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Abstract- D2D cooperative communication is one of the essential 
requirements of the next generation networks. As human beings 
carry D2D devices, their emotions also play a prime role in 
cooperative data exchange. Several earlier works have discussed 
the various social factors; none has considered the significance of 
multiple social networks a user can have contact with. In this 
paper, we leverage the social contacts of a user with various social 
networks to decide the next hop relay. We take into account the 
total friends and their contact duration of each social network to 
determine the relay that has the maximum potential to disperse 
the information. By considering these social aspects along with the 
physical parameters, we developed a utility function to model our 
problem as a relay selection game. We proved our game model as 
an exact potential game, which has Nash equilibrium. Simulation 
results show that the proposed method has better throughput 
when compared to the conventional methods.  

Keywords- Cooperative communications, social networks, game 
theory, Nash equilibrium.  

I.  INTRODUCTION 
Due to the explosive growth of handheld smart devices like 

smartphones and tablets, it is projected that by 2018 the mobile 
generated traffic will reach 120 Exabyte of data per month [1].  
Besides, the upcoming 5G technology will introduce many 
proximity services, and device-to-device (D2D) 
communications will be the most prominent among them. In a 
D2D scenario, usually the human beings will carry the handheld 
devices through which they will share information among each 
other through licensed or unlicensed spectrum [2]. In support of 
this, we observe that in the current trend several social 
networking Apps promote mobile users to circulate more data 
into the network. However, normally these users will be hesitant 
to communicate with strangers. As a result, well-established 
social relationships mandate the cooperative D2D 
communications. In this kind of cooperation based 
communication, some users act as relays to those have good 
social ties and channel characteristics with them to assist in 
forwarding the data [3][4]. 

While considering the social and physical factors, both play 
an equally important role in deciding the user selection for 
cooperative communications. Thus, it is a very challenging task 
to determine the most reliable user device as a relay when we 
target to maximize the amount of information being dispersed. 
Few authors have discussed social trust, reciprocity, contact 
frequency, secrecy level, etc., into account while deciding the 
relay user to maximize the throughput [5]-[8].  

Due to the advent of many social networking Apps, it is 
common to find real life friends who are related socially via 
multiple of these networking Apps like Facebook, Wechat, and 
Line. However, from our intuition, though there are several 
Apps, all these Apps are different regarding the number of 
subscribers, user activity, popularity, user interface, etc. As, a 
result, a user will become more interested in joining a network 
by considering all these factors. In such a situation, to 
disseminate the information like an advertisement or video 

broadcast to a large crowd will be influenced by all these factors 
mentioned before, which motivated this study.   

In this paper, we consider the physical and social 
characteristics of D2D nodes and find the best relay in the 
surrounding to maximize the information dispersion or 
throughput by cooperative communications. Mainly, we 
consider a realistic scenario of a socially active user having 
contacts with multiple social networks of different size to 
investigate their role while choosing the next hop relay for 
information dispersion. We develop a utility function by 
combining physical and social attributes that consider 
interference, congestion, and social activeness. So, we model 
this problem as a non-cooperative game to determine the most 
appropriate user to act as a relay, that is socially active and 
physically less interfering and less congested to improve the 
amount of dispersion. The main contribution of our work are as 
follows: our work is the first to consider the diversity of the 
social network links and our game model is an exact potential 
game that converges in finite steps. The simulation results show 
that the throughput and utility of our model is comparatively 
better than the traditional methods.   

We have organized the rest of the paper in the following way. 
In section II we cite some of the most relevant related works, 
and in section III we describe our system model. In section IV 
we detail our algorithm and game model. We discuss the results 
in section V, and finally, we conclude our paper in section VI.  

 

II. RELATED WORK  
Several papers have discussed the different social aspects 

while considering the D2D communications like resource 
management, next hop relay selection, traffic offloading, delay, 
communication cost and throughput maximization, etc. We 
mainly cite some work that has considered the social influence 
on D2D communications and relay selection.  

