
Efficient Multicast Algorithms for Scalable Video
Coding in Software-Defined Networking

Jang-Ping Sheu, Che-Wei Chang, Yeh-Cheng Chang
Department of Computer Science

National Tsing Hua University
Hsinchu, 30013, Taiwan

sheujp@cs.nthu.edu.tw, hatsunerika@gmail.com, jas1123kimo@gmail.com

Abstract- Software-Defined Networking (SDN) is a new approach
to design, build and manage computer networks. Multicast is
used to transmit the same video file to different users. In this
paper, we propose two multicast algorithms to solve the multicast
problem in SDN environment. Both algorithms consider the
balance of bandwidth utilization and communication delay
between the source and clients. Simulation results show that our
algorithms can improve the network bandwidth utilization and
successful rate of the multicast requests than the previous works.

Keywords—Bandwidth utilization, multicast, routing
algorithms, software-defined networking

I. INTRODUCTION
Software-Defined Networking (SDN) is a new approach

for designing, building and managing of networks, which
offers flexibility and programmability by decoupling the
control plane from the data plane when compared to
traditional networks [1]. A central controller at the control
plane includes the network topology; network devices only
have data plane, which is controlled under the central
controller [2, 4]. OpenFlow [3] is the first standard
communication interface between control plane and data plane
of SDN architecture.

MPEG H.264 is a popular video compression system and
dominates the JPEG for image compression [4]. The
H.264/AVC has a new technology named scalable video
coding (SVC) [5]. In SVC, each video frame is encoded to a
base layer and multiple enhancement layers [6]. We can
deliver different video qualities to different clients based on
their demand. Base layer is a basic quality of a video. A client
receiving more enhancement layers can largely increase the
video quality of the client [7]. In this paper, we study the
problem of multicast of video in SDN with SVC technology.

Multicast is the communication between a single source
and multiple destinations in a network with focus on to
minimize the network load and the data flow stored in routers
or switches. We can use multicast gainfully in video
transmission, online gaming, and distributed computing [8].
There are two main schemes to establish a multicast tree,
source based tree (SBT) and share tree. SBT computes the
shortest paths between the source and all destinations to
establish a multicast tree from source to destinations [9, 10].
In shared tree, only one tree needs to be established for a
group which is shared by all the sources and destinations
within that group. The shared tree approaches can be classified

into Core-based tree algorithms [11] and Steiner Tree based
algorithms [12, 13].

With the traditional network architecture, we want to
establish a multicast spanning tree, i.e. a multicast tree without
loop. The multicast generation tree has been formulated as
computing a directed Steiner tree of minimal cost [12]. In [13],
the authors proposed a shared-tree-based multi-source
multicast routing protocol to establish the multi-source
multicasting in Mobile Ad Hoc Networks. The multicast
routing algorithm as presented in [14] to minimize the size of
routing tree in SDN based data-center system. A video
multicast framework is proposed in [9] using SVC for TDMA-
based Wireless Mesh Networks, where receivers have their
own video demand quality. In [10], the application-network
cross-layer design is interpreted as an incorporation of
application intelligence into the network, and proposed an
application-oriented multicast protocol.

In [15], the authors proposed three methods to generate a
data aggregation multicast tree in wireless sensor networks. In
the first scheme, Center at Nearest Source (CNS), the source
which is nearest the sink acts as the aggregation point. All
other sources send their data directly to this source which then
send the aggregated information to the sink. In the second
scheme, Shortest Path Tree (SPT), each source sends its data
to the sink along the shortest path between the source and sink.
Then combine these shortest paths to form a multicast
aggregation tree. In the last scheme, Greedy Incremental Tree
(GIT), the multicast aggregation tree is built sequentially. At
the first step the tree consists of only the shortest path between
the sink and the nearest source. At each following step, the
next source closest to the current tree is connected to the
multicast tree.

