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Abstract—Inference acceleration has drawn much attention
to cope with the real-time requirement of artificial intelligence
(AI) applications. To this end, model partition for Deep Neural
Networks (DNN) has been proposed to utilize the parallel and
distributed computing units. However, the previous works focus on
the load balancing among servers but may overlook the interplay
between the computing and communication. This issue makes
the existing approaches less efficient especially in mobile edge
networks at which smart devices usually with limited computing
capacity have to offload the tasks via limited bandwidth capacity
to nearby servers. In this paper, therefore, we innovate a new
system and formulate a new optimization problem, CONVENE,
to minimize the completion time of inference for the smart devices
with one or more antennas. To explore the intrinsic properties,
we first study CONVENE with Single Antenna and derive an
algorithm termed THREAD-SA to foster the optimum solution.
Then, an extension, THREAD, is proposed to subtly utilize
multiple antennas to further reduce completion time. Simulation
results manifest that our algorithm outperforms others by 100%.

Index Terms—mobile edge networks, convolutional neural net-
work, model partition, model deployment

I. INTRODUCTION

Recently, artificial intelligence (AI) has drawn more atten-
tion and made much progress in many applications [1]. The
emerging applications benefit from AI models to improve their
system accuracy [2]. AI models typically run on either the
smart devices or the cloud. However, smart devices usually rely
on a simple model (e.g., support vector machine (SVM)) due
to their limited capacity, which may incur poor accuracy. By
contrast, the more effective models (e.g., convolutional neural
network (CNN)), need more plentiful resources to reduce
the computing time, and the cloud is the main platform for
scientific research or marketing analysis [3]. The paradigm,
nonetheless, may be inadequate for the issues as follows in
the near future. The first is the considerable number of smart
devices connecting the cloud (e.g., 12 billion in 2020 predicted
by [4]). Particularly, the computationally-intensive services,
like video surveillance and augmented/virtual reality (AR/VR),
require real-time image recognition, which may overwhelm the
backhaul network and servers if videos are only processed in
the cloud. In addition, the progression toward much deeper
neural network structuresi may make a single, smart device no
longer meet the user requirement. It also prolongs the response
time since every input has to visit the overall network.

iThe model depth expands rapidly in recent years, such as AlexNet with 8
layers, VGGNet with 19 layers, and ResNet with 152 layers in 2012, 2014,
and 2015, respectively.

To remedy these issues, we employ the following concepts:
1) Fog/Mobile Edge Computing (FC/MEC). The concept en-
ables the smart device to cooperate with its nearby servers to
form a mobile edge network [5]–[7] to execute local distributed
computing to reduce response time and relieve backhaul over-
head. 2) Model partition for CNN and parallel computing. The
idea is to partition a model into several blocks, and each server
computes one of them based on its computing capacity [8]–
[10]. Traditionally, each block processes a disjoint horizontal
slice of an input image, and any two neighboring blocks have
to exchange their data to obtain the input for each subsequent
layer (see black areas in Fig. 2), which greatly slows down
the inference (see Fig. 3). To this end, our system innovates
data-lookahead partition (see Fig. 4), which allows the server
of each block to prefetch and compute the data within other
blocks from the smart devices such that every block can be
independently executed on different servers in parallel without
waiting for other blocks (detail in Section III). 3) Parallel data
transfer. A smart device with more antennas can transmit data
to more servers in parallel at a time to speed up inference [11].

Nevertheless, not all available servers are suitable to cooper-
ate with others since selecting less powerful servers increases
the computing overhead of prefetched data while slightly raises
overall computing capacity. Besides, the biased association of
servers to the antennas may cause imbalanced data transfer
among different antennas, which may idle the servers due to
a long data transfer time and cause poor parallel data transfer.
In addition, an arbitrary partition for different servers via the
same antenna may prolong the completion time (i.e., the time
to make an inference, including data transfer and computing)
due to their different computing capacity. The increasing com-
pletion time may deteriorate user experience of time-sensitive
applications (e.g., AR/VR requires less than 20 ms latency to
avoid motion sickness [12]). However, the time-aware partition
for CNN models that jointly decides server selection, antenna
association, model partition, and data transfer scheduling has
not been explored to partition a model into several blocks and
deploy them with a proper number and place of servers over
the mobile edge network to achieve the low completion time.