In [3], social tie based cooperation between the user has been 
analysed to select the next hop relay. The authors identified two 
factors namely social trust and social reciprocity among the 
users to decide the best relay in a one-hop network. The social 
tie helps to find a relay that offers the best social link, and in the 
case of social reciprocity, the users help mutually. An optimal 
stopping approach based relay selection has been proposed in 
[4]. Here the authors have used the strength of social ties 
between the users to decide the mode of transmission (relay, 
direct) in a two-hop network. The transmission signal is 
proportional to the social trust; so, the users with high trust can 
offer higher throughput.  

A couple of papers have investigated the location, privacy, 
security issues with the aid of social tie [7][9][10]. In [7] the 
authors have considered the degree of trust between the users to 
derive the optimal power required to relay the message secretly. 
Based on the degree of trust, the information and jamming signal 
are transmitted with suitable power directly to the destination 
and via a relay. The relay node with trust degree can only decode 
the message, not the eavesdropper. In [9] the frequency of social 



meetings and number of common members between the groups 
are used as parameters to model the data transmission between 
the members of different social groups in a D2D environment. 
The proposed GROUPS-NET algorithm assigns edge 
probabilities based on the said parameters to forward the 
message between the group members in a centralized way. The 
influence of social and physical position has been investigated, 
in [11]. The mobile terminals (MTs) act as relays to send the 
data to a destination at a distance of one-hop from them by the 
cooperative communications. Here the strength of the social 
trust between the MTs encourages to relay the data.  

In another category of works [13][14] community-based 
resource allocation has been discussed for the D2D scenario, 
where the users with common social interest and physical 
proximity are classified as a community. The authors used 
coalition game model to handle the resource allocation 
efficiently.  

However, none of the above-mentioned works have 
considered the social activeness like the popularity of the social 
networks, their group size, the number of social networks with 
which user has interaction, etc. In our proposed work, we try to 
include these factors while determining the system performance.  

 

III. SYSTEM MODEL 
 

A. D2D Networking Scenario 
 

Our D2D communication scenario has divided into social 
and physical layers among the users who wish to share 
information like video, Apps, photos to a large number of users 
at relatively lower transmission cost. In the social layer, the 
users have social tie by different social networks, and in the 
physical layer, they may have wireless link and interference 
with various other users in the surrounding.  

       
Figure 1. Social and physical layer of a D2D network. 

 
As shown in Fig. 1, the top layer is the social layer. Here 

users have social connectivity through Facebook, Line, 
Google+, etc. The bottom layer in Fig. 1 is the physical layer, 
where users have the physical links (bold lines) through which 
they communicate, and interference links (dotted lines) due to 
different transmission power. We explain the parameters of 
social and physical layers in more detail in sub-section B and C 
respectively.  

 
B. D2D Social network 

 
It is common that a user may have the social tie with another 

user by multiple social networks like Facebook, Twitter, Line, 
etc., as shown in Fig. 2. (a). However, each of these networks 
has it’s popularity, size, the category of subscribers, etc. We 
exploit these features to design the social network scenario.  

 
Figure 2(a) Social network scenario. (b) Physical and interference links 

between the users. 
 
Let ℒ௪ represent the link weight between a link ݈ , where 

݈   is the link between the nodes ݅	 and	 ݆;  and the 
term	 	 1)ݓ ≤ ݓ ≤ ℕ

)represent the index of the total number 
of social networks between the link ݈ . The higher the value of 
ℒ௪ indicates higher social activeness between any nodes ݅ and 
݆. Let ℕ

  represent the number of networks by which node 
݅and ݆ are socially connected. (Example: user #1 and user #3 
have  ℕ

 =2 as there are two social links connecting them as 
shown in Fig. 2. (a)). Let  ܺ  be the number of socially 
connected networks to the potential destination relay ݆ (1 ≤
ݔ ≤ ܺ).	 The term ℱ௫

  is the number of friends in social 
network ݔ for ݆.	  The ܰ ௫ܹ   is the network weight of the 
social network ݔ  (0 < ܰ ௫ܹ ≤ 1)  and ܥ௫  is the contact 
duration of a user (friend) ݂  (1 ≤ ݂ ≤ ℱ௫

 	 )  of network ݔ 
connected to relay ݆ determined over a total monitoring time of  
ܶ. In Fig. 2. (a), for user #3 the value of ܺ = 4, as it has four 

social networks connected. 
 