In this paper, we propose algorithms to solve the multicast
video problem in SDN environment. We assume that there is a
source server that wish to send an SVC video to a number of
clients. Each client has its demand of video quality. The
central controller of a SDN has the entire network topology,
traffic cost, and the remaining bandwidth of each switch link.
We propose two algorithms to solve the multicast tree problem.
The objective of the first algorithm is to minimize the
communication delay of source to clients under the delay-time
constraint of each client. The objective of the second
algorithm is to find the maximum bottleneck bandwidth (MBB)
from source to each client with the minimal delay path. The

2015 IEEE 26th International Symposium on Personal, Indoor and Mobile Radio Communications - (PIMRC): Services
Applications and Business

978-1-4673-6782-0/15/$31.00 ©2015 IEEE 2089

bottleneck bandwidth of a path is the minimal residual
bandwidth of the edges in the path. Simulation results show
that our algorithms have better link utilization and multicast
successful rate than previous multicast algorithms in [15].

II. PRELIMINARY

2.1 Network Model
In our multicast system, each client has the base layer of

the same video sent from the source server. However, a client
can request enhancement layers to improve its video quality,
but consumes more network bandwidth to deliver the
enhanced packets to the client. We assume there are m layers
of SVC video quality, a base layer and m-1 enhancement
layers. Let w1 be the request video bandwidth with only the
base layer and wi+1 represent the request video bandwidth with
base layer and i more enhancement layers, for 1 i m-1. For
example, in Fig. 1, w3 means the bandwidth with base layer
and two more enhancement layers.

We consider an SDN has a set of n switches and a central
controller. In our network model, a multicast group contains a
source server and a number of clients. Each switch link has a
remaining bandwidth value. An SDN network can be
represented as a weighted graph G = (V, E) in which V is a set
of vertices and E is a set of edges interconnected vertices in V.
Each vertex in V represents a switch in SDN and each edge in
E represents a switch link in SDN. We use the notation (u, v)
to indicate an edge between vertex u and vertex v. For
example, in Fig. 1, S is the source server which can send an
SVC video with different qualities to four clients c1, c2, c3, and
c4 through 15 switches. For each edge (u, v) E, b(u, v)
denotes the remaining bandwidth of the switch link. Each
client ci has a bandwidth request based on its requested video
quality. In Fig. 1, b(s1, s2) =14 and the bandwidth requests of
the clients c1, c2, c3, and c4 are 8, 8, 5, and 2, respectively.

Fig. 1 An example of using MPCA-k in a switching network.

2.2 Problem Formulation
In the first algorithm, we want to find a minimum

communication delay (shortest path) from source to each
client. If we have multiple paths with the same communication
delay, we select the path which has the MBB. In order to
reduce the total communication cost, we may not select the
shortest path as the multicast path between source and its
clients. The total communication cost represents the total
number of switch links used to forward a multicast request.

Thus, additional k hops of a path from the source to each client
other than the shortest path is acceptable. That is, if there exist
some paths from the source to some clients, we can join a new
client to the existed paths to reduce the total communication
cost if the hop count from the source to the client is smaller
than or equal to the maximum allowable delay cost. The
maximum allowable delay cost of a client is the sum of k and
the cost of the shortest path from source to the client. Thus,
the new established path from source to the new client may be
not the shortest one and k is named the extra delay-time
constraint. In the second algorithm, we want to establish a
multicast tree with the MBB. For each client, we will find a
path with the MBB. If more than one path has the same MBB,
we choose the one with the shortest path.

III. OUR PROPOSED ALGORITHMS
In this section, we present two algorithms to solve the

multicast problem. First, we present a Minimal Path Cost
Algorithm with the extra delay time k (MPCA-k) in section 3.1
to minimize the communication cost from source to clients
under the additional delay-time constraint. Second, we present
a Maximum Bandwidth Utilization Algorithms with Shortest
Path (MBUA-SP) in section 3.2 to maximize the link
utilization.

