
A Scalable and Bandwidth-Efficient Multicast
Algorithm based on Segment Routing in Software-

Defined Networking

Jang-Ping Sheu and Yin-Chen Chen
Department of Computer Science, National Tsing Hua University

Hsinchu, 30013, Taiwan
sheujp@cs.nthu.edu.tw and s103062582@m103.nthu.edu.tw

Abstract—Software-Defined Networking (SDN) is an emerging
architecture and offers advantages over traditional network
architecture, while there exist some scalability challenges. In this
paper, we propose a multicast routing algorithm for SDN with
segment routing to serve the bandwidth requirement of a multicast
routing request. Our algorithm considers the balance of traffic
load for network resource of link bandwidth and node flow entries
both. Simulation results show that the performance of our
algorithm is better than previous works in terms of average
network throughput and average rejection rate of routing requests.
Besides, the results also show that our multicast architecture
improve scalability problem of original SDN model in terms of
number of flow entries used.

Keywords- Multicast routing; software-defined networking;
segment routing; traffic engineering

I. INTRODUCTION

In Software-Defined Networking (SDN), network
intelligence is logically centralized in software-based SDN
control plane that act as the “brain” of the network. Compared
with the traditional network routing, SDN architecture enables
centralized control plane to maintain a global view of the
network and dynamic computation on routing for traffic
engineering [1]. That is, with global view of network
information, SDN controller can dynamically compute paths for
routing requests to optimize network performance and utilize
network resource efficiently. As a result, SDN provides a novel
centralized architecture with more flexible network resource
management for traffic engineering than traditional legacy
networks. In research area of traffic engineering, unicast routing
has been studied widely, while multicast routing in SDN
attracted much less attention. Therefore, we focus our research
on multicast routing, which is getting increasingly popular for
numerous web-based services.

In traditional networks, multicast routing suffer from
numerous limitations because creating and maintaining
multicast trees require large number of message exchanges
between routers for updating multicast trees[2]. However, SDN
based architectures have the opportunity to improve these
limitations since controller has the capacity to dominate
network resource management and traffic control. SDN
transforms distributed routing into centralized mechanism with
more flexible traffic management. SDN not only provides
flexible and efficient traffic management but also supports fine-
grained traffic control since it can decide forwarding behaviors
based on combinations of packet header fields, in contrast to
traditional coarse-grained destination-based forwarding.
However, fine-grained traffic control implies that SDN switch
requires larger sized flow table than traditional switch. Flow
table is implemented by Ternary Content Addressable Memory
(TCAM). TCAM is an extremely expensive and power hungry
resources that make SDN face challenges such as network
scalability problem [3, 4].

To solve scalability problem for traffic engineering,
Segment Routing (SR) is a promising way. It is currently in
Internet Engineering Task Force (IETF) draft [5] and is driven
by Cisco and supported by many leading telecom companies
and opens up a promising alternative network operating model.
SR is a network technology that offers new concept to do packet
forwarding while minimizing the need for keeping a great
amount of network states information, which attributes to the
TCAM deficiency problem. As for scalability and flexibility,
SR avoids millions of label information to be stored in each
network device along the path by encoding routing information
into packet header as an ordered list of labels to reduce the
amount of forwarding rules in TCAM.

In this paper, we study the multicast traffic engineering issue
in SDN with SR. We design a novel multicast routing
architecture based on SR technique for solving network
scalability challenge. In addition, we propose a heuristic
multicast routing algorithm with bandwidth guaranty. The
proposed algorithm not only achieve the goal of balance the
network traffic load but also reduce the network overhead cost.
To reach the goal of bandwidth-efficient, our algorithm
considers not only link’s residual bandwidth but also
betweenness centrality which indicate the relative importance of
a link or node in a topology graph [6]. Furthermore, due to heavy
load of branch nodes and the multicast scalability problem in
SDN, it is crucial to minimize the number of branch nodes in a
multicast routing tree. Therefore, our algorithm considers not
only link cost but also branch node cost for bandwidth-efficient
and scalability problem. This is to minimize the possibility of
requests being rejected when the network becomes overloaded
and upgrade the network performance. We obtain a better
network performance compared to other traditional routing
algorithms such as Shortest Path Tree (SPT), Widest Shortest
Path Tree (WSPT), Steiner Tree (ST), Widest Steiner Tree
(WST) and Branch-aware Steiner Tree (BST) [7]. Extensive
simulations show that our algorithm can lower the unsatisfied
request rate and raise the bandwidth satisfaction rate compared
to the previous works.