C.   D2D Physical network 
 

For a D2D communication, physical proximity is an 
essential factor. In our system model, we distributed the ܰ 
users at different locations, and they can have any topology. We 
assume each user ݅(1 ≤ ݅ ≤ ܰ)can have different transmission 
power ܲ݅ܶ. As a result, users may have different transmission 
range and interference with neighbours. Let ܹ݅ܫ  be the 
interference weight of node ݅  with which it interferes the 
transmission of the nearby nodes (0 < ܫ ܹ ≤ 1).   In Fig. 2. 
(b), the discrete arrows show the direction of interference 
between the users and the bold lines show the communication 
links. It is not necessary that the presence of communication 
link between two nodes to have interference among them. We 
denote ݆ܹ݅ܤ as the bandwidth of link ݈݅,݆.  Let ݈݆݅݀ܽ  
represent the data sent by node ݅ towards node ݆  when we 
consider the link ݈݅,݆.  

 Using this knowledge we derive the utility equations in the 
next section as defined by (1) - (5). 

 

D. Problem formulation 
 

We consider a D2D scenario with ܰ nodes communicate 
physically and when nodes communicate on the same channel 
simultaneously, they interfere each other’s transmissions. In Fig. 
2. (b), the bold lines represent the communication links and 
discrete lines show the interference links. As an instance, 
	,2#ݎ݁ݏݑ1has communication link with#ݎ݁ݏݑ ,3#ݎ݁ݏݑ ܽ݊݀,
 and in 2#ݎ݁ݏݑ is interfered by 1#ݎ݁ݏݑ ,However .4#ݎ݁ݏݑ
turn  1#ݎ݁ݏݑ interferes 4#ݎ݁ݏݑ. Thus, the overall received 
power by a node depends on the transmission power of the 
source node and effective interference by the interfering nodes 



in the surrounding as given by (1). Here ܴ  is the received 
power at node ݆ when node ݅ transmits with a power ܲ

் and 
the summation represents the resultant interference by ܰ 
which is a set of interfering nodes (excluding node ݅)  
surrounding the node ݆.  

	 	 ܴ = ݔܽ݉ ቆ0, 	 ܲ
் − ( ܲ

் ∗ ܫ ܹ
ஷ,∈ேೕ

	 )ቇ	 	 	 	 	 (1)	 	  

The value of  ܴ݆݅ is valid for ( ܲ
் ∗ ∑ ܫ ܹஷ,∈ேೕ ) < ܲ

் ,	 else 0.  
Based on this, we determine the physical gain ݆ܲ݅ܩ	 of a 

node ݅ when it communicates with node݆. In equation (2), the 
numerator value represents the achieved total data rate based on 
the Shannon’s theorem. The term in the denominator ∑ ݆݈݇݀ܽ  
is the total data load received by node ݆ from a set of nodes 
ܰ݀
݆ that have a physical link to ݆ and send data to node ݆. This 

is the measure of congestion, as more nodes send data to node 
݆, the node gets congested faster. 

	 	 	 	 	 	 	 ܩܲ = 	
ଶ(1݈݃ + ܴ)ܤ ܹ

∑ ஷ,∈ே݈݀ܽ
ೕ

	 	 	 	 	 	 	 	 	 	 	 	 	 	 (2) 

Now, based on the discussions in subsection B, we consider 
how the social tie between the users can be used to determine 
the social gain ܵܩ  that will influence the selection of user as 
a relay as shown in (3).  

	 	 ܩܵ =  ℒ௪
ℕ
ೕ

௪ୀଵ

  (ܰ ௫ܹ

ℱೣೕ

ୀଵ

ೕ

௫ୀଵ	
∗ ௫ܥ )	 	 	 	 	 	 	 (3) 

In (3) the first summation represents the link weight of the 
social links between node ݅  and potential relay ݆, over the 
total possible links ℕ

. The second summation represents the 
number of networks connected to potential relay ݆,	 and the 
third summation represents the number of friends ݂ in each 
network ݔ  connected to ݆.  As a result, the product term 
indicates the social activeness of the friends of the potential 
relay. It is better to choose a relay with higher social activity as 
it has more potential to disperse the data. 