3.1 Minimal Path Cost Algorithm-k (MPCA-k)
In MPCA-k, we first sort the clients by their bandwidth

requests in decreasing order. Without loss of generality, we
assume n clients are sorted in the order c1, c2, c3, …, cn. For
example in Fig. 1, we sort the clients as c1, c2, c3, and c4
according to their bandwidth requests. Then, remove the edges
in the original network whose residual bandwidth is smaller
than the first client bandwidth requirement. Later, find a
shortest path (hop count) by the breadth first search (BFS)
algorithm [16] from source to the first client. If there are more
than one shortest path, select the path with MBB. For each
vertex v V, m(v) denotes the MBB of the path from source S
to v. Initially, set m(S) = and for each non-source vertex x
V, m(x) = 0. In our BFS algorithm, for each u, v V, when we
find outgoing edges of u to v, if m(v) < min{m(u), b(u, v)}, the
value of m(v) will be updated as min{m(u), b(u, v)} because
we can reach v through u with a larger MBB than without
through u. For example, in Fig. 1, for each vertex x V - {s1},
m(x) = 0, m(s1) = . At the first iteration, we find outgoing
edges of s1 and update m(s2) = 14 and m(s3) = 13. Next, find
outgoing edges of s2 and s3, then update their neighboring
switches. We finish the algorithm when all reachable switches
are visited. Note that, the red number above each switch
represents number of hop counts from source to this switch.

After the BFS algorithm, the three paths s1-s2-s4-s8-s12, s1-
s2-s4-s9-s12, and s1-s2-s5-s9-s12 have the same minimal hop
count from S to c1. We choose the path s1-s2-s4-s8-s12 which
has the largest MBB=10 as the initial multicast tree. Let P
denote the set of switches in the selected shortest path. For
example, in Fig. 1 P is equal to {s1, s2, s4, s8, s12}. Let ti be the
multicast tree including clients c1, c2, … ci, for 1 i n. Thus,
the shortest path from source to c1 is t1. Next, we remove the
edges in the original network whose residual bandwidth is
smaller than the second client bandwidth requirement. Then,

2015 IEEE 26th International Symposium on Personal, Indoor and Mobile Radio Communications - (PIMRC): Services
Applications and Business

2090

use the BFS algorithm to count the shortest hop count from c2
to each switch in the set P. Later, we connect c2 to the nearest
switch in P if the length of c2 to the switch plus the length of
the switch to source is no longer than the maximum allowable
delay-time of the client c2. For example, in Fig. 1, we can find
that the shortest path cost from c2 to each switch in P = {s1, s2,
s4, s8, s12} are 4, 3, 4, 3 and 2. If the extra delay-time k = 2, we
can connect c2 to s12 which has the shortest path from c2 to the
existed tree t1 because the delay-time from S through s12 to c2
is 6 no larger than the maximum delay-time of the client c2.

 However, if the extra delay-time k = 1, we will connect c2
to switches s2 or s8. Once the path from c2 to set P is
determined, combine the path to t1 and get a new multicast tree
t2. The set P is updated to the set of switches used in t2. For
example, in Fig. 1 if k = 1 and s2 is selected, the P is updated
to {s1, s2, s4, s5, s8 s10, s12, s14}. Finally, repeat the above steps
to find the multicast tree tn. If we cannot find a path from
source server to any client, we return no path and deny this
request. In Fig. 1, we find four multicast paths for clients c1, c2,
c3, and c4 in p1= s1-s2-s4-s8-s12, p2= s2-s5-s10-s14, p3= s2-s3-s7-s15,
and p4= s12-s13, respectively.

In the following, we evaluate the time complexity of
MPCA-k. First, the time complexity of sorting the clients in
decreasing order is O(n log n) time, where n is the number of
clients. The time complexity to eliminate the edges whose
residual bandwidth is smaller than the selected client’s request
bandwidth is O(|V|). Next, we use BFS algorithm to find the
shortest path from the client to all switches in set P. The time
complexity of this step is equal to O(|V|+|E|). The time
complexity used to update the switch links in the multicast
tree is O(|V|). The above procedure is repeated n times, the
time complexity of MPCA-k is O(n(|V|+|E|)).