The rest of this paper is organized as follows. We introduce
the related work in Section II. In Section III, we present the
proposed multicast architecture with SR and multicast routing
algorithm. The performance evaluations are presented in Section
IV, and Section V concludes this paper.

II. RELATED WORK

2.1 Background

The key idea in SR is to break up the routing path and
encode route information into segments in order to control
routing paths more flexible and improve network utilization.
With SR, a node steers a packet through an ordered list of
instructions, called segments. There are two basic types of
segments: node segment and adjacency segment. A node
segment identifies a node of forwarding plane such as switch or
router. Node segment can be represented by switch or router ID

that is globally unique within the network domain. In addition,
an adjacency segment represents a local interface of a node.
Adjacency segment can be represented by an output port ID that
identifies specific egress data link to an adjacent node.
Therefore, a segment can have a local or global semantic to an
SR node within network domain. SR allows enforcing a flow
through any topological path and service chain while
maintaining per-flow state only at the ingress node since SR
leverages the source routing paradigm. For source routing
paradigm of SR, SDN technology provides excellent solution
with the global view of controller, which enables more flexible
and efficient traffic engineering.

We illustrate the overview of SDN-based SR in Fig. 2.1. The
alphabet on switch is switch ID and can be represented as node
segment. The number next to switch with specific egress data
link to an adjacent node is output port ID which can be
represented as adjacency segment. First, the SDN controller
will compute explicit routing path based on global view of
network topology, resource management, and traffic
engineering requirements. Then, SDN controller configures the
forwarding table of the ingress switch with an ordered list of
segments. The ingress switch adds labels with an ordered list of
segments to packet header. These labels can be regarded as
intermediate destinations. By default, the packet will be routed
to intermediate destinations using the shortest path routing
paradigm which is implemented in advanced as forwarding
rules in each switch’s forwarding table. When the packet
reaches the intermediate destination, the top label is popped by
the intermediate destination and then the packet is routed to the
next segment again along the shortest path [8].

Fig. 2.1 Segment Routing traffic engineering with SDN controller

In SR technology, packets are routed based on the list of
segments they carry. It can reduce a great number of forwarding
rules in TCAM since there is no need to maintain path state in
each switch or router along the path and then improve SDN’s
scalability problem. Relatively, SDN provides SR a promising
source routing paradigm, which makes traffic engineering and
resource management more flexible. SDN-based SR is
definitely an efficient and agile technology for traffic
engineering. However, SR is defined for unicast and the
application of the source-route concept to multicast is not in the
scope of IETF draft [5]. In Section III, we will design a novel
multicast routing architecture by combining SR technique and
the concept of branch forwarding in detail.

2.2 Traffic Engineering

Traffic engineering configures the routing scheme to control
how traffic is routed across the network. The objective of traffic
engineering is to ensure that traffic is managed such that
network capacity is efficiently utilized and in a balanced
manner. Traditional routing in IP networks is along the shortest
paths using link weight as the metric. It has been observed that
the shortest path routing can lead to congestion on some links
in the network while capacity is available elsewhere in the
network. Thus, several techniques are proposed for performing

traffic engineering, including adjusting link weights based on
traffic patterns, using MPLS (Multi-Protocol Label Switching)
to control routing paths and using centralized controllers like an
SDN controller to control traffic in a centralized manner, while
we use SDN-based SR in the work. Some works show that
traffic engineering with SR technology has been implemented
and successfully demonstrated in SDN-based testbed [9].
However, our work concentrates on efficient routing algorithm
for better network performance.

There are two common transmission in traffic engineering,
unicast and multicast. In [10], the authors study unicast traffic
engineering in SDN and propose an efficient unicast routing
algorithm based on SR technology. Since many previous works
have extensively explored the issues on traffic engineering for
unicast traffic in SDN, we focus on multicast routing which is
more complicated but can relatively save a huge amount of
bandwidth than unicast.