From the above discussion, we define the utility function that 
combines physical and social aspects of the network. An 
important aspect to notice is that when we determine the utility 
of a link  ݈,  the link must have both social and physical 
connectivity to choose a potential relay. Let ܷ 	 be the utility 
of the link  ݈,  as shown in (4).  

ܷ = 	 	 ߙ ∗ 	ܩܵ 	 	 + (1 − 	(ߙ ܩܲ 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (4) 
It is the sum of social and physical gains as both these 

parameters are dimensionless. We set the value of ߙ  (non-
negative constant) based on the significance of  ܲܩ  and 
	 ܩܵ . Therefore, we expand the utility as in (5). 

 

ܷ = ߙ ∗ ∑ ℒ௪
ℕ
ೕ

௪ୀଵ ∑ ∑ ܰ ௫ܹ
ℱೣೕ

ୀଵ
ೕ
௫ୀଵ	 ∗ ௫ܥ + (1− (ߙ ∗   

	 	 	 	 	 	 	 	 	 	 	 	 మ(ଵାோೕ)ௐೕ

∑ ௗೖೕೖಯ,ೖ∈ಿ
ೕ

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (5)	 	  

 

IV. PROPOSED GAME MODEL 
We consider that the data each node wish to send is 

independent. Thus, each node has to determine by itself the best 
next hop relay by a non-cooperative game. In our game theory 
model of peer relay selection, each node ݅ 	 is a player that wish 
to choose a potential relay to maximize the data dissemination. 
Let us define the parameters of our game now. The strategy ݏ 
of node ݅   consists of selecting the destination relay, ݆ ≠ ݅  
while ܵି be the strategy of all other players. And (ݏᇱ) be the 

change of strategy done by node ݅. The term ܰ is the set of 
total nodes in the network. Utility ܷ(ݏ)	 is associated with 
node ݅  when it selects the strategy ݏ .	  The higher the utility 
is, the higher will be the efficiency of transmission to a potential 
relay ݆ as it has more potential to disperse the data. The utility 
function	 ܷ , when node ݅  choose a strategy as ݏ  to select 
potential relay ݆ as already defined in (5) is a dimensionless 
quantity. For a utility function to have good convergence 
properties, we have to ensure that the utility function ܷ  
possess certain mathematical properties. In such a case, we can 
determine the relay that offers best data dissemination in finite 
steps.  

A. Proof of Nash Equilibrium.  
 

Definition: Nash Equilibrium (NE): First of all, in a game a 
strategy profile ݏ∗  is called as NE, if and only if, for each 
player ݅  and any strategy ݏ  in the strategy space the 
following relation should satisfy: 

(∗ݏ)ݑ ≥ ݏ)ݑ , ܵ∗ି)	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (6) 
Here, the term on the left-hand side ݑ(ݏ∗)	 represents the 

utility of choosing the equilibrium strategy ݏ∗by node ݅ which 
is profitable than the utility of choosing any strategy ݏ . The 
term	 ܵ∗ି  represents the set of strategies of all other nodes at 
equilibrium as shown on the right-hand side. 

      Two properties of potential game: (1) NE exists in each 
exact potential game.  (2) if we limit only one node that can 
change its relay at a time, we can converge to NE. For a 
potential function ∅  to be an exact potential function, the 
condition in (7) has to be satisfied, where we try to maximize 
the utility of a node in general as follows.  

ܷ(ݏ , ܵି) − ܷ(ݏᇱ, ܵି) 	 = ݏ)∅ , ܵି) − ,ᇱݏ)∅ ܵି)	 	 (7) 

The ܷ݅(݅ݏ, ܵ−݅)  represents the utility of node ݅  while 
choosing the strategy ݅ݏ irrespective of the other user’s strategy 
ܵ−݅. The term ܷ݅(݅ݏ′ , ܵ−݅)	 represents the utility of node ݅ after 
change of strategy to ݅ݏ′  . Similarly, the terms on the RHS 
represents the potential function difference.  We define the 
potential function as in (8), which represents the overall utility 
of all the ܰ	 nodes. 