3.2 Maximum Bottleneck Bandwidth Utilization Algorithm
with Shortest Path (MBUA-SP)
In this subsection, we propose a Maximum Bandwidth

Utilization Algorithms with Shortest Path (MBUA-SP) to
maximize the link utilization. We can modify the Dijkstra’s
one-to-all shortest paths algorithm [16] to find the MBB from
source server S to all switches in our network. In the Dijkstra’s
algorithm, we modify its relax operation as follows. For each
vertex v V, m(v) denotes the MBB of the path from source s
to v. Initially, we set s1 connected to source S as a visited
switch and set the other switches as unvisited ones. In our
example, m(s1) is set to and for each non-source vertex v V,
m(v) is set to 0. When a vertex u V is visited, we relax all of
the outgoing edges of vertex u as follows. Assume (u, v) is one
of the outgoing edges of u. If m(v) < min{m(u), b(u, v)}, the
value of m(v) will be updated to min{m(u), b(u, v)} because
we can reach v through u with a larger MBB path than without
through u. In the next step, visit an unvisited switch x that has
the maximum m(x) and mark it as visited. After performing |V|
iterations of relax operation, we get MBB of all switches.

In Fig. 2, for example, the first visited switch s1 connected
to the source server S, we set m(s1) = . After relax the
outgoing edges of s1, we have m(s2) = 14 and m(s3) = 13. Note
that, the red number above each switch represents the MBB
from source to this switch. Since s2 has the maximum MBB,
we visit and relax its outgoing edges. We have m(s4) = 10 and

m(s5) = 14. After repeating 15 relax operations, the MBB of
each switch is as shown in Fig. 2.

Fig. 2 The MBB path from source S (s1) to all switches.

Next, we sort the n clients in decreasing order according to
the MBB of their connected switches. Without loss of
generality, assume that the n clients are sorted in the order c1,
c2, c3… cn. Then each client finds a shortest path from source
to the client such that the MBB of the shortest path is no less
than the MBB of the switch connected to the client. For
example, in Fig. 2, the MBB of a shortest path from source to
client c2 must no less than 10. This can be done as follows. If
we want to find a shortest path from source to client ci, we can
remove the switch links whose residual bandwidth is smaller
than the MBB of the client ci. Then use BFS algorithm to find
a shortest path from S to client ci. We can iterate the above
steps from i = 1 to n. Let ti be the multicast tree including
clients c1, c2… ci. After finding the shortest path of client ci,
merge this path to ti-1 to become ti, for 2 i n. After
establishing a multicast tree, we update the residual bandwidth
in all edges of the network. The final result of Fig. 2 is shown
as in Fig. 3. The time complexity of the modify Dijkstra’s
algorithm is O(|V|2). The sorting algorithm spends O(n log n)
time. The time complexity of all clients to find their shortest
paths to source S is O(n(|V|+|E|)). Thus, the total time
complexity of MBUA-SP scheme is O(|V|2 + n(|V|+|E|)).

Fig. 3 A multicast tree of using MBUA-SP in Fig. 3.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our
proposed algorithm through simulations. In our simulation, we
create a network with 200 switches. Each multicast request has
a number of clients which request a chosen source server for
the same video files. The source server is randomly selected
from 10 different servers in the network. The number of

2015 IEEE 26th International Symposium on Personal, Indoor and Mobile Radio Communications - (PIMRC): Services
Applications and Business

2091

clients are 20 to 90. Our video files have four kinds of
bandwidth requirement: 40 MB/s, 100 MB/s, 160 MB/s, and
200 MB/s. All links have the same initial bandwidth 1 GB/s.
The multicast tree is established by the SDN controller.

We measure the performance of the proposed schemes
according to the following criteria. (1) Average hop counts of
a multicast request: The lower average hop counts imply the
lower packet transmission delay. (2) Average successful rate
of a request: The average successful rate is the ratio of number
of successful requests/total requests. (3) Average link
utilization: After all of the multicast requests are accepted and
routed, we compute the average utilization of the network
switches. The lower link utilization means the lower multicast
successful rate. We compare the performance of our proposed
algorithms MPCA-k and MBUA-SP with the previous works
SPT and GIT [15].

