Chapter 5: Process
Scheduling
CIBBDIILIBDIICIIBIIICIISD I




Chapter 5: Process Scheduling

® Basic Concepts

® Scheduling Criteria

® Scheduling Algorithms

® Multiple-Processor Scheduling
® Thread Scheduling

= Operating Systems Examples
= Algorithm Evaluation

Operating System Concepts 5.2 silberschatz, Galvin and Gagne ©2005



Basic Concepts

® The idea of multiprogramming:

» Keep several processes in memory. Every time one
process has to wait, another process takes over the

use of the CPU

® CPU-1/O burst cycle: Process execution consists of a
cycle of CPU execution and I/O wait (i.e., CPU burst and |/

O burst).

e Generally, there is a large number of short CPU bursts,
and a small number of long CPU bursts.

* An I/O-bound program would typically has many very
short CPU bursts.

* A CPU-bound program might have a few long CPU g%
bursts el

Silberschatz, Galvin and Gagne ©2005

Operating System Concepts 5.3



Alternating Sequence of CPU And |/O Bursts

J

load store
add store >~ CPU burs
read from file

walt for 1IX'O 'O burst

store increment
index
write to file

CPU burs

J\_Y JLY_A Y_A

walt for O 'O burst
load store
add store ~ CPU burs

read from file

A

wailt for 1’0 > /O burst

Operating System Concepts 54



Histogram of CPU-burst Times

160

140

120

—
o
o

frequency
00
S

16 24
burst duration (milliseconds)

¥ :
Operating System Concepts 55 Silberschatz, Galvin and Gagne ©2005



CPU Scheduler

®m Selects from among the processes in memory that
are ready to execute, and allocates the CPU to
one of them

® CPU scheduling decisions may take place when a
process:

1. Switches from running to waiting state

2. Switches from running to ready state

3. Switches from waiting to ready

4. Terminates
® Scheduling under 1 and 4 is nonpreemptive
® All other scheduling Is preemptive

/ o
Operating System Concepts 56 Silberschatz, Galvin and Gagne ©2005



Preemptive Issues

® |nconsistent cases may occur: preemptive scheduling
Incurs a cost associated with access to shared data

m Affect the design of OS kernel: What happens if the
process is preempted in the middle of critical changes
(for instance, I/0O queues) and the kernel (or the device
driver) needs to read or modify the same structure?

e Unix solution: waiting either for a system call to
complete or for an 1/O block to take place before doing
a context switch

* However, weak in supporting real-time computing and
multiprocessing

P
uP
. 1 ;.,4( &

Silberschatz, Galvin and Gagne ©2005

Operating System Concepts 5.7



Dispatcher

® Dispatcher module gives control of the CPU to the
process selected by the short-term scheduler; this
Involves:

e switching context
e switching to user mode

* jumping to the proper location in the user
program to restart that program

® Dispatch latency — time it takes for the dispatcher
to stop one process and start another running

/ o
Operating System Concepts 58 Silberschatz, Galvin and Gagne ©2005



Scheduling Criteria

m CPU utilization — keep the CPU as busy as
possible

® Throughput — # of processes that complete
their execution per time unit

® Turnaround time — amount of time to
execute a particular process

® \Waiting time — amount of time a process has
been waiting in the ready queue

® Response time — amount of time it takes
from when a request was submitted until the
first response Is produced, not output (for
time-sharing environment)

Operating System Concepts 59 Silberschatz, Galvin and Gagne ©2005



Optimization Criteria

= Max CPU utilization
® Max throughput

® Min turnaround time
= Min walting time

® Min response time

e ~"
Operating System Concepts 5.10 Silberschatz, Galvin and Gaghe ©2005



Scheduling Algorithms

® First-come, first-served (FCFS) scheduling
® Shortest-job-first (SJF) scheduling

® Priority scheduling

® Round-robin scheduling

= Multilevel queue scheduling

= Multilevel feedback queue scheduling

Operating System Concepts 5.11 Silberschatz, Galvin and Gagne ©2005



First-Come, First-Served (FCFS) Scheduling

Process Burst Time

P, 24
P, 3
P, 3

m Suppose that the processes arrive in the order: P, , P, , P,
The Gantt Chart for the schedule is:

