

Outline

Background and Motivation

Devices Used

Goals and Objectives

Tools and Workflow

Challenges and Insights

Background and Motivation

Advantages of Using Radar for Action Recognition

- a. Unaffected by lighting conditions.
- b. Preserves user privacy, unlike cameras that capture direct images of people.
- c. Capable of penetrating certain materials, such as curtains or clothing.

Application Scenarios

- a. Elderly care environments.
- b. Indoor human tracking.
- c. Posture monitoring (e.g., sitting posture detection).

Devices Used

AWR1642 BOOST-ODS

Automotive mmWave radar system

AWR1642

DCA1000 (data capture)

- Captures raw ADC data (I/Q signals)
- Transfers data to PC via Ethernet

DCA1000

Goals and Objectives

Goal

 Use raw radar data to perform the full pipeline: from signal processing to model training.

Setup

- 5 actions, 3 angles
 - Actions: standing, sitting, raising hands, hands on hips, using a smartphone.
 - Angles: -45°, 0°, +45°
- Single-person target
- Fixed environment

Tools and Workflow

mmwave Studio

mmwave Studio

Radar Configuration and Data Capture

- Set radar parameters: chirp and frame configurations
- Use DCA1000 to capture raw data through hardware interface
- Save data as .bin files (binary I/Q format)

Lua Script Automation

 Lua scripts are used to automate radar parameter setup and trigger data capture

matlab

a. Raw Data Reconstruction

 Parse .bin file into a 4D array: [Samples, Rx, Chirps, Frames].

b. 1D FFT (Range FFT)

- Perform FFT across ADC samples for each Rx and chirp.
- Converts time-domain signal into range information.
- Output: Range Profile (1D).

c. 2D FFT (Doppler FFT)

- Perform FFT across chirps (Doppler dimension)
- Output: Range-Doppler Map (RDM).

d. 3D FFT (Angle FFT)

- Perform FFT across Rx channels (antenna array)
- Output: Range-Angle Map (RAM).

e. Data Storage

• Save processed results as .npy files for later use.

RDM

Python

Input Data

- Use .npy files of Range-Angle Maps (RAM) and Range-Doppler Maps (RDM)
- Explore a dual-input architecture

Model Architecture

- Built with TensorFlow using a Convolutional Neural Network (CNN)
- Structure: Conv → MaxPooling → Dense → Softmax

Classification Targets

- Action only
- or Action + Angle

Python

	accuracy	loss
僅分類動作	≈ 0.8	≈ 0.3

Issue

 The model struggles to recognize both action and angle simultaneously.

Possible Reasons

- Insufficient data volume.
- Too many classification categories.
- Data quality may be suboptimal.

Potential Improvements

- Increase dataset size.
- Adjust angle categorization strategy.
- Apply additional preprocessing (e.g., contrast enhancement).

Challenges

- Collecting radar data.
- Operating and configuring mmWave radar hardware.
- Processing raw ADC data into meaningful features.
- Understanding and implementing the machine learning pipeline.

Insights

- Gained experience with the end-to-end workflow from raw radar data to model training.
- Developed understanding of the characteristics and applications of mmWave radar data.