4.1 Simulation Results
For the MPCA-k scheme, the average hop counts would

increase as the k increase. Thus, the larger k value has the
higher average hop counts. However, the larger k value has the
higher link utilization. Fig. 4 shows the average hop counts
from source server S to each client for 200 multicast requests
in our simulations with different average switch degree. The
degree of a switch represents the number of neighboring
switches of the switch. For all algorithms, the average hop
counts decreases as the average switch degree increases. We
find that the MPCA-0 without extra delay time and SPT have
the shortest average hop counts from S to each client. The
MBUA-SP, MPCA-4, and GIT algorithms have the
intermediate communication delay.

Fig. 4 Average hop counts of multicast requests vs average switch degrees.

Fig. 5 shows the average multicast successful rate of 200
multicast requests with various switch degrees. For all
algorithms, the multicast successful rate increases along with
the average switch degree. MPCA-4 has the highest multicast
successful rate because it allow us to forward packet without
through the shortest path. However, MPCA-4 has higher
communication delay than other schemes except the MBUA-
SP as shown in Fig. 4. The MBUA-SP always choose the
shortest path from each client to S with MBB restriction. Thus,
the multicast successful rate of MBUA-SP is higher than
MPCA-0, GIT, and SPT. The GIT successively adds next
nearest source to the existing tree whose successful rate is
better than MPCA-0 and SPT. Although the MPCA-0 only

choose the shortest path from each client to source S, it also
select the one with MBB if there is more than one shortest
path. So, the request successful rate of MPCA-0 is better than
SPT. Although the SPT has the shortest communication delay,
it has the least multicast successful rate.

Fig. 5 Average multicast successful rate vs average switch degrees.

Fig. 6 shows the accumulated rejection rate with the
number of requests varied from 40 to 200. The average switch
degree of the simulation is 15. The average rejection rate is the
ratio of rejected requests to the total requests. We can see that
the multicast rejection rate increases with the number of
multicast requests. The accumulated rejection rate of the
algorithms from low to high are MPCA-4, MBUA-SP, GIT,
MPCA-0, and SPT. This is because MPCA-4 and MBUA-SP
schemes consider not only the shortest path but the maximum
bottleneck bandwidth (MBB).

Fig. 6 Accumulated rejection rate with the number of 200 multicast requests

Fig. 7 shows the average link utilization of multicast with
various average switch degrees for 200 multicast requests. The
link utilization is the ratio of total consumed bandwidth to the
total network bandwidth. If a multicast request is rejected, the
consumed bandwidth of the request is zero. Since the SPT
chooses a shortest path from S to each client, its link
utilization is the lowest among all algorithms. The link
utilization of MPCA-0 is higher than SPT. The link utilization
of MBUA-SP and MPCA-4 is larger than 80%. Since the
MBUA-SP chooses the shortest path from each client to
source S under the MBB constraint, it has the best link
utilization.

2015 IEEE 26th International Symposium on Personal, Indoor and Mobile Radio Communications - (PIMRC): Services
Applications and Business

2092

Fig. 7 Average link utilization of multicast requests vs average switch degrees.

V. CONCLUSION

In this paper, we presented two efficient multicast
algorithms in SDN. In MPCA-k algorithm, the average hop
counts, link utilization, and multicast successful rate increase
when the extra delay time k increases. Since k is a tunable
variable, we can adjust our MPCA-k algorithm according to
the requirements of the network. For MPCA-0, its average hop
counts from source to each client is near to SPT, but the
performance of link utilization and multicast successful rate is
better than SPT. For MPCA-4, it has the highest multicast
successful rate. The MBUA-SP algorithm builds the multicast
tree under the MBB constraint which has the best link
utilization. The communication delay of MBUA-SP is a little
higher than SPT and GIT, but the multicast successful rate and
bandwidth utilization is much higher than the SPT and GIT
algorithms.

REFERENCES
[1] Y. Kanizo, D. Hay, and I. Keslassy, "Palette: Distributing Tables in

Software-Defined Networks," IEEE International Conference on
Computer Communications, Turin, Italy, April 2013.