Pl PZ PS

m Waiting time for P, =0; P, =24, P,=27
®  Average waiting time: (0 + 24 + 27)/3 =17 R

Silberschatz, Galvin and Gagne ©2005

Operating System Concepts 5.12



FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order

P,,P;,P,;
® The Gantt chart for the schedule is:
I:)2 P3 I:)1
0 3 6 30

= Waiting time for P, = 6;P, =0.P,= 3

®  Average waiting time: (6 +0+ 3)/3=3

®  Much better than previous case

®  Convoy effect short process behind long process

Operating System Concepts 5.13 Silberschatz, Galvin and Gagne ©2005



Shortest-Job-First (SJR) Scheduling

® Associate with each process the length of its next
CPU burst. Use these lengths to schedule the
process with the shortest time

® Two schemes:

* nonpreemptive — once CPU given to the process it
cannot be preempted until completes its CPU burst

e preemptive — if a new process arrives with CPU burst
length less than remaining time of current executing
process, preempt. This scheme is know as the
Shortest-Remaining-Time-First (SRTF)

= SJF is optimal — gives minimum average waiting
time for a given set of processes

Operating System Concepts 5.14 Silberschatz, Galvin and Gagne ©2005



Example of Non-Preemptive SJF

Process Arrival Time Burst Time
P, 0.0 7
P, 2.0 4
P, 4.0 1
®  SJF (non-preemptive)
P, P, P, P,
I I I I I I I I I I I I
T T T T 1 T T
0 3 7 8 12 16

= Average waitingtime=(0+6+3+7)/4 =4

e ~"
Operating System Concepts 5.15 Silberschatz, Galvin and Gaghe ©2005



Example of Preemptive SJF

Process Arrival Time Burst Time
P, 0.0 7
P, 2.0 4
P, 4.0 1
P, 5.0 4
® SJF (preemptive)
P, P, |[P, | P, P, P,
| | | | | | | | | |
I I | I I I I I I I |
0 4 5 7 11 16

® Average waitingtime=(9+1+0 +2)/4 =3

Operating System Concepts 5.16 Silberschatz, Galvin and Gagne ©2005



Determining Length of Next CPU Burst

~ ® Frequently used in long-term scheduling

* A user is asked to estimate the job length. A lower
value means faster response. Too low a value will
cause timeout.

® Approximate SJF: the next burst can be predicted as an
exponential average of the measured length of
previous CPU bursts
T, - ot (1-o)r,

N\
new one

at + (1- a)az,_ + (1- a)’or, ,t ...

ntl

history

Commonly,

[, 1, I
— )t (=)t (=)L ,1 ...
w=1n_— QTGN G

Operating System Concepts 5.17 Silberschatz, Galvin and Gagne ©2005



CPU burst (t)

"guess” (t) 10

13

11

13

Operating System Concepts

5.18




Examples of Exponential Averaging

® =0
* T = 1,
* Recent history does not count
" a=1
° T, =0 =1
* Only the actual last CPU burst counts

® Since both a and (1 - a) are less than or equal to 1,
each successive term has less weight than its
predecessor

Operating System Concepts 5.19 Silberschatz, Galvin and Gagne ©2005



Priority Scheduling

= A priority number (integer) is associated with each
process

® The CPU is allocated to the process with the
highest priority (smallest integer = highest priority)

* Preemptive
* nonpreemptive

® SJF is a priority scheduling where priority is the
predicted next CPU burst time

® Problem: Starvation — low priority processes may
never execute

® Solution: Aging — as time progresses increase the
priority of the process

/ v
Operating System Concepts 5.20 Silberschatz, Galvin and Gagne ©2005



i AnExample

Process Burst Time Priority

P1 10
P2
P3
P4
P5

UT N =
N UTHhs = W

P2 P5 P1 P3 | P4
0 1 6 16 18 19

AWT = (6+0+16+18+1)/5=8.2

Operating System Concepts 5.21 Silberschatz, Galvin and Gagne ©2005



Round Robin (RR)

‘m Each process gets a small unit of CPU time (time
guantum), usually 10-100 milliseconds. After this time
has elapsed, the process is preempted and added to
the end of the ready queue.

® |f there are n processes in the ready queue and the
time quantum is q, then each process gets 1/n of the
CPU time in chunks of at most g time units at once.
No process waits more than (n-1)q time units.

