bki,j (i.e., ϕk

i,j(d)) includes 1) the input data size from
the gateway to the edge devices and 2) the output data size
from the edge devices to the gateway. However, compared to
the input data size, MLS has to handle two non-trivial different
states for the output data size as follows.

i) The output data size of a block depends on the number of
layers in the succeeding block if the succeeding block has
CLs since the succeeding block that contains the more CLs

vFLOPs is widely used to evaluate the computing overhead of inference for
DNN models [13].

TABLE I
INFORMATION OF ADOPTED DNN MODELS

AlexNet VGG16 VGG19 YOLOv2
Input size 224*224 224*224 224*224 608*608

Parameters (million) 62 138 144 51
Operations (GFLOPs) 2.27 31.0 39.3 62.9

needs to prefetch the more data for parallel computing (see
Section II-A).

ii) Otherwise, the output data size of the block can be deter-
mined according to the last layer in the block.

To this end, MLS subtly calculates the output data size for
each block at a different timing according to the state of the
block. For the first state, the calculation of output data size
for the block is postponed to the time when MLS processes
the succeeding block. For the second state, MLS immediately
calculates the output data size for the block according to the
last layer in the current block. Thus, three following variables
are introduced to acquire ϕk

i,j(d).

• Variable tiki,j(d) denotes the input data size of layer i
transmitted from the gateway to device d.

• Variable τoki,j(d) denotes the output data size of layer i− 1
transmitted from device d to the gateway if layer i is a CL;
otherwise, it is zero.

• Variable toki,j(d) denotes the output data size of layer j
transmitted from device d to the gateway if layer j + 1 is a
FL; otherwise, it is zero.

Note that the variables tiki,j(d) and toki,j(d) denote the input
and output data size of the current block, respectively. By
contrast, the variable τoki,j(d) represents the output data size
of the preceding block. Thus,

ϕk
i,j(d) = tiki,j(d) + τoki,j(d) + toki,j(d). (5)

To obtain ϕk
i,j(d), the variables, tiki,j(d), τo

k
i,j(d), and toki,j(d)

are derived with considering all possible sub-cases. Due to the
page limit, the derivation of the variables is presented in [11].

V. EVALUATION

We first verify and validate all proposed formulas and the
good results are presented in [11]. Then, the performance of
our algorithm MLS is evaluated by extensive simulations based
on the data of real platforms and well-known DNN models.
The two adopted platforms for the gateway and edge devices
are 1) Raspberry Pi 3 Model B (RP3) with quad-core 1.2
GHz ARM Cortex-A53 processor with 1 GB RAMvi and 2)
Raspberry Pi 4 (RP4) with quad-core 1.5GHz ARM Cortex-
A72 processor with 4GB RAM. The information of the adopted
DNN models, AlexNet [15], VGG16 [16], VGG19 [16], and
YOLOv2 [17], are briefly summarized in Table I. AlexNet is
the most lightweight DNN model among the adopted models,
whereas YOLOv2 is the most computation-intensive one.

We assume that the selected edge devices evenly share the
bandwidth of the gateway via TCP/IP. MLS is compared with
the layer-by-layer partition and slicing (SLS) algorithm based
on [6], [7]. Recall that all pre-trained DNNs are stored on
the devices beforehand and the download time for the model

viThe results of RP3 are presented in [11] due to the page limit.

(a) AlexNet (b) VGG16

(c) VGG19 (d) YOLOv2

Fig. 8. Effect of number of selected devices on completion time using RP4
for different DNN models

TABLE II
NUMBER OF BLOCKS PARTITIONED BY MLS ON RP4

Devices 1 2 3 4 5 6 7 8 9 10
AlexNet 1 5 4 4 4 4 4 4 4 4
VGG16 1 8 7 6 5 4 4 4 4 4
VGG19 1 11 9 8 5 4 5 5 4 4

YOLOv2 1 12 10 9 8 7 7 7 5 5

is ignored. The default gateway bandwidth and computation
capability of edge devices for the RP4 cases are set to 100
Mbps and 13.6 GFLOPS. The number of edge devices are
changed from one to ten to evaluate the effect of the number
of devices on 1) completion time, 2) computing overhead, and
3) transmission overhead. Then, we also change the gateway
bandwidth from 40 to 400 Mbps to evaluate the effect of
gateway bandwidth on the completion time for the RP4 cases.

A. Effect of Number of Edge Devices RP4
Generally speaking, Fig. 8 shows that MLS outperforms

SLS on completion time on RP4. For RP4, 2, 7, 7, and 6
devices are chosen by MLS to save completion time by 4.91%,
31.49%, 28.53%, 17.75% for the four models compared to
the best cases of SLS (i.e., 2, 3, 3, and 4 devices). MLS can
further reduce completion time up to 18.43%, 60.46%, 58.94%,
and 55.91% for the four models compared to using only one
device. It is because MLS carefully decides the number and
sizes of blocks partitioned from the model (i.e., elastic model
partition) and selects the suitable number of devices to balance
the computing and transmission time with eq. (2). Besides,
MLS always examines the three possible modes (i.e., data
parallelism, model parallelism, and hybrid mode) to determine
the best mode selection (i.e., four feasible cases in [11]) for
slicing each block to further reduce the completion time.

More specifically, Fig. 8 also shows the computing and
transmission overhead per edge device. The computing over-
head of MLS is slightly more than that of SLS and leads to
a longer computing time. However, MLS can reduce more

(a) AlexNet (b) VGG16

(c) VGG19 (d) YOLOv2

Fig. 9. Effect of gateway bandwidth on completion time using RP4 for
different DNN models

transmission time and has the ability to balance computing and
transmission time. Thus, the overall completion time of MLS
is shorter than that of SLS. Fig. 8 also indicates that a small
number of edge devices are sufficient to compute AlexNet
since it is very lightweight. The more devices will cause the
additional transmission time, which is much more than the
reduced computing time with more devices. By contrast, the
other three models are more computation-intensive, and the
more edge devices can further reduce the completion time.