∅(ܵ) ={ߙ
ே

ୀଵ

∗  ℒ௪
ℕ
ೕ

௪ୀଵ

  ܰ ௫ܹ

ℱೣೕ

ୀଵ

ೕ

௫ୀଵ	
∗ ௫ܥ + (1− (ߙ

∗ 	 	
+ଶ൫1݈݃ ܴ൯ܤ ܹ

∑ ஷ,∈ே݈݀ܽ
ೕ

}	 	 	 	 	 	 	 	 (8) 

We can further expand this as the sum of utility for a single node 
݅ and remaining nodes ܰ ≠ ݅.	 And the difference between the 
potential function before and after the change of strategy ݅ݏ to 
′݅ݏ   be as follows: 

                    
ߙ ∗ ∑ ℒ௪

ℕ
ೕ

௪ୀଵ ∑ ∑ ܰ ௫ܹ
ℱೣೕ

ୀଵ
ೕ
௫ୀଵ	 ∗ ௫ܥ + (1 − (ߙ ∗ 

మ(ଵାோೕ)ௐೕ

∑ ௗೖೕೖಯ,ೖ∈ಿ
ೕ

+ 

 
 
 
 
 
 
 
 
 
 
 

∑ ேߙ}
ஷ,∈ே ∗ ∑ ℒ௪

ℕ
ೕ

௪ୀଵ ∑ ∑ ܰ ௫ܹ
ℱೣೕ

ୀଵ
ೕ
௫ୀଵ	 ∗ ௫ܥ + (1 − (ߙ ∗ 

	 	 	 	 	 	 	 	 మ(ଵାோೕ)ௐೕ

∑ ௗೖೕೖಯ,ೖ∈ಿ
ೕ

 }	 	 −   

ߙ ∗ ∑ ℒ௪
ᇲℕ

ೕ

௪ୀଵ ∑ ∑ ܹܰᇱ
௫

ℱೣೕ

ୀଵ
ೕ
௫ୀଵ	 ∗ ᇱ௫ܥ + (1 − (ߙ ∗ మ൫ଵାோᇲೕ൯ௐᇲ

ೕ

∑ ௗᇲೖೕೖಯ,ೖ∈ಿ
ೕ

 − 

∑ ேߙ}
ஷ,∈ே ∗ ∑ ℒ௪

ℕ
ೕ

௪ୀଵ ∑ ∑ ܰ ௫ܹ
ℱೣೕ

ୀଵ
ೕ
௫ୀଵ	 ∗ ௫ܥ + (1 − (ߙ ∗ 

	 	 	 	 	 	 	 	 	 	 మ(ଵାோೕ)ௐೕ

∑ ௗೖೕೖಯ,ೖ∈ಿ
ೕ

}                        (9)         

                                                                       



In (9) first and the second term represents the utility before the 
change of strategy by node ݅ and remaining nodes. Similarly, 
rest of the two terms represents the utility after the change of 
strategy.  
We limit only one node ݅ to change its strategy at a time. As a  
result, the summation terms∑ஷ,∈ே   will cancel in (9). 
This can be simplified as in (10). 
ݏ)∅  , ܵି) − ᇱݏ)∅ , ܵି) =  
 
     
                                                               
 
  
   
 
Therefore,   
which indicates the proposed game of peer relay selection is an 
exact potential game. Hence, it converges to NE. 
 
B. Relay selection algorithm. 

 
In this subsection, we describe our algorithm for relay 

selection by each of the users. Initially, each user based on its 
device id sequentially computes the utility towards other nodes 
and chooses the node with maximum utility as the potential 
relay. Once a user chooses the relay, it announces its selection 
to other nodes, and the remaining users update their utility 
towards that relay by re-computing the utility. If the utility value 
of a node towards a relay becomes more than the previous 
round’s choice, the node chooses the current relay with 
maximum utility. Otherwise, their strategy remains the same. In 
this way, after few rounds when no node can deviate from their 
chosen relays of maximum utility, the algorithm terminates. 
This state is the Nash equilibrium, where nodes do not deviate 
from their strategy.    