Therefore, in this paper, we make the first attempt to explore
time-aware partition for CNN models. It raises three new
research challenges as follows. 1) Suitable server number. The
more involved servers may enjoy smaller computing time for
a single smaller block but have to process more prefetched
data, which may induce longer completion time. 2) Proper
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antenna association. Each server has to associate with an
antenna to retrieve the data for computing. To avoid overlength
waiting of servers for data transfer, it is essential to evenly
associate the selected servers to the antennas. 3) Elastic model
partition. Intuitively, the block size for each server should be
proportional to the capacity of servers to reduce completion
time. However, such a partition overlooks the influence of
data transfer scheduling. The servers with an earlier time to
start computing tend to process a larger block. Thus, whether,
when, and where to compute the partition should also be jointly
determined, which leads to a challenge.

To address these challenges, we formulate an optimization
problem, Cooperative CNN Deployment over Mobile Network
Edges (CONVENE), to find the time-aware partition for CNN
over the heterogeneous network edge. With the given parame-
ters: 1) CNN model with data size and computing overhead of
each layer,ii 2) capacity of each server, 3) number of antennas
equipped on the smart device, and 4) bandwidth capacityiii

of all antennas, CONVENE aims to minimize the completion
time. To explore the intrinsic properties of CONVENE, we
first investigate CONVENE-SA (i.e., CONVENE with Single
Antenna) and introduce an insight notion, cumulative server
law, to derive the overall computing capacity of servers as-
sociated to the same antenna. We then propose an algorithm
named THREAD-SA based on cumulative server law to obtain
the optimal solution, which carefully selects servers to address
suitable server number and elastic model partition. Finally,
we extend the notion to design THREAD to achieve proper
antenna association by subtly balancing the overheads over
multiple antennas to further reduce the completion time.

II. RELATED WORK

A. Fog Computing and Edge Computing
Recently, FC and MEC has emerged to meet the requirement

(e.g., big data analysis and real-time response) of applications
(e.g., AR/VR) in smart devices [5]–[7]. Xu et al. dynamically
offload the popular services to the resource-limited edge to
relieve the backhaul network overhead [13]. Wang et al. deploy
the VR service proxies on the edge to process data of smart
devices and avoid tremendous amount of data exchange among
users [14]. Ran et al. design an offloading mechanism from
smart devices to MEC servers to trade off response time and
accuracy [15]. However, none of them emphasizes the model
partition for inference acceleration.

B. Inference and Training Acceleration
Many approaches aim at inference acceleration and can

be divided into two categories, structure simplification and
distributed computing. For the former, Howard et al. and
Zhang et al. lighten the structures, which can be executed
on the resource-limited smart devices [16], [17]. However, the
lightweight structures usually have a lower accuracy. For the
latter, Teerapittayanon et al. and Kang et al. partially offload

iiThis paper mainly focuses on inference acceleration for the convolutional
layers, and uses the traditional methods to handle the fully-connected layers.

iiiTo explore the intrinsic property of CONVENE, it is reasonable to assume
that the bandwidth capacity from the smart device to each server via different
antennas is similar since they are usually close to each other.

deep learning models to other servers to decrease the inference
time [18], [19]. Mao et al. and Zhao et al. partition the model
into disjoint blocks and deploy them on a set of servers to
reduce the inference time, whereas the intermediate data has
to exchange among the servers [8]–[10]. Nevertheless, none of
them focuses on the latency caused by data exchange during
the inference, which may prolong the completion time.

Distributed computing is often addressed for training accel-
eration. The distributed training schemes usually partition the
model structure or divide the dataset [20]. Teerapittayanon et
al. partition the model into subset of layers and then distribute
them over the devices, edge, and cloud [18]. Wang et al. trade
off the local and global updates across the smart devices to
improve the training effectiveness [21]. Wang et al. parallel
the parameter computing across different servers to speed
up training [22]. Nishio et al. design a distributed learning
protocol to maximize the total number of selected servers
within a time interval [23]. Tran et al. decompose decentral-
ized learning optimization problems into convex-structure sub-
problems, each of which can be efficiently solved efficiently
[24]. However, none of them focuses on inference acceleration.

