Protocols and Architectures for Wireless Sensor Netwoks

by Holger Karl and Andreas Willig

Grade

- Midterm Exam. 25%
- Exercises 35% (5 ~ 7 times)
- Term Project 30%
- Class Attitude 10%

Ad hoc and Sensor Networks Chapter 1: Motivation & Applications

Goals of this chapter

- Give an understanding what ad hoc & sensor networks are good for, what their intended application areas are
- Commonalities and differences

 Differences to related network types
- Limitations of these concepts

Outline

- Infrastructure for wireless?
- (Mobile) ad hoc networks
- Wireless sensor networks
- Comparison

Infrastructure-based wireless networks

- Typical wireless network: Based on infrastructure
 - E.g., GSM (Global System for Mobile Communications), UMTS (Universal Mobile Terrestrial Telecommunication Systems), ...
 - Base stations connected to a wired backbone network

Infrastructure-based wireless networks

- Mobile entities communicate wirelessly to these base stations
- Traffic between different mobile entities is relayed by base stations and wired backbone
- Mobility is supported by switching from one base station to another
- Backbone infrastructure required for administrative tasks

Infrastructure-based wireless networks – Limits?

- What if ...
 - No infrastructure is available? E.g., in disaster areas
 - It is too expensive/inconvenient to set up? E.g., in remote, large construction sites
 - There is no time to set it up? E.g., in military operations

Possible applications for infrastructure-free networks

 Factory floor automation Disaster recovery

 Car-to-car communication

Possible applications for infrastructure-free networks

- Military networking: Tanks, soldiers, ...
- Finding out empty parking lots in a city, without asking a server
- Search-and-rescue in an avalanche
- Personal area networking (watch, glasses, PDA, medical appliance, ...)

• • • •

Outline

- Infrastructure for wireless?
- (Mobile) ad hoc networks
- Wireless sensor networks
- Comparison

Solution: (Wireless) ad hoc networks

- Try to construct a network without infrastructure, using networking abilities of the participants
 - This is an *ad hoc network* a network constructed "for a special purpose"
- Simplest example: Laptops in a conference room a single-hop ad hoc network

Problems/challenges for ad hoc networks

- Without a central infrastructure, things become much more difficult
- Problems are due to
 - Lack of central entity for organization available
 - Limited range of wireless communication
 - Mobility of participants
 - Battery-operated entities

No central entity ! self-organization

- Without a central entity (like a base station),
 - Participants must organize themselves into a network
 (*self-organization*)

- Pertains to (among others):
 - No base station can assign transmission resources, must be decided in a distributed fashion
 - Finding a route from one participant to another

Limited range ! multi-hopping

- Communication outside immediate communication range
 - Direct communication limited because of distance, obstacles, ...
 - Solution: *multi-hop network*

Mobility ! Suitable, adaptive protocols

- In many (not all!) ad hoc network applications, participants move around
 - In cellular network: simply hand over to another base station
- In *mobile ad hoc networks* (MANET):
 - Mobility changes neighborhood relationship
 - Must be compensated for
 - E.g., routes in the network have to be changed
- Complicated by scale
 - Large number of such nodes difficult to support

Battery-operated devices ! energyefficient operation

- Often (not always!), participants in an ad hoc network draw energy from batteries
- Desirable: long run time for
 - Individual devices
 - Network as a whole
- ! Energy-efficient networking protocols
 - E.g., use multi-hop routes with low energy consumption (energy/bit)
 - E.g., take available battery capacity of devices into account
- How to resolve conflicts between different
 optimizations?

Outline

- Infrastructure for wireless?
- (Mobile) ad hoc networks
- Wireless sensor networks
 - Applications
 - Requirements & mechanisms
- Comparison

Wireless sensor networks

- Participants in the previous examples were devices close to a human user, interacting with humans ((((*))))
- Alternative concept:

Instead of focusing interaction on humans, focus on interacting with *environment*

- Network is *embedded* in environment
- Nodes in the network are equipped with *sensing* and *actuation* to measure/influence environment
- Nodes process information and communicate it wirelessly

! Wireless sensor networks (WSN)

- Or: Wireless sensor & actuator networks (WSAN)

 $\left(\left(\left(\left(\mathbf{P}\right) \right)\right)$

WSN application examples

- Disaster relief operations
 - Drop sensor nodes from an aircraft over a wildfire
 - Each node measures temperature
 - Derive a "temperature map"
- Biodiversity mapping
 - Use sensor nodes to observe wildlife

WSN application examples

- Intelligent buildings (or bridges)
 - Reduce energy wastage by proper humidity, ventilation, air conditioning (HVAC) control
 - Needs measurements about room occupancy, temperature, air flow, ...
 - Monitor mechanical stress after earthquakes

WSN application scenarios

- Facility management
 - Intrusion detection into industrial sites
 - Control of leakages in chemical plants, ...
- Machine surveillance and preventive maintenance
 - Embed sensing/control functions into places no cable has gone before
 - E.g., tire pressure monitoring
- Precision agriculture
 - Bring out fertilizer/pesticides/irrigation only where needed
- Medicine and health care
 - Post-operative or intensive care
 - Long-term surveillance of chronically ill patients or the elderly

WSN application scenarios

- Logistics
 - Equip goods (parcels, containers) with a sensor node

- Track their whereabouts *total asset management*
- Note: passive readout might suffice compare RF IDs
- Telematics
 - Provide better traffic control by obtaining finergrained information about traffic conditions
 - Intelligent roadside
 - Cars as the sensor nodes