2.3 Multicast Tree Algorithms

Here, we introduce several studies in multicast tree
algorithm for traffic engineering. One of the simplest algorithm
for multicast routing is the Shortest Path Tree (SPT) algorithm
[11]. SPT finds the shortest path for each source to destination
pair and unions these shortest paths. Another common multicast
algorithm is Steiner Tree (ST) algorithm [12]. ST starts from
adding source to the tree. For each run, it finds the nearest
destination and add the path to tree. ST repeats above step until
all destinations added to the multicast tree. The Widest-Shortest
Path Tree (WSPT) and Widest-Steiner Tree (WST) algorithms
are extension of SPT and ST. The width of a path represents the
available bandwidth. Therefore, the objective of WSPT and
WST algorithm is to select the path that has the largest amount
of residual bandwidth.

In [7], the authors exploit the branch forwarding technique
and propose a new multicast tree for SDN, named Branch-aware
Steiner Tree (BST). The branch forwarding technique stores the
entries in only the branch nodes, instead of every node, of a
multicast tree. The concept of branch forwarding is similar to
SR. Therefore, we combine them together in our architecture
design. The BST problem is difficult since it needs to minimize
the number of the edges and the branch nodes in a tree.
Nevertheless, considering the nodes together with edges is
important for SDN-based traffic engineering because of
scalability problem in SDN networks. If we can minimize the
number of nodes maintaining forwarding rules, we can improve
scalability limitations. Here, we consider BST problem and
extend it to minimize the cost of the edges and the branch nodes
in our multicast tree algorithm.

III. SYSTEM DESIGN AND ROUTING ALGORITHM

3.1 Problem Definition and System Design

Our problem is to decide a routing paradigm for multicast
routing in SDN-based networks and ensure that the traffic is
routed over feasible paths with specific service guarantees. The
two goals of our proposed multicast routing algorithm is
bandwidth-efficient and scalability. For the former, our
algorithm needs to compute an explicit bandwidth satisfying
multicast tree for traffic request of multicast group due to the
QoS requirement. For the latter, we proposed a novel multicast
routing architecture with SR strategy and the concept of branch
forwarding to improve scalability limitation. However, the
number of the branch nodes is still a bottleneck since heavy load
for branch nodes to store multicast states and process packets
by actions such as duplicating and forwarding to different
output ports. Therefore, we not only need to consider bandwidth
utilization of links for bandwidth-efficient but also need to

concern the loading of branch nodes for load balancing and
scalability.

Here, we present a novel SDN-based multicast routing
architecture with SR strategy as shown in Fig. 3.1. For the
traffic demand of multicast group with a source and multiple
destinations, SDN controller will compute an explicit multicast
routing tree by the routing module as our proposed algorithm
presented in Section 3.2. Then, it will configure the forwarding
tables of the ingress or branch switches with an ordered list of
segments, which indicate the routing path. When the packets
routed to these ingress or branch switches, the switches will
modify the packet by encoding the segments as MPLS label
stacks to packet header. That is, along the routing path tree, the
packet header will be modified afresh when arriving the branch
switches. When a packet is arriving to the branch switches, it
means that the packet will be directed to multiple output ports
for different destinations. In this moment, the packet will be
duplicated and sent to different ports, so the branch switch
needs to modify packet header with SR technique and route the
packet to different paths. Thus, the whole multicast routing tree
can be cut by the branch nodes and regarded as separation of
SRs for the architecture in Fig. 3.1.

Fig. 3.1 SDN-based multicast routing architecture with SR strategy

For multicast with SR, there is only ingress and branch
nodes should be concerned in the multicast routing. In other
words, SDN controller needs to compute the routing tree for
multicast traffic demands and configuring the forwarding rules
for the ingress and branch nodes. Then, the multicast packet will
be definitely sent to destinations using SR technology with
labels in header and default forwarding rules in switches along
the path. The proposed SDN-based multicast routing
architecture with SR strategy offers new concept to do packet
forwarding while reducing the amount of network states
information, which attributes to the TCAM deficiency problem
and really improve SDN’s scalability problem especially for
multicast cases.

3.2 Routing Algorithm

Before presenting the detail of our Bandwidth-efficient
Branch-aware Segment Routing Tree (BBSRT) algorithm, we
define the notations used in the paper. An SDN network
topology can be represented as a graph G = (V, E), where V is
the set of vertex as switch nodes and E is the set of edges as data
links. In routing, the request of traffic for multicast group can
be represented as MG = (S, D), where S is the source node and
D is the list of destination nodes. We define two weight
functions on graph G, the weight function on each edge e ϵ E
called link weight WL(e) and the weight function on each vertex
v ϵ V called node weight WN(v). In our algorithm, we use these
weight functions for computing the weight for nodes and edges.
The weighted graph can be constructed by these weight

functions, which imply the network states. We then construct
the multicast tree for traffic request by our algorithm to realize
scalable and bandwidth-efficient multicast routing.