III. SYSTEM MODEL

The system considers a mobile edge network, which consists
of heterogeneous servers around the resource-limited smart de-
vice. To enable the services such as real-time image recognition
and AR/VR gaming experience for the owners of smart devices,
the smart device (e.g., camera) continuously sends the data
(e.g., video) to the nearby adequate servers for processing. To
accelerate the inference of CNN model with the considerable
amount of data, the system partitions the CNN model into
multiple blocks, each of which is deployed on a selected server
to processes a horizontal slice of an input image in parallel.
Note that the server of a block requires the intermediate results
of layer i within other blocks for computing layer i+ 1 (e.g.,
black areas are required to compute block 2 in Fig. 2).

In the past, each block processes a disjoint horizontal slice
of an input image and the block size is proportional to the
computing capacity of corresponding servers. Thus, any two
servers that process the neighboring blocks have to exchange
their intermediate results during the inference (see Fig. 3) [8].
However, it causes massive data transfer and may seriously
violate the completion time requirement (e.g., 20 ms latency for
real-time image recognition [12]). To this end, we introduce an
intelligent system DeepCo with a novel notion, data-lookahead
partition, which allows the server of each block to prefetch and
compute the demanded data within other blocks such that every
server with a different block can independently run in parallel
without waiting for other servers (see Fig. 4).

Fig. 1 presents the overview of DeepCo, which consists of a
smart device and multiple nearby available servers. The CNN
model is pre-trained and stored in the smart device. The coor-
dinator of smart device has to select a set of adequate servers
from the available servers and partitions the CNN model into
suitable-size blocks for each selected server. To minimize
the completion time, the partition has to jointly consider the
computing capacity of servers, the bandwidth capacity, and
the number of antennas. Thus, the images generated by the
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sensors on the smart device are partitioned along with the
CNN model, and then transferred to the selected servers for
distributed computing. Finally, the selected servers complete
the computing and then return the results to the smart device.

Specifically, DeepCo allows the selected servers to prefetch
the data in the other blocks (e.g., black areas for the server
processing block 2 in Fig. 2). The prefetched data amount is
proportional to the number of convolutional layers (e.g., 152
layers) and the filter size (e.g., 3×3, 5×5) in the CNN model.
The height of prefetched data (i.e., black areas in Fig. 2) is
o(M) = 2

∑
l∈M� f(l)

2 �, where M denotes the CNN model
with |M | layers and f(l) denotes the filter height size of layer
l ∈ M . Therefore, we have the following definition.

Definition 1. The prefetched data ratio of the model M with
the input images of height h is ro = o(M)

h .

For instance, if the model M has inputs with 224 × 224
pixels and five convolutional layers, where the layers are with
two 3×3 and three 5×5 filters, respectively, then the prefetched
data ratio for a block is ro = 2(2�3/2�+3�5/2�)

224 ≈ 7.142%.

IV. PROBLEM FORMULATION

We formulate the problem as an optimization problem to 1)
select a set of adequate servers, 2) associate each server to the
proper antennas, and 3) partition the CNN model with the input
data into suitable-size blocks, so as to minimize the completion
time. Let V denote the set of available servers around the smart
device. Let binary variable xi ∈ {0, 1} denote whether server
i be selected to compute for the smart device. Due to hetero-
geneous computing capacity, each selected server may obtain
a block with a different size. Let fractional variable ri ∈ [0, 1]
denote the partition ratio of overall data amount generated by
the smart device. Since some data can be processed by server
i only if server i is selected, we obtain the constraint.

xi ≥ ri, ∀i ∈ V (1)

Moreover, all the blocks must include the overall data, i.e.,∑
i∈V

ri = 1 (2)

Let A denote the set of antennas and binary variable yim ∈
{0, 1} denote whether server i ∈ V is associated to antenna
m ∈ A. Since every selected server must be associated to a
specific antenna, we have the constraint.

∑
m∈A

yim = xi, ∀i ∈ V (3)

Let binary variable zij ∈ {0, 1} denote whether server i ∈ V
is scheduled after server j ∈ V \ {i}. Two servers must start
computing its partition at different time if they are associated
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to the same antenna since an antenna can only transfer the data
to the servers sequentially, and thus

zij + zji =
∑
m∈A

yim · yjm, ∀i, j ∈ V, i �= j. (4)

Moreover, if server i is scheduled before server j while server
j is scheduled before k, then server i is scheduled before k.

zij · zjk ≤ zik, ∀i, j, k ∈ V, i �= j, j �= k, i �= k (5)