Let us consider a brief example. Assume that user A has 
surrounded by nodes B, C and D.  Now, node A wishes to 
choose either C or D to choose as the next hop relay. Let A 
transmit with power ܲ

் =100 and B interfere with ܫ ܹ = 0.3. 
As a result, the effective received power at node C due to A is 
(100-0.3*100) = 70. Now if A chooses to transmit to node D, let 
B and C interfere D with ܫ ܹ = 0.2, ܫ ܹ = 0.4 . Thus, overall 
received power at D due to A will be (100-(0.2+0.4)*100) = 40. 
This forms the physical gain. In this example, we have 
considered the load, bandwidth, data of all the links as equal for 
simplicity.  

Assume that A and C are connected by Facebook, then link 
weight between A and C ℒଵ  be 0.5. Let C has 5 Facebook 
friends (ℱଵ) with average contact frequency (ܥଵ ) of 10. In 
addition, ܰ ଵܹ = 0.5 for Facebook. Thus social gain from A to 
C will become (0.5*(0.5*5*10)) = 12.5. Similarly, assume that 
A and D are connected by two links (Facebook and Line), so 
ℒଵ = 0.5 and ℒଶ  = 0.2. Now, if node D has 4 Facebook 
friends (ℱଵ)  with avg. contact frequency of 10; 2 line friends 
(ℱଶ) with contact frequency of 10. In addition, ܰ ଶܹ = 0.2 
for Line. Thus, the social gain from A to D becomes (0.5+0.2)* 
(0.5*4*10+ 0.2*2*10) = 16.8. By assuming ߙ = 0.5	  and 
combining the physical and social gains, ܷ = (35+ 6.25) and 
ܷ =(20+8.4). Therefore, A chooses node C as its potential 

relay due to its higher value. Note that, whenever A chooses C, 
the other nodes that have already connected to C will update the 
value of interference, load in their utility computation.   

V. SIMULATION RESULTS  
In this section, we explain our simulation environment and 

experimental results. Firstly, our Matlab simulation setting 
consists of total 40 D2D users. We vary the  physical and social 
connectivity between the users to vary the density of network. 
In one scenario, every user has physical and social links with 
every other user, and in another scenario, we allowed the users 
to freely choose their links. Each user may have up to four social 
networks and each network can have 1- 100 friends. We set the 
range of transmission power 20 - 40dBm. The interference 
weight range is set 0.2 - 0.9. The average contact duration is set 
30 - 90 sec. We set the value of ߙ as 0.25 to equalize the range 
of physical and social gains.    

We compared our scheme with other 3 methods namely 
random relay selection, social based relay selection and physical 
based relay selection. In case of random selection method, nodes 
randomly choose a potential relay using both physical and social 
attributes. In case of physical method, nodes consider the 
interference and congestion of the physical channel and decide 
the best possible relay. In case of social method, nodes consider 
the contact frequency and network weight.  

To determine the performance of our game model, first as 
shown in Fig. 4, we measure the average throughput by varying 
the number of users. As we vary the number of users from 5 to 
40, in the proposed method the throughput steeply increases 
when we reach up to 20 nodes, later it gradually reduces. The 
main reason for this behavior is interference. Initially 
interference between the nodes are less until crossing 20 nodes. 
As the number of nodes increase, the throughput reduces 
gradually. In the random relay selection, as an user randomly 
chooses the relay, resulting in lower throughput. In social relay 
selection, nodes make decision of the relay based on the social 
parameters only. However, the performance is better than 
randomly choosing a relay node. In case of physical relay 
selection, nodes choose the relay purely based on physical 
parameters. We can see that the performance of the physical 
scheme is better than the social scheme as it is more aware of 
the physical links to reach a relay. 

  

 
Figure 4. Throughput for varying number of users 

In Fig. 5, we measure the average system utility by varying 
the contact frequency of the users in each network. We set the 
number of nodes N = 40 and vary the average contact frequency 
of users from 30 to 90 seconds. We can observe that as the 
contact frequency increases, the system utility also increase. It 
is due to more social interactions, which lead to better trust, to 
choose the same node as relay. However, in case of physical 
method, as it is aware of the physical links it chooses the best 
possible relays. The performance of social method is better than 
random method as it is aware of contact frequencies.  