In our algorithm, we consider network information such as
links residual bandwidth, node’s flow entry, and betweenness
centrality together to compute a routing tree for multicast. To
consider the network information in our algorithm, we generate
the weighted graph before constructing multicast tree. We will
compute the weight for each node and link based on their weight
functions we defined. The weight for links usually used in
routing is easily understood for considering network resource
when selecting paths and constructing multicast tree.
Additionally, we add the weight for nodes in our algorithm for
considering the loading of nodes. We state for scalability issue
and set the goal to minimize the number of branch nodes
previously. However, the number of flow entries in a switch
node is limited. There may exist many multicast groups in a
network at the same time, so we need to distribute network
resource usages in order and cannot to always select the same
branch node for lots of multicast groups to prevent critical
network resource from being exhausted early. Thus, we
combine the number of branch nodes and loading of branch
nodes together, and then define the node weight function.

The weight function is defined by two parts, betweenness
centrality and congestion index. Centrality is often used for
determining the relative importance of a link or node in a
topology graph. Link or node with a high betweenness centrality
are usually key players in a social network or a bottleneck in a
communication network. The betweenness centrality of a node
v stands for the average ratio that a node s reach a node t via the
shortest path in the network that needs to pass through a specific
node v. The betweenness centrality of a specific node v, BCN(v)
is given by equation (1), where ߪ௦௧ is the total number of
shortest paths from node s to node t and	ߪ௦௧ሺݒሻ is the number of
shortest paths between s and t that pass through node v. In the
same way, the betweenness centrality of a specific link e, BCL(e)
is given by equation (2). The	ߪ௦௧ is the total number of shortest
paths from node s to node t and	ߪ௦௧ሺ݁ሻ is the number of shortest
paths between s and t that pass through link e [6].

ሻݒேሺܥܤ 	ൌ ሻݒ௦௧ሺߪ ⁄௦௧ߪ
௦ஷ௩ஷ௧

 (1)

ሺ݁ሻܥܤ 	ൌ ௦௧ሺ݁ሻߪ ⁄௦௧ߪ
௦ஷஷ௧

 (2)

High betweenness centrality means that the node or link has
the high opportunity for traffic to go through. If we assign these
high betweenness centrality forwarding devices for traffic
request all the time for the shortest path routing, these devices
will load heavily and stuck. Since a node or link with higher
betweenness centrality have higher influence in the network and
thus is prone to become the bottleneck, we should include
betweenness centrality in the weight functions to prevent the
bottleneck in the multicast routing.

Congestion index which stands for the current loading status,
is another index for defining the weight functions. Since current
loading is also an important factor for the routing performance,
we also consider congestion index of each node and link. For a
data link e, the congestion index of the link e is denoted as CL(e)
= F(e)/B(e), where F(e) denotes the total amount of traffic flows
carried by the link e and B(e) denotes the residual bandwidth of
the link e. The definition of the link congestion index CL(e) is
an increasing and convex function [13, 14]. When the amount
of traffic flows passed through the link e approaches to its
capacity, the function CL(e) will increase quickly. In other
words, heavy loaded links will get larger congestion index
computed by CL(e). Since the main purpose of using congestion
index in the weight functions is to make good use of the link
resource and load balancing, we define and let CL(e) increase

rapidly as link utilization grows beyond a threshold. As a result,
we can track the state of congestion based on information of link
utilization. As for a switch node, the congestion index of the
node v is denoted as CN(v) = R(v)/E(v), where R(v) denotes the
total amount of traffic rules on flow table of the node v and E(v)
denotes the residual flow entry of the node v. The definition of
the node congestion index CN(v) is also an increasing and
convex function for the similar reason as the links.

Betweenness centrality can help to defer loading on highly
critical links and prevent critical network resource from being
exhausted early. Congestion Index can help to track the current
utilization and prevent congestion in networks. We combine
them together to define our weight functions for the algorithm
in order to choose the nodes or links that can balance the loads
across the network. We then use appropriate parameters ߙ	and	
β to combine the two indices together to compose the weight for
link and node as equation (3) and (4).