Assume that the data size of an image is s, while the computing
capacityiv of server i and bandwidth capacity of an antenna are
c(i) and b, respectively. Let fractional variable hi ≥ 0 be the
size of data received by server i, which includes the block
assigned to sever i and the prefetched data. Thus, for each
server i ∈ V , hi = s · (ri + ro) · xi, where ro is the prefetched
data ratio (see Definition 1). Let fractional variables dpi ≥ 0
and dqi ≥ 0 denote the time length for the data transfer and
computing of server i. Then, dpi = hi

b and dqi = hi

c(i) .
Let fractional variable di ≥ 0 denote the time at which server

i starts to receive its data. Therefore, di must be after the data
transfer of all the servers scheduled before server i, and thus

di =
∑

j∈V :i �=j

zij · dpj , ∀i ∈ V (6)

We then know that the time points at which server i starts and
stops computing are di + dpi and di + dpi + dqi . Let fractional
variable T denote the completion time of all servers, and thus

T ≥ di + dpi + dqi , ∀i ∈ V (7)

Therefore, we formally define CONVENE as follows.

Definition 2. Given a CNN model M with data size s, a set
of antennas A with bandwidth capacity b, and a set of server
V with computing capacity c(i) for each server i ∈ V , the
Cooperative CNN Deployment over Mobile Network Edges
problem (CONVENE) finds a set of selected servers with
server selection, antenna association, model partition, and data
transfer scheduling such that the above constraints (1)−(7) are
satisfied and the completion time is minimized, i.e.,

minimize T (8)

In the following, we introduce the novel notions for algo-
rithm design and provide the proof sketch of the hardness.

ivThe computing overhead per unit of data for an image may not be in the
same range of data size. For ease of presentation, we normalize the computing
overhead to align the range of data size in advance. After normalization, the
computing capacity of each server i becomes c(i) = ĉ(i)· s

w
, where w denotes

the computing overhead per unit of data for an image and ĉ(i) denotes the
original computing capacity of server i.
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A. Cumulative Server Law

In this subsection, we derive an insightful notion, cumula-
tive server law, with a key formula to calculate the overall
computing capacity for multiple selected servers associated
to the same antenna. It can be envisaged that such servers
merge together into a more powerful virtual server (see Fig.
5). However, the computing capacity, though, is enhanced as
the number of servers increases, the number of prefetched data
areas required to transfer also increases. Later in Sectioin V,
we will detail how to carefully trade off the two factors.

Theorem 1 (Cumulative Server Law). The overall computing
capacity of selected servers denoted by S associated to the
same antenna can be regarded as a merged server with the
overall computing capacity

c(S) =

⎧⎨
⎩
0 if S = ∅∏

i∈S(b+ c(i))− b|S|

b|S|−1
otherwise.

(9)

Proof. See Appendix A.

Then, we know that the data overhead of the overall data is
s
∑

i∈S(ri + ro). Therefore, by Theorem 1, we can obtain the
completion time T (S) of the selected servers associated to the
same antenna, i.e.,

T (S) =
(∑

i∈S

(ri + ro)
)
(
s

b
+

s

c(S)
) (10)

In particular, as the selected servers only with one antenna have
to complete the inference, i.e.,

∑
i∈S ri = 1, eq. (10) can be

further simplified to

T (S) = (1 + |S| · ro)(
s

b
+

s

c(S)
) (11)

Example 1. This example shows the effect of server selec-
tion, antenna association, model partition, and data transfer
scheduling. Tables I and II summarize the model and network
information. First, the traditional method, MoDNN [8], assigns
the partition ratios to all the servers based on their computing
capacity, so the ratios for them are 10

10+10+7+3 ≈ 0.333, 0.333,
0.234, and 0.1, respectively. The data transfer and computing
require time 10

60 ≈ 0.167 and 10
10+10+7+3 ≈ 0.333, respec-

tively. Besides, the data exchange between servers takes time
0.05×30 = 1.5 since the model has 30 convolutional layers and
each time of exchange needs time 0.05. Thereby, the overall
completion time of MoDNN is roughly 0.167+0.333+1.5 = 2
(see Fig. 6). By contrast, the optimum solution with a single
antenna selects servers 1, 2, and 3 and assigns their partition
ratios roughly as 0.519, 0.387, and 0.094, respectively, shown
in Table III. The overall computing capacity of servers 1, 2, and
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3 is (60+10)×(60+10)×(60+7)−(60)3

(60)2 ≈ 31.194, and it requires
time (1 + 3 × 0.4)( 1060 + 10

31.194 ) ≈ 1.072 (see Fig. 7 and eq.
(11)). The completion time can be reduced by 46%. In addition,
the optimum solution further associates servers {1}, and {2, 3}
to the two antennas, respectively. It allocates the partition ratios
0.4375, 0.4375, and 0.125 for servers 1, 2, and 3 and takes time
0.977. It can reduce the time by 51% shown in Table IV.

