Wireless Network Final 利用WiFi定位USRP

113064516 吳彥杰

113064901 許鈞貿

Introduction

- Motivation
 - Indoor localization is crucial for smart environments (robotics, AR, security)
 - Leverage existing Wi-Fi infrastructure
- Objective
 - Use Wi-Fi signals to determine location
 - Collect Channel State Information (CSI) from different spots
 - Train a model to classify based on CSI
 - Evaluate localization accuracy

System Overview

• Transmitter: Wi-Fi AP

Receiver: USRP B210 + Laptop running MATLAB

Data Collection Setups

- Environment: Lab Room, 4 position marked.
- Frequency: 5 GHz Wi-Fi
- Channel number: 149
- 8 packets per sample.
- Data amount
 - Position 1: 500 samples
 - Position 2: 900 samples
 - Position 3: 900 samples
 - Position 4: 500 samples

CSI feature extraction

- Extract complex CSI from received signals
- Transform into 2D spectrograms

Model Architecture

- Model: Convolutional Neural Network (CNN)
- Input: 2D CSI representation
- Output: Discrete location

552.4k total learnables 18 layers

in 51×7×1 images with 'zscore' normalizati	Image Input
conv_1 256 5×1×1 convolutions with stride [1 1]	2-D Convolution
batchnorm_1 Batch normalization with 256 channels	Batch Normalization
relu_1 ReLU	ReLU
conv_2 256 3×1×256 convolutions with stride [1	2-D Convolution
batchnorm_2 Batch normalization with 256 channels	Batch Normalization
relu_2 ReLU	ReLU
maxpool 2×1 max pooling with stride [2 1] and pa	2-D Max Pooling
conv_3 256 1×3×256 convolutions with stride [1	2-D Convolution
batchnorm_3 Batch normalization with 256 channels	Batch Normalization
relu_3 ReLU	ReLU
hconvDW 64 groups of 128 1×3×4 convolutions wi	2-D Grouped Convo
batchnorm_4 Batch normalization with 8192 channels	Batch Normalization
relu_4 ReLU	ReLU
dropout 30% dropout	Dropout
gap 2-D global average pooling	2-D Global Average
fc 4 fully connected layer	Fully Connected
softmax softmax	Softmax

Training settings and Learning curve

• Epoch: 30

Initial learning rate: 0.001

• Learning rate schedule: piece wise

- Dataset split: 70% train, 15% validation, 15% test
- Loss function: Cross-entropy (classification)

Testing Result

• 影片檔太大請見report: Zone-1.mp4

• 影片檔太大請見report: Zone-2.mp4

• 影片檔太大請見report: Zone-3.mp4

影片檔太大請見report: Zone-4.mp4

Challenges

- Inconsistent CSI across time
 - Attempted to use two antennas for improved spatial resolution
 - Faced inconsistent behavior and driver warnings due to USRP limitations
 - Sometimes only one antenna provides usable data

```
Warning: Receive unsuccessfully: Could not execute UHD driver command in 'receiveData_burst_c': receiveData:ErrOverflowInBurstMode Overflow occured in middle of a contiguous burst.

Recapture for 2th CSI
```

Warning: Receive unsuccessfully: Could not execute UHD driver command in 'receiveData_burst_c': receiveData:ErrOverflowInBurstMode Overflow occured in middle of a contiguous burst.

Recapture for 2th CSI

Conclusion

 Successfully demonstrated CSI-based indoor localization using Wi-Fi signals and USRP

 Designed and trained a model to classify locations based on real CSI data

 Implemented and tested a real-time location classification system