WL(e) = CL(e) ߙ + BCL(e) (1-ߙ), (3) 1> ߙ >0

WN(v) = CN(v) β + BCN(v) (1-β), 0< β <1 (4)

After defining the weight functions, SDN controller with
global view can collect network status and generate the
weighted graph G. In our algorithm, we will find the shortest
paths for each source destination pair (s, d) at first where s is a
source node and d ϵ D is a destination node in a multicast group
MG. The shortest path here indicates the path with minimum
total cost concerning only the link weight in equation (3). The
minimum link weight path guarantees bandwidth efficiency
since the weight function is concerned with betweenness
centrality and congestion index explained before. In our
algorithm, we want to find the first k shortest paths rather than
only one shortest path [15]. The first k shortest paths reserve the
agility for multicast routing. If we select only one the shortest
path for each source destination pair to construct multicast tree,
the tree will be limited to the links with the most bandwidth-
efficient path. Therefore, we broaden the range for selection
with the k shortest paths at first. Then, we will concern for the
scalability problem and load balancing of switch nodes by
considering branch node weight. In the beginning, we sort the
destinations by cost of their shortest paths for each source
destination pair. The original list of destination nodes D is
sorted as Dsort in an increasing order. We then add these
destination nodes into multicast tree in order. In our algorithm,
we will check the k shortest paths for each source destination
pair, select one of them, and add it into multicast tree.

For each destination, there are k shortest paths for us to
select. We will compare each path by computing extra cost with
branch node weight then select the least cost one. In the SR
technology, the branch nodes are responsible for specific SR
rules to push ordered list of labels to packets and forward them
to different output ports. The routing policy in the other nodes
is based on default rules. That is, only branch nodes should be
concerned with loading and scalability problem in our
architecture. Let Pk(d) denote the k-th shortest path of
destination d and Sk(x, d) denote the corresponding sub-path
from the constructed multicast tree T to d with the intersection
node x. We compute extra cost ECk(x, d) for the k-th shortest
path, which is computed as the sub-path cost SCk(x, d) plus the
branch node weight WN(x) of intersection node x. Note that, we
only include the new branch node weight in computing extra
cost. We give non-negative parameters w1 and w2 to conduct the
weight between link cost and branch node cost. Thus, the extra
cost is denoted as ECk(x, d) = SCk(x, d) w1 + WN(x) w2.

The example in Fig. 3.2 shows the algorithm of selecting
path for destination D3 among the first k (= 2) shortest paths
when constructing multicast tree T. The left-part tree represents

the already constructed multicast tree including source S and
two destinations D1 and D2 with branch node a in Fig. 3.2(a).
We then add the path for destination D3 into multicast tree. The
first two shortest paths from S to D3 are P1(D3) = /S~b-d-e-f-
D3/ and P2(D3) = /S~b~a-c-e-f-D3/. We will choose one of
them based on computing extra link weight and branch node
weight. In Fig. 3.2, the number next to the link represents the
link weight.

In Fig. 3.2(b), for the first shortest path P1(D3), we find the
sub-path from destination D3 to tree T as S1(b, D3) = /b-d-e-f-
D3/ and the cost is SC1(b, D3) = 3+4+3+2 = 12 with intersection
node b. If we choose this sub-path, node b will become a new
branch node then cause more branch nodes and loading.
Therefore, we should include the new branch node weight in
computing extra cost. Assume the node weight of the new
branch node b is WN(b) = 5 which is computed before using
weight function in equation (4). The extra cost is then computed
as EC1(b, D3) = SC1(b, D3) w1 + WN(b) w2 = 12+5 = 17, where
we set w1 = w2 = 1 for balancing consideration of scalability and
bandwidth-efficient both. For the second path P2(D3), we find
the sub-path S2(a, D3) = /a-c-e-f-D3/ and the cost is SC2(a, D3)
= 4+3+3+2 = 12 with intersection node a. Since the node a is
already an old branch node, we will not compute the weight cost
repeatedly. The extra cost is then computed as EC2(a, D3) =
SC2(a, D3) w1 = 12. We then compare the cost of the k paths
and choose one sub-path Smin(D3) with minimum extra cost
ECmin(D3). Here, Smin(D3) = S2(a, D3) = /a-c-e-f-D3/ with
minimum extra cost ECmin(D3) = 12. Therefore, we add the sub-
path /a-c-e-f-D3/ into multicast tree T and go on to next
destination if there exists. For each destination d in the sorted
list Dsort, we add the minimum extra cost sub-path Smin(d) to
multicast routing tree T in order until every destination in
multicast group MG is added into the multicast tree. The
proposed BBSRT algorithm is summarized as follows.