B. Proof Sketch of Hardness

Due to the page limit, we give the proof sketch of hard-
ness. CONVENE is NP-hard since the Product Partition (PP)
problem (see Definition 3) can be reduced to the decision
version of CONVENEv in polynomial time by creating two
antennas in A with b = 1, n servers in V with computing
capacities c(1) = e1 − 1, ..., c(n) = en − 1, and model M
with ro = 0 (i.e., 1 × 1 filter) and s = w = 1. First, ro = 0
makes the optimum solution must select all servers. Besides,
we set the time threshold T = s

2 · ( 1b + 1
C ) = C+1

2C , where
C =

√∏
i∈V (c(i) + b) − 1 =

√∏
i∈V ei − 1, since the more

balanced association on the overall capacity computing of the
servers for the two antennas indicates the less completion time.
Thus, the answer of PP is yes iff the answer of decision version
of CONVENE is yes, and then CONVENE is NP-hard.

Definition 3. [25] Given a set of positive integers U =
{e1, ..., en}, the Product Partition Problem asks whether a set
U1 ⊂ U exists such that

∏
e∈U1

e =
∏

e∈U\U1
e.

V. ALGORITHM DESIGN

Two traditional methods can be applied to solve CONVENE,
which 1) deploy the whole CNN model to one server and
2) partition the model into multiple disjoint blocks with the
computing overhead according to the computing capacity of
servers and then distribute them to the near servers. However,
the former may cause an enormous burden for a single server
if the CNN contains numerous convolution layers (e.g., 152-
layer ResNet) while the latter requires massive data exchange
between two servers that compute the neighboring blocks.
Besides, none of them optimizes antenna association. Hence,
these methods may degrade real-time user experience.

To resolve CONVENE-SA, we first design an algorithm,
Time-Length-Aware Cooperator Selection and Model Partition
Algorithm with Single Antenna (THREAD-SA), which care-
fully addresses suitable server number and elastic model par-
tition to find the optimum solution. THREAD-SA is then ex-
tended to achieve proper antenna association (i.e., THREAD)
to further reduce the inference completion time for CONVENE.

vGiven a time threshold T , the decision version of CONVENE asks whether
a solution can complete the inference no later than T .
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TABLE I
MODEL

INFORMATION

s w |M | ro
10 10 30 40%

TABLE II
NETWORK INFORMATION

i 1 2 3 4
c(i) 10 10 7 3
b 60 60 60 60

TABLE III
SELECTED SERVERS
WITH DIFFERENT ri

i 1 2 3
ri 0.519 0.387 0.094

A. THREAD-SA
Based on Theorem 1, THREAD-SA maximizes the overall

computing capacity of selected servers while ensuring that
the total size of data included in the blocks and prefetched
data areas do not overwhelm the selected servers. To this end,
THREAD-SA iteratively selects the server with the maximum
computing capacity to enhance the overall computing capacity,
and calculates the overall computing capacity by merging
the selected servers together as a virtual server (see Fig. 5).
Meanwhile, to avoid the much data overwhelming the selected
servers, it evaluates the overall computing overhead at each
time of server selection as well as the completion time. There-
fore, it repeats server selection until the overall completion
time stops decreasing and then returns the last solution with
the earliest completion time. Finally, it balances the partition
ratios for all selected servers such that the antenna continuously
transfers the data to the selected servers in sequence, each
server receiving its required data then starts the computation,
and all the severs complete their computing at the same time.
Overall, THREAD-SA consists two phases: 1) Server Selection
Phase (SSP) and 2) Transfer Scheduling Phase (TSP). SSP
decides the set of servers to cooperate to make an inference
while TSP determines the scheduling of data transfer and
computing for each selected server.

1) Server Selection Phase (SSP): Let St denote the set of
selected servers after t servers are selected and thus S0 = ∅
initially as t = 0. For each iteration t ≥ 1, SSP selects the
server it with the maximum computing capacity, i.e., it =
argmaxi∈V \St−1

{c(i)}, and then St = St−1 ∪ {it}. Then, it
computes the overall computing capacity c(St) by eq. (9) and
the new completion time T (St) by eq. (11). If T (St−1) >
T (St), SSP continues the next iteration; otherwise, it outputs
St−1 (i.e., the selected servers) as the input of the next phase.