[2] H.-E. Egilmez, S.-T. Dane, K.-T. Bagci, and A.-M. Tekalp, "OpenQoS:
An OpenFlow Controller Design for Multimedia Delivery with End-to-
End Quality of Service over Software-Defined Networks," Asia-Pacific
Signal & Information Processing Association Annual Summit and
Conference (APSIPA ASC), pp. 1-8, December 2012.

[3] T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, and J. Rexford,
"Openflow: Enabling Innovation in Campus Networks," ACM

SIGCOMM Computer Communication Review archive, Vol. 38 No. 2,
pp. 69-74, April 2008.

[4] T. Stutz and A. Uhl, "A Survey of H.264 AVC/SVC Encryption," IEEE
Transactions on Circuits and Systems for Video Technology, Vol. 22 No.
3, pp. 325-339, March 2012.

[5] H. Schwarz, D. Marpe, and T. Wiegand, "Overview of the Scalable
Video Coding Extension of the H.264/AVC Standard," IEEE
Transactions on Circuits and Systems for Video Technology, Vol. 17, No.
9, pp. 1103-1120, September 2007.

[6] M. Xing, S. Xiang, and L. Cai, "A Real-Time Adaptive Algorithm for
Video Streaming over Multiple Wireless Access Network," IEEE
Journal on Selected Areas in Communications, Vol. 32, No. 4, pp. 795-
805, April 2014.

[7] J.-P. Sheu, C.-C. Kao, S.-R. Yang, and L.-F. Chang, "A Resource
Allocation Scheme for Scalable Video Multicast in WiMAX Relay
Networks," IEEE Transactions on Mobile Computing, Vol. 12, No. 1, pp.
90-104, January 2013.

[8] Z. Yan, J.-H. Lee, S. Shen, and C. Qiao, "Novel Branching-Router-
Based Multicast Routing Protocol with Mobility Support," IEEE
Transactions on Parallel and Distributed Systems, Vol. 24, No. 10, pp.
2060-2068, October 2013.

[9] J.-B. Hwang and C.-Y. Lee, "Effective Video Multicast Using SVC with
Heterogeneous User Demands over TDMA-Based Wireless Mesh
Networks," IEEE Transactions on Mobile Computing, Vol.12, No.5, pp.
984-994, May 2013.

[10] X.-H. Tian, Y. Cheng, and B. Liu, "Design of a Scalable Multicast
Scheme with an Application-Network Cross-Layer Approach," IEEE
Transactions on Multimedia, Vol.11, No. 6, pp. 1160-1169, October
2009.

[11] T. Ballardie, P. Francis, and J. Crowcroft, "Core Based Trees (CBT) an
Architecture for Scalable Inter-Domain Multicast Routing," ACM
SIGCOMM 1993, September 13-17, 1993, San Francisco, CA, USA.
1993

[12] S. Ramanathan, "Multicast Tree Generation in Networks with
Asymmetric Link," IEEE/ACM Transactions on Networking, Vol. 4, No.
4, pp. 558-568, August 1996.

[13] F. Sato, "An Efficient Shared-tree-Based Multi-Source Multicast
Routing Protocol in Mobile Ad Hoc Networks," International
Conference on Advanced Information Networking and Applications
Workshops, pp. 377-382, May 2009.

[14] A. Iyer, P. Kumar, and V. Mann, "Avalanche: Data Center Multicast
Using Software Defined Networking," Sixth International Conference
on Communication Systems and Networks (COMSNETS), pp. 1-8,
January 2014.

[15] B. Krishnamachari, D. Estrin, and S. B. Wicker, "The Impact of Data
Aggregation in Wireless Sensor Networks," International Conference on
Distributed Computing Systems Workshops (ICDCSW), pp. 575-578,
Vienna, Austria, July 02-05 2002.

[16] H.-T. Cormen, E.-C. Leiserson, L.-R. Rivest, and C. Stein, "Introduction
to Algorithms,” Third Edition, The MIT Press, 2009.

2015 IEEE 26th International Symposium on Personal, Indoor and Mobile Radio Communications - (PIMRC): Services
Applications and Business

2093

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