Algorithm 1: Generate the Weighted Graph G

1. Compute the link betweenness centrality BCL(e).
2. Compute the node betweenness centrality BCN(v).
3. For each edge e ϵ E
4. Compute the link congestion index:

CL(e) = F(e)/B(e);
5. Compute the link weight:

WL(e) = CL(e) ߙ + BCL(e) (1‐ߙ), 1> ߙ >0;
6. For each node v ϵ V
7. Compute the node congestion index:

CN(v) = R(v)/E(v);
8. Compute the node weight:

WN(v) = CN(v) β + BCN(v) (1‐β), 0< β <1;
9. Return G

Algorithm 2: Find a minimum weight multicast tree for a
multicast group MG = (S, D) with weighted graph G

1. for destination d ϵ D do
 /* only considering link weight here */

2. Find the first k shortest paths and their path
cost from source s to d by algorithm [15].

(a) (b)

Fig. 3.2 Example of selecting path among the first k (=2) shortest paths
for a destination

3. end for
4. sort destinations D as Dsort according to their shortest path

cost.
/* Constructing multicast tree T */

5. add source s to T;
6. for each destination d ϵ Dsort in increasing order do
7. for i = 1 to k do
8. find the k‐th shortest path Pi(d) and its corresponding

sub‐path Si(x, d) from d to T with intersection
node x;

 /* compute extra cost with branch node weight */
9. ECi(x, d) ← SCi(x, d) w1
10. if x is a new branch node in T then
11. ECi(x, d) ← ECi(x, d) + WN(x) w2
12. end if
13. end for
14. find the sub‐path Smin(d) with the minimum extra

cost ECmin(d)
15. add the sub‐path Smin(d) to T
16. end for
17. Return T and update the residual link bandwidth and

node flow entry for the network graph

IV. PERFORMANCE EVALUATION

In this Section, we compare the performance of our
proposed multicast routing tree algorithm BBSRT with other
traditional algorithms Shortest Path Tree (SPT), Widest
Shortest Path Tree (WSPT), Steiner Tree (ST), Widest Steiner
Tree (WST) and Branch-aware Steiner Tree (BST) [7] in terms
of number of branch nodes, rejection rate and network
throughput. We implement our algorithm using JAVA language
and model different network environments and traffic flows for
simulations. The experiments are conducted under different
network sizes and traffic requests. We create the network
topology for experiments using Waxman method [16]. In the
simulations, we randomly create the network topology and
generate multicast groups of traffic requests for the experiments.

For each multicast group, there is a source and multiple
destinations and source needs to send packet to every
destination with flow size ranges from 10MB/s to 100MB/s.
The default link capacity is 1GB/s. We generate some basis
traffic and let critical nodes and links with higher betweenness
centrality have more opportunity to consume more network
resource in order to create a more realistic network environment.

In the following simulations, we set k to 5 for the k shortest
paths. We also set w1 and w2 equal to one when computing extra
cost to balance the weight for link and node. From the weight
functions defined in equations (3) and (4), the smaller value of
 and β means that we focus on critical links or nodes in ߙ
network topology to avoid critical network resource to be
exhausted early. In contrast, the larger value of ߙ and β means
that we put more emphasis on current loading of network
resource to prevent congestion. In the following simulations, we
then set the parameters ߙ and β equal to median value 0.5 in
order to balance the consideration between rejection rate and
extra consumption of bandwidth and delay.

One of our goals is to minimize the need for keeping a great
amount of network states information, which attributes to the
TCAM deficiency and scalability problem in SDN. Branch
nodes are responsible for specific SR rules to push routing
labels and forward packets to different output ports. Therefore,
the number of branch nodes imply the cost to maintain SR rules
for routing in our novel multicast architecture. Fig. 4.1 shows
the number of branch nodes of SPT, WSPT, ST, WST, BST and
our proposed algorithm BBSRT under different multicast group

size with fixed network size N = 400. SPT performs the worst
to generate the multicast tree with the highest number of branch
nodes. Since SPT constructs the multicast tree by union every
shortest path from source to each destination, the topology of
the multicast tree can be expanded larger than ST, which
guarantees the minimum spanning tree. Since ST constructs the
multicast tree by adding the nearest destination to tree, there is
probability for some destinations to share the same branch node.
The simulation results show that the number of branch nodes
for SPT is more than that of ST.