Example 2. Following Example 1, this example demonstrates
THREAD-SA. SSP first selects the server with the maximum
capacity, i.e., server 1, with data transfer time (10× 1)/60 ≈
0.167 and computing time (10 × 1)/10 = 1, and thus the
completion time is 0.167 + 1 = 1.167. Next, it adds server 2
with computing capacity 10. The overall computing capacity
of two servers is (60+10)×(60+10)−(60)2

60 ≈ 21.667, and then
the completion time becomes (1 + 2 × 0.4)( 1060 + 10

21.667 ) ≈
1.131. Since 1.131 < 1.167, it continues server selection. The
operation stops at the fourth iteration since the completion time
increases from 1.072 to 1.161. It then returns the third solution.

2) Transfer Scheduling Phase (TSP): Given the servers
selected in SSP denoted by S , let Dt represent the set of
scheduled servers after t servers are scheduled and thus Dt = ∅
as t = 0. Let τ t denote the start time of data transfer
for the tth server in the scheduling and T (S) denote the
completion time of all servers, and hence τ1 = 0. For each
iteration t, TSP randomly picks a server it in S \ Dt−1,

TABLE IV
ANTENNA ASSOCIATION

Antenna 1 2
2nd iteration {1} {2}
3rd iteration {1} {2,3}

TABLE V
SELECTED SERVERS WITH DIFFERENT ri

Server 1 2 3 4
2nd iteration 0.50 0.50 - -
3rd iteration 0.4375 0.4375 0.125 -

and then Dt = Dt−1 ∪ {it}. All selected servers including
it finish their computing at time T (S) (see eq. (11)), i.e.,
τ t + (rit + ro)(

s
b + s

c(i) ) = T (S). Thus, the partition ratio
of server it is

rit =
T (S)− τ t

( sb +
s

c(i) )
− ro, (12)

and the start time of data transfer for the next server is

τ t+1 = τ t + (rit + ro) ·
s

b
(13)

The scheduling is completed when S \ Dt = ∅. Note that we
can prove that THREAD-SA obtains the optimum solution for
CONVENE-SA as follows. Let O and A respectively denote
the optimum and our solution. Any server in S1 = A\O must
be no weaker than any server in S2 = O \ A since A only
selects powerful servers sequentially. Thus, we can exchange
the servers in S2 of O with those in S1 to generate new O
until 1) new O includes S1 or 2) S2 is exhausted, and the
exchange does not increases the completion time. It is obvious
that |S1| = |S2|; otherwise, the new O is not the optimum since
selecting fewer servers than A or more servers in V \ A will
increase the completion time. Thus, A must be the optimum.

Example 3. Following Example 2, this example derives the
partition ratio for each server selected at iteration t. TSP first
sets r1 as 1.072−0

( 10
60+

10
10 )

−0.4 ≈ 0.519 and thus the next server starts
to receive the data at time τ1 = 0+(0.519+0.4)× 10

60 ≈ 0.153.
Similarly, the remaining partition ratios are shown in Table III.

Time Complexity. The time complexity of THREAD-SA is
O(|V |). Due to page limit, the detailed analysis is omitted.

B. THREAD

THREAD extends THREAD-SA to optimize the utilization
of multiple antennas to achieve proper antenna association.
It aims to balance the computing overhead and computing
capacity of selected servers associated to different antennas
to well utilize the multiple antennas and reduce the comple-
tion time. To this end, similar to THREAD-SA, it iteratively
selects the server with the maximum computing capacity, while
associating the server to the antenna whose servers have the
weakest overall computing capacity. Meanwhile, it carefully
decides the partition ratio for the servers of each antenna such
that all selected servers stop computing at the same time.
Also, it examines the change of completion time. It repeats the
operations until the overall completion time stops decreasing
and returns the last solution with the earliest completion time.

Explicitly, let Gt
m be the set of servers associated to antenna

m ∈ A after t servers are selected and thus G0
m = ∅ as t = 0.

Similarly to SSP, for iteration t ≥ 1, THREAD selects the
server it with the maximum computing capacity, and associates
server it to the antenna mt whose servers have the weakest
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overall computing capacity, i.e., mt = argminm∈A{c(Gt−1
m )}.