Roles of participants in WSN

- Sources of data: Measure data, report them "somewhere"
 - Typically equip with different kinds of actual sensors

• *Sinks* of data: Interested in receiving data from WSN

- May be part of the WSN or external entity, PDA, gateway,

Actuators: Control some device based on data, usually also a sink

Structuring WSN application types

- Interaction patterns between sources and sinks classify application types
 - *Event detection*: Nodes locally detect events (maybe jointly with nearby neighbors), report these events to interested sinks
 - Event classification additional option
 - Periodic measurement

Structuring WSN application types

- Function approximation: Use sensor network to approximate a function of space and/or time (e.g., temperature map)
- *Edge detection:* Find edges (or other structures) in such a function (e.g., where is the zero degree border line?)
- *Tracking*: Report (or at least, know) position of an observed intruder ("pink elephant")

Deployment options for WSN

- How are sensor nodes deployed in their environment?
 - Dropped from aircraft ! Random deployment
 - Usually uniform random distribution for nodes over finite area is assumed
 - Well planned, fixed ! *Regular deployment*
 - Not necessarily geometric structure, but that is often a convenient assumption
 - Mobile sensor nodes
 - Can move to compensate for deployment shortcomings
 - Can be passively moved around by some external force (wind, water)
 - Can actively seek out "interesting" areas

Maintenance options

- Feasible and/or practical to maintain sensor nodes?
 - E.g., to replace batteries?
 - Or: unattended operation?
 - Impossible but not relevant? Mission lifetime might be very small
- Energy supply?
 - Limited from point of deployment?
 - Some form of recharging, energy scavenging from environment?
 - E.g., solar cells

Outline

- Infrastructure for wireless?
- (Mobile) ad hoc networks
- Wireless sensor networks
 - Applications
 - Requirements & mechanisms
- Comparison

Characteristic requirements for WSNs

- Type of service of WSN
 - Not simply moving bits like another network
 - Rather: provide *answers* (not just numbers)
 - Issues like geographic scoping are natural requirements, absent from other networks
- Quality of service
 - Traditional QoS metrics do not apply
 - Still, service of WSN must be "good": Right answers at the right time

Characteristic requirements for WSNs

- Fault tolerance
 - Be robust against node failure (running out of energy, physical destruction, ...)
- Lifetime
 - The *network* should fulfill its task as long as possible definition depends on application
 - Lifetime of individual nodes relatively unimportant

Characteristic requirements for WSNs

- Scalability
 - Support large number of nodes
- Wide range of densities
 - Vast or small number of nodes per unit area, very application-dependent
- Programmability
 - Re-programming of nodes in the field might be necessary, improve flexibility
- Maintainability
 - WSN has to adapt to changes, self-monitoring, adapt operation
 - Incorporate possible additional resources, e.g., newly deployed nodes

Required mechanisms to meet requirements

- Multi-hop wireless communication
- Energy-efficient operation
 - Both for communication and computation, sensing, actuating
- Auto-configuration
 - Manual configuration just not an option
- Collaboration & in-network processing
 - Nodes in the network collaborate towards a joint goal
 - Pre-processing data in network (as opposed to at the edge) can greatly improve efficiency

Required mechanisms to meet requirements

- Data centric networking
 - Focusing network design on *data*, not on *node identifies* (id-centric networking)
 - To improve efficiency
- Locality
 - Do things locally (on node or among nearby neighbors) as far as possible
- Exploit tradeoffs
 - E.g., between invested energy and accuracy

Outline

- Infrastructure for wireless?
- (Mobile) ad hoc networks
- Wireless sensor networks
- Comparison

MANET vs. WSN

- Many commonalities: Self-organization, energy efficiency, (often) wireless multi-hop
- Many differences
 - Applications, equipment: MANETs more powerful (read: expensive) equipment assumed, often "human in the loop"-type applications, higher data rates, more resources
 - Application-specific: WSNs depend much stronger on application specifics; MANETs comparably uniform

MANET vs. WSN

- Environment interaction: core of WSN, absent in MANET
- *Scale*: WSN might be much larger (although contestable)
- Energy: WSN tighter requirements, maintenance issues
- Dependability/QoS: in WSN, individual node may be dispensable (network matters), QoS different because of different applications
- Data centric vs. id-centric networking
- *Mobility*: different mobility patterns like (in WSN, sinks might be mobile, usual nodes static)

Wireless fieldbuses and WSNs

- Fieldbus:
 - Network type invented for real-time communication, e.g., for factory-floor automation
 - Inherent notion of sensing/measuring and controlling
 - Wireless fieldbus: Real-time communication over wireless
- Big similarities
- Differences
 - Scale WSN often intended for larger scale
 - Real-time WSN usually not intended to provide (hard) real-time guarantees as attempted by fieldbuses

Enabling technologies for WSN

- Cost reduction
 - For wireless communication, simple microcontroller, sensing, batteries
- Miniaturization
 - Some applications demand small size
 - "Smart dust" as the most extreme vision
- Energy scavenging
 - Recharge batteries from ambient energy (light, vibration, ...)

Conclusion

- MANETs and WSNs are challenging and promising system concepts
- Many similarities, many differences
- Both require new types of architectures & protocols compared to "traditional" wired/wireless networks
- In particular, application-specificness is a new issue