WSPT and WST are the extension of SPT and ST,
respectively. Widest multicast tree algorithms select the widest
path, which contains more bandwidth resource to avoid
congestion. However, the number of branch nodes for widest
multicast tree algorithms such as WSPT and WST is larger than
their original SPT and ST. BST is the algorithm for minimizing
the edge and branch node numbers, and there is some
optimization phase to adjust the topology of tree to share more
branches in order to decrease the branch node numbers. The
result shows that BST performs the best with the fewest branch
nodes. However, our proposed algorithm not only consider the
number of branch nodes for scalability issue but also concern
for the network resource for branch nodes. Therefore, the
simulation result of average rejection rate and throughput shows
that our proposed algorithm is outstanding than BST as shown
in the following figures.

Fig. 4.1 Number of branch nodes vs. multicast group size

Fig. 4.2 shows the average rejection rate of six algorithms
with fixed network size N = 400 and randomly generated
multicast group size ranges from 20 to 40 for every
request. The abscissa of Fig. 4.2 represents the number of total
requests in the whole simulation. SPT and ST perform the worst
because of always selecting the shortest path with the minimum
hop count without considering network bandwidth and switch
node resource. WSPT and WST performs better than SPT and
ST by selecting the widest path with more bandwidth resource
to prevent network congestion. BST and our proposed
algorithm perform better than other algorithms because of
considering the factor of bandwidth and node together.
However, our proposed algorithm makes more effort on load
balancing of branch nodes. Therefore, the proposed algorithm
outstands in load balancing of branch nodes and success in
reducing the rejection rate due to insufficient flow entries.

0

10

20

30

40

50

60

1 0 2 0 3 0 4 0 5 0

N
u
m
b
er
 o
f
B
ra
n
ch
 N
o
d
es

Multicast Group Size

SPT

WSPT

ST

WST

BST

BBSRT

Fig. 4.2 Average rejection rate vs. number of requests

0

5

10

15

20

25

30

35

40

45

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0

A
ve
ra
ge
 R
ej
ec
ti
o
n
 R
at
e
(%

)

Number of Requests

SPT

WSPT

ST

WST

BST

BBSRT

Fig. 4.3 shows the average network throughput of the six
algorithms with fixed network size N = 400 and randomly
generated multicast group size ranges from 20 to 40 for every
request. Network throughput is the amount of satisfied
bandwidth routed successfully as a function of the total amount
of requested bandwidth arrived at the network. In general, the
average network throughput increases when the requested
bandwidth increases. We can observe that the trend of average
rejection rate and average network throughput is similar. Our
method gets the highest network throughput and this indicates
that our algorithm performs better than all the other benchmark
algorithms. Fig. 4.4 shows the comparison between various
schemes with incremental network sizes. The algorithms have
the similar behaviors to Fig. 4.3 on different network size. In
conclusion, our proposed algorithm performs the best
performance no matter the size of the network.

We also conduct our experiment in real network from the
Internet Topology Zoo [17]. The Internet Topology Zoo is a
store of network data created from the information that network
operators make public. It is the most accurate large-scale
collection of network topologies available. We choose the
Kentucky Datalink (Kdl) network for simulation. Kdl is a large-
scale network topology with 754 nodes and 895 links. The
simulation result shows that our proposed algorithm
outperforms other algorithms in real network with the best
network throughput as shown in Fig. 4.5.

Fig. 4.5 Kdl network: Average network throughput vs. number of requests

V. CONCLUSION

In this paper, we focus our study on multicast traffic
engineering issues in SDN with SR. One of our goals is to
construct a bandwidth-efficient multicast routing tree for the
traffic requests of multicast group to minimize the possibility of
rejecting traffic demands and increase the total network
throughput. Another goal is to solve scalability problem for
traffic engineering in SDN. Therefore, we propose an efficient
heuristic multicast routing algorithm considering not only link
criticality and residual bandwidth but also node loading and
scalability. The simulation results show that our method
outperforms other routing algorithms in terms of average
rejection rate and network throughput under different network
sizes.

REFERENCES
[1] S. Agarwal, M. Kodialam, and T. V. Lakshman, "Traffic engineering in

software defined networks," Proceedings of IEEE INFOCOM, pp. 2211-
2219, Turin, April 2013.