Then, Gt
mt = Gt−1

mt ∪ {it}. The other antennas rather than mt

do not change the associated servers, i.e., Gt
m = Gt−1

m , where
m ∈ A\{mt}. Then THREAD computes the overall computing
capacity of associated servers for each antenna, i.e., c(Gt−1

m ∪
{mt}), by eq. (9). Recall that all the completion time for each
selected server is identical. Thereafter, it calculates the system
of equations as follows to derive 1) the completion time T (Gt

m)
and 2) the partition ratio gtm for each antenna m ∈ A.⎧⎪⎨

⎪⎩

∑
m∈A

gtm =
∑
m∈A

∑
i∈Gt

m

ri = 1

T (Gt
m1

) = T (Gt
m2

), ∀m1,m2 ∈ A

(14)

The server selection with antenna association stops when
T (Gt

m) ≥ T (Gt−1
m ), and then THREAD computes and returns

the partition ratio ri for every server i by TSP with eq. (10).

Example 4. Following Example 1, THREAD is depicted in
the example. It selects two servers and associates them to
different antennas in the first two iterations as shown in Table
IV. Then, it solves the system of equations (see eq. (14)):
1) 10G1

1+4
60 +

10G1
1+4
10 =

10G1
2+4
60 +

10G1
2+4
10 , 2) G1

1 + G1
2 = 1,

and obtains the partition ratios for the antennas, 0.5 and
0.5, shown in Table V. The overall completion time equals
T (G2

2) = 10×0.5+4
60 + 10×0.5+4

10 = 1.05. At the 3rd iteration,
THREAD selects server 3 and associates it to any antenna since
the two antennas have the identical overall computing capacity.
Let’s say antenna 2. Also, by eq. (14), THREAD assigns the
partition ratios 0.4375 and 0.4375 + 0.125 = 0.5625 for the
two antennas. The overall computing capacity of antenna 2 is
c(G3

2) =
(60+10)×(60+7)−(60)2

60 ≈ 18.167, and thus the comple-
tion time becomes T (G3

2) =
10×0.5625+2×4

60 + 10×0.5625+2×4
18.167 ≈

0.977. The operation continues since T (G3
2) = 0.977 < 1.05 =

T (G2
2). Finally, THREAD returns ri for each server i by TSP

at 4th iteration since T (G4
2) = 1.075 > 0.977 = T (G3

2).

Time Complexity. The time complexity of THREAD is
O(|V ||A|3). Due to page limit, the detailed analysis is omitted.

VI. EVALUATION

We conduct simulations to show the performance of our
methods. In the simulation, the considered mobile edge net-
work consists of a smart device and twenty servers with dif-
ferent computing capacity, where servers also group a network.
We assume that the wireless transmission from the smart device
to each server capacity is similar. We set c(i) = 500 + 25β
GFLOPS and b = 150+50δ Mbps, where β and δ are random
in [0, 5].vi A series of image recognition models, e.g., ResNet-
101, ResNet-152 [2], are adopted in the simulation, and the
prefetched data ratio is defined based on ResNet accordingly.
Simulations with different CNN models show that THREAD is
adaptable and efficient. Note that the download for the trained
CNN model from the smart device to servers is ignored since
THREAD only executes the download once. We use images

viThe settings are reasonable since 1) the current general GPU can process
2 ∼ 4 TFLOPS and 2) for upcoming 5G, the bandwidth capacity is expected
to be 1 ∼ 10 Gbps. Therefore, the settings do not exhaust the resources of
nearby servers to meet the application requirement.

(a) ResNet-101 (b) ResNet-152

Fig. 9. Effect of available bandwidth capacity on completion time.

(a) ResNet-101 (b) ResNet-152

Fig. 10. Effect of available computing capacity on completion time.

(a) ResNet-101 (b) ResNet-152

Fig. 11. Effect of antenna number on completion time.

with size s ≈ 150 Kb and consider the 16-ms and 8-ms latency
requirements for 60 FPS and 120 FPS throughput [12]. We
compare THREAD-SA and THREAD with MoDNN [8] with
single antenna and multiple antennas (i.e., MoDNN-SA and
MoDNN-MAvii). The performance metric is completion time,
and each result is averaged over 500 samples.