Fig. 8 also manifests that the completion time of SLS
tends to decrease as the number of devices increases (except
for AlexNet). That is because the computing overhead per
device decreases when the number of edge devices increases.
However, the completion time slows down the reduction as the
number of edge devices keeps increasing. Two following rea-
sons increase the transmission time sharply: 1) the transmission
overhead per edge device may increase as the number of edge
devices increases , and 2) the gateway bandwidth is shared by
the increasing edge devices. By contrast, MLS can lower the
bad effect by expanding the block size (i.e., fewer blocks) to
reduce the transmission overhead when the number of devices
increases (i.e., elastic model partition) (see Table II).

B. Effect of Gateway Bandwidth
Fig. 9 shows the effect of gateway bandwidth on the com-

pletion time, where the number of available devices is set to
ten. Therefore, MLS and SLS will select the device number for
the best performance. MLS can reduce the completion time up
to 5.71%, 31.10%, 27.69%, and 18.09% for the four models
compared to SLS. When the gateway bandwidth increases, the
performance gap between MLS and SLS becomes smaller. It
is because MLS tends to put the more layers in a block and
has to more prefetched data for computing a round, and thus
slightly sacrifice the computing time for reducing the number
of communication rounds and transmission time. However, the
trade-off advantage becomes limited as the transmission time

accounts for a very small proportion of the completion time.
In other words, it is difficult to further decrease the completion
time when the computing time dominates the completion time.
It is worth noting that the completion time of MLS will never
exceed that of SLS since MLS will also employ layer-by-layer
partition and slicing for the DNN model in the worst case.

VI. CONCLUSIONS

In this paper, we investigate DNN inference acceleration
with edge computing and innovate CoopAI to allow each block
has a different number of layers (i.e., multi-layer partition
and layer slicing). We present a novel optimization problem
to minimize the completion time by balancing the computing
and transmission time and propose a dynamic programming
algorithm termed MLS to carefully address the new challenges,
elastic model partition, suitable number of devices, and best
mode selection to achieve the optimal solution. Finally, the
extensive simulation results with real DNNs and real platforms
manifest that MLS outperforms the traditional layer-by-layer
partition and layer slicing by 20%−30% in most cases. The in-
terplay between computing capability and gateway bandwidth
is also analyzed to show how MLS to balance the computing
and transmission time to reduce the completion time.

REFERENCES

[1] C. Zhang, P. Patras, and H. Haddadi, “Deep learning in mobile and
wireless networking: A survey,” IEEE Commun. Surveys Tuts., vol. 21,
no. 3, pp. 2224–2287, 2019.

[2] X. Xu et al., “A heuristic offloading method for deep learning edge
services in 5G networks,” IEEE Access, vol. 7, pp. 67 734–67 744, 2019.

[3] C. MacGillivray and D. Reinsel, “Worldwide global DataSphere IoT
device and data forecast, 2019–2023,” 2019.

[4] X. Wang et al., “In-edge AI: Intelligentizing mobile edge computing,
caching and communication by federated learning,” IEEE Network,
vol. 33, no. 5, pp. 156–165, 2019.

[5] S. A. Osia, A. S. Shamsabadi, A. Taheri, H. R. Rabiee, and H. Haddadi,
“Private and scalable personal data analytics using hybrid edge-to-cloud
deep learning,” Computer, vol. 51, no. 5, pp. 42–49, May 2018.

[6] Z. Zhao, K. M. Barijough, and A. Gerstlauer, “DeepThings: Distributed
adaptive deep learning inference on resource-constrained IoT edge clus-
ters,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 37,
no. 11, pp. 2348–2359, Nov 2018.

[7] J. Mao et al., “MoDNN: Local distributed mobile computing system for
deep neural network,” in Proc. DATE, 2017.

[8] R. Hadidi et al., “Musical chair: Efficient real-time recognition using
collaborative iot devices,” CoRR, vol. abs/1802.02138, 2018.

[9] R. Hadidi, J. Cao, M. Woodward, M. S. Ryoo, and H. Kim, “Distributed
perception by collaborative robots,” IEEE Robot. Autom. Lett., vol. 3,
no. 4, pp. 3709–3716, Oct 2018.

[10] J. Mao et al., “MeDNN: A distributed mobile system with enhanced
partition and deployment for large-scale DNNs,” in Proc. IEEE/ACM
ICCAD, 2017.

[11] C.-Y. Yang, J.-J. Kuo, J.-P. Sheu, and K.-J. Zheng, “Cooperative
distributed deep neural network deployment with edge computing,” Oct
2020. [Online]. Available: http://hscc.cs.nthu.edu.tw/submit/paper.pdf

[12] A. Coates, B. Huval, T. Wang, D. J. Wu, A. Y. Ng, and B. Catanzaro,
“Deep learning with COTS HPC systems,” in Proc. ICML, 2013.

[13] A. Sehgal and N. Kehtarnavaz, “Guidelines and benchmarks for deploy-
ment of deep learning models on smartphones as real-time apps,” CoRR,
vol. abs/1901.02144, 2019.

[14] P. Molchanov et al., “Pruning convolutional neural networks for resource
efficient transfer learning,” in Proc. ICLR, 2017.

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. NIPS, 2012.

[16] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. ICLR, 2015.

[17] J. Redmon and A. Farhadi, “YOLO9000: better, faster, stronger,” in Proc.
IEEE CVPR, 2017.