[2] C. Diot, B. N. Levine, B. Lyles, H. Kassem, and D. Balensiefen,
"Deployment issues for the IP multicast service and architecture," IEEE
Network, vol. 14, no. 1, pp. 78-88, 2000.

[3] S. H. Yeganeh, A. Tootoonchian, and Y. Ganjali, "On scalability of
software-defined networking," IEEE Communications Magazine, vol. 51,
no. 2, pp. 136-141, February 2013.

[4] Y. Kanizo, D. Hay, and I. Keslassy, "Palette: Distributing tables in
software-defined networks," Proceedings of IEEE INFOCOM, pp. 545-
549, Turin, April 2013.

[5] Segment Routing Architecture. Available: https://tools.ietf.org/html/draft-
ietf-spring-segment-routing-08

[6] O. Green, R. McColl, and D. A. Bader, "A Fast Algorithm for Streaming
Betweenness Centrality," International Confernece on Social Computing,
pp. 11-20, Amsterdam, September 2012.

[7] L. H. Huang, H. J. Hung, C. C. Lin, and D. N. Yang, "Scalable and
bandwidth-efficient multicast for software-defined networks," IEEE
Global Communications Conference, pp. 1890-1896, Austin, TX,
December 2014.

[8] R. Bhatia, F. Hao, M. Kodialam, and T. V. Lakshman, "Optimized network
traffic engineering using segment routing," IEEE Conference on
Computer Communications, pp. 657-665, Kowloon, April 2015.

[9] L. Davoli, L. Veltri, P. L. Ventre, G. Siracusano, and S. Salsano, "Traffic
Engineering with Segment Routing: SDN-Based Architectural Design and
Open Source Implementation," Fourth European Workshop on Software
Defined Networks, pp. 111-112, Bilbao, 2015.

[10] M. C. Lee and J. P. Sheu, "An efficient routing algorithm based on segment
routing in software-defined networking," Computer Networks, vol. 103,
no. 5, pp. 44-55, July 2016.

[11] P. Narvaez, S. Kai-Yeung, and T. Hong-Yi, "New dynamic algorithms for
shortest path tree computation," IEEE/ACM Transactions on Networking,
vol. 8, no. 6, pp. 734-746, December 2000.

[12] E. Aharoni and R. Cohen, "Restricted dynamic Steiner trees for scalable
multicast in datagram networks," Proceedings of IEEE INFOCOM, vol.
2, pp. 876-883, Kobe, April 1997.

[13] B. Fortz and M. Thorup, "Internet traffic engineering by optimizing OSPF
weights," Proceedings of IEEE INFOCOM, vol. 2, pp. 519-528, Tel Aviv,
March 2000.

[14] B. Fortz and M. Thorup, "Optimizing OSPF/IS-IS weights in a changing
world," IEEE Journal on Selected Areas in Communications, vol. 20, no.
4, pp. 756-767, May 2002.

[15] J. Y. Yen, "Finding the K Shortest Loopless Paths in a Network,"
Management Science, vol. 17, no. 11, pp. 712-716, July 1971.

[16] B. M. Waxman, "Routing of multipoint connections," IEEE Journal on
Selected Areas in Communications, vol. 6, no. 9, pp. 1617-1622,
December 1988.

[17] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan, "The
Internet Topology Zoo," IEEE Journal on Selected Areas in
Communications, vol. 29, no. 9, pp. 1765-1775, October 2011.

Fig. 4.4 Average network throughput under different network sizes

0

20000

40000

60000

80000

100000

100 200 300 400A
ve
ra
ge
 N
et
w
o
rk

Th
ro
u
gh
p
u
t
M
b
it
s/
se
c

Network Size

SPT

WSPT

ST

WST

BST

BBSRT

Fig. 4.3 Average network throughput vs. number of requests

0

20000

40000

60000

80000

100000

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0

A
ve
ra
ge
 N
et
w
o
rk

Th
ro
u
gh
p
u
t
M
b
it
s/
se
c

Number of Requests

SPT

WSPT

ST

WST

BST

BBSRT

0

20000

40000

60000

80000

100000

120000

2 0 4 0 6 0 8 0 1 0 0

A
ve
ra
ge
 N
et
w
o
rk

Th
ro
u
gh
p
u
t
M
b
it
s/
se
c

Number of Requests

SPT

WSPT

ST

WST

BST

BBSRT

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