A. The Effectiveness of Bandwidth and Computing capacity

Figs. 9 and 10 show the overall completion time with differ-
ent settings of bandwidth and computing capacity. Generally,
as b, c(i), and |A| increase, the completion time decreases.
Compared with MoDNN-SA, MoDNN-MA leverages multiple
antennas to efficiently decrease the completion time. However,
neither of them addresses data transfer scheduling for model
partition. Besides, THREAD-SA and THREAD benefit from
data-lookahead partition of DeepCo and cumulative server law
to allow the computing and data transfer to be executed in
parallel and precisely calculate the overall computing capacity
of servers so as to balance their computing overhead. Overall,
THREAD-SA and THREAD outperform other methods by
100% and meet the 16-ms and 8-ms latency requirement.

B. The Effectiveness of Number of Antennas and Servers

Fig. 11 shows the effectiveness of multiple antennas. Gener-
ally, the more antennas can reduce the more data transfer time.
The completion time of MoDNN descends drastically as the

viiWe associate the servers to different antennas for the more balanced
computing overheads among the antennas for MoDNN.
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(a) ResNet-101 (b) ResNet-152

Fig. 12. Effect of selected server number on completion time.

number of antennas increases since the waiting for the data
transfer period of all the servers (see Fig. 6) can be relieved.
Contrarily, THREAD hardly decreases since it allows data
transfer and computing in parallel. We also observe that it does
not tend to use all servers (see Fig. 12). It is because the more
servers have higher overall computing capacity but require
to transfer and compute more data due to data-lookahead
partition, which may result in a longer completion time.

VII. CONCLUSIONS

In this paper, we design a new system with a novel notion,
data-lookahead partition, and formulate a new optimization
problem, CONVENE-SA, which aims to minimize the total
completion time for smart device with heterogeneous resources
over one or multiple antennas. To explore the intrinsic prop-
erties, we first study CONVENE to address suitable server
number and elastic model partition to derive the optimum
solution. Then, an extension, THREAD, is proposed to achieve
proper antenna association over multiple antennas to properly
balance the completion time over multiple antennas. Simulation
results show that our algorithm outperforms others by 100%.
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APPENDIX A
PROOF OF THEOREM 1

Prove it by induction. Let ŝ be the total size of data assigned
to the servers S and r̂i be the partition ratio of data size ŝ as-
signed to server i ∈ S. The claim is trivial for S = ∅. For |S| =
1, the claim holds since c(S) = b+c(1)−b1

b0 = c(1). For |S| = 2,
assume that T denote the completion time. By the claim, the
overall computing capacity c(S) = (b+c(1))(b+c(2))−b2

b , and
then the completion time is T = (1 + 2ro)(

ŝ
b + ŝ

c(S) ). On
the other hand, for the first server, the completion time is T =
ŝ( r̂1+ro

b )+ŝ( r̂1+ro
c(1) ) while for the second server, the completion

time is T = ŝ( 1+2ro
b )+ ŝ( r̂2+ro

c(2) ). Thus, r̂1 =
T−ro(

ŝ
b+

ŝ
c(1)

)
ŝ
b+

ŝ
c(1)

=
T

( 1
b
+ 1

c(1)
)
−ŝ·ro

ŝ and r̂2 =
c(2)(T− s+2ŝ·ro

b )−ŝ·ro
ŝ . Since r̂1 + r̂2 =

1, T =
(ŝ+2roŝ)(1+

c(2)
b )

b·c(1)
b+c(1)

+c(2)
= (ŝ+2roŝ)(b+c(1))(b+c(2))

b[(b+c(1))(b+c(2)))−b2] = (1 +

2ro)(
ŝ
b +

ŝ
c(S) ). Hence, two servers seems merged as a single

server, and the claim also holds. Assume that the claim holds
as |S| = n. For S ∪ {j}, by induction hypothesis, the overall
computing capacity of the previous n servers can merge as a
server k with computing capacity c(S). We can obtain

c(S ∪ {j}) = c({k} ∪ {j}) = (b+ c(S))(b+ c(j))− b2

b1

=

(
b+

∏
i∈c(S)(b+c(i))−b|S|

b|S|−1

)
(b+ c(j))− b2

b

=

(∏
i∈c(S)∪{j}(b+c(i))

b|S|−1

)
− b2

b

=

∏
i∈c(S)∪{j}(b+ c(i))− b|S|+1

b|S|
Therefore, the claim still holds and the theorem follows.
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