ߙ ∗ ∑ ℒ݆݅ݓ
ℕ݅
݆

1=ݓ ∑ ∑ ݔܹܰ
ℱ݆ݔ
݂=1

݆ܺ
	1=ݔ ∗ ݔ݆݂ܥ + (1− (ߙ ∗ ݆ܹ݅ܤ2൫1+ܴ݆݅൯݈݃

∑ ݀ܰ∋݇,݅≠݆݈݇݇݀ܽ
݆

− 

ߙ ∗ ∑ ℒ௪
ᇲℕ

ೕ

௪ୀଵ ∑ ∑ ܹܰᇱ
௫

ℱೣೕ

ୀଵ
ೕ
௫ୀଵ	 ∗ ᇱ௫ܥ + (1 − (ߙ ∗

	 	 మ൫ଵାோᇲೕ൯ௐᇲ
ೕ

∑ ௗᇲೖೕೖಯ,ೖ∈ಿ
ೕ

                                (10) 

                                                            
ݏ)∅ , ܵି) − ,ᇱݏ)∅ ܵି) = ܷ(ݏ, ܵି) − ܷ(ݏᇱ, ܵି) 



 
Figure 5. Contact duration versus system utility (N=40) 

In Fig. 6, we vary the social density of the network by 
changing the social connections between the nodes. In high-
density scenario (HD), every node has connectivity with every 
other node and in low-density scenario (LD) we maintain 50% 
connectivity between the nodes. When the number of nodes 
increase, in case of proposed HD scenario the throughput 
reduces gradually due to building interference. In LD case, 
initially the available number of social links are less, but as the 
number of nodes reaches to 20, throughput increases. However, 
due to increasing interference, throughput reduces later 
gradually. In case of random relay selection method, in HD case 
the throughput gradually reduces due to interference as the 
number of nodes increase; however, in case of LD the 
throughput remains almost low, as connectivity is low.  

 
Figure 6.  Throughput for social density variation. 

In Fig. 7, we vary the interference factor as 0.4 and 0.7 to 
measure the throughput. We compare the performance with 
purely physical relay selection scheme. We can observe that in 
both the schemes as the interference weight increases the 
throughput reduces for different number of nodes. Nevertheless, 
in case of proposed scheme, the throughput is higher as it 
considers physical and social parameter to select the relay that 
offers the best throughput.   

 
Figure 7. Avg. Throughput for varying interference weight 

In Fig. 8, we investigate the effect of weight factor of 
different networks on system utility. Here, we consider 4 social 
networks with same number of friends in each network with 
contact frequency of 90 each to send the same data. In one 
scenario, we set network weights as 0.8, 0.6, 0.4, 0.2 for each 
network and vary the number of nodes. After 20 nodes, we 
observe a gradual reduction in the utility, as more nodes send 
data and cause congestion in this case. In another scenario, we 
maintain the network weight of each network as 0.5. We can 
observe that the utility value is lower than the former case. From, 
this we can conclude that, when we assign different weight to 
networks, nodes will be more decisive in choosing the best 

possible relay, than in a case where all networks have the same 
weightage.  

 

 
Figure 8. Avg. Utility for network weightage variation. 

 
 

VI. CONCLUSION 
In this paper, we proposed a game theoretic model for next 

hop relay selection for D2D nodes. Specifically, to maximize the 
information dispersion, we assumed each user might have social 
interaction with others via different social networks. We 
considered social parameters like type of network, link weight 
and contact durations in a scenario where nodes have 
interference and congestions. We observed that the network 
throughput depends on both physical and social parameters 
using which our utility function is formulated. Our proposed 
method of relay selection offers better throughput, utility than 
the traditional methods and has convergence property. From our 
results, we can infer that as each social network is different, it is 
more meaningful to assign them different weights to obtain 
higher throughput, than considering all networks as uniform. In 
our future work, we plan to study the effect of contact duration 
and user interests in case of dynamic community users.  
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