® Performance
e glarge O FIFO

e gsmall O g must be large with respect to context
switch, otherwise overhead is too high

/ "
Operating System Concepts 5.22 Silberschatz, Galvin and Gagne ©2005



Example of RR with Time Quantum = 20

Process Burst Time

P, 53
P, 17
P, 68
P, 24

® The Gantt chart is:

PP, | P, |P | P |P,|P, | P | P,| P,

O 20 37 57 77 97 117 121 134 154 162

= Typically, higher average turnaround than SJF, but
better response

Operating System Concepts 5.23 Silberschatz, Galvin and Gagne ©2005




Time Quantum and Context Switch Time

process time = 10 quantum context
switches
12 0
0 10
6 1
0 5 10
1 9
oc 1 2 3 4 5 6 7 8 9 10

Operating System Concepts 5.24 Silberschatz, Galvin and Gagne ©2005



Turnaround Time Varies With The Time

Quantum
process| time
125 F P, :
120 B P2 3
P, 1
é 11.5F P, 7
§ 11.0
o
S 105 |
:9‘ P1P,P3P4P1P,P4P1P-P4P1P4P1P4P1P4P4
2 100 12345678/90123456 7
©
> 95
9.0 I
2 3 4 5 6 7
time quantum

Operating System Concepts 5.25



Multilevel Queue

® Ready queue Is partitioned into separate queues:
foreground (interactive) and background (batch)

® Each queue has its own scheduling algorithm
e foreground — RR
e background — FCFS

® Scheduling must be done between the queues

* Fixed priority scheduling; (i.e., serve all from foreground then from
background). Possibility of starvation.

e Time slice — each queue gets a certain amount of CPU time which
It can schedule amongst its processes; i.e., 80% to foreground in
RR

e 20% to background in FCFS

¥ il A
Operating System Concepts 5.26 Silberschatz, Galvin and Gagne ©2005



Multilevel Queue Scheduling

highest priority

interactive processes

interactive editing processes
batch processes
student processes

lowest priority

Operating System Concepts 5.27 Silberschatz, Galvin and Gagne ©205



Multilevel Feedback Queue

® A process can move between the various queues; aging

can be implemented this way

= Multilevel-feedback-queue scheduler defined by the
following parameters:

number of queues
scheduling algorithms for each queue

method used to determine when to upgrade a
process

method used to determine when to demote a process

method used to determine which queue a process
will enter when that process needs service

/ o
Operating System Concepts 5.28 Silberschatz, Galvin and Gagne ©2005



Example of Multilevel Feedback Queue

® Three gueues:

* Q,— RR with time quantum 8 milliseconds
* Q, — RR time quantum 16 milliseconds
 Q,—FCFS

® Scheduling

e A new job enters queue Q, which is served FCFS.

When it gains CPU, job receives 8 milliseconds. If it
does not finish in 8 milliseconds, job iIs moved to

queue Q..

o At Q, job is again served FCFS and receives 16
additional milliseconds. If it still does not complete, i N
Operating System COi&ppreempted and moved to gqueue Qz- Silberschatz, Galvin and Gagne 62005



Multilevel Feedback Queues

gquantum = 8

: »
Hr quantum = 16

Operating System Concepts 5.30 Silberschatz, Galvin and Gaghe ©2005



Multiple-Processor Scheduling

® Only homogeneous systems are discussed here
B Symmetric multiprocessing
» Each processor is self-scheduling

» All processes may be in a common ready queue or
each processor have its own private queue

B Asymmetric multiprocessing: all system activities are
handled by a processor, the others only execute user
code (allocated by the master), which is far simple than
symmetric multiprocessing

® Processor affinity: a process has an affinity for the
processor on which it is currently running

e Keep a process running on the same processor

Operating System Concepts 5.31 Silberschatz, Galvin and Gagne ©2005



SMT:. Symmetric Multithreading

= SMP: Allow several threads to run concurrently by
providing multiple physical processors (PPSs).

® SMT: providing multiple logical processors (LPs) on the
same PP.

® Each LP has its own architecture state, including
general-purpose and machine-state registers.

* LP is responsible for its own interrupt handling

® SMT is a feature provided by H/W (state, interrupt
handling), not S/W.

e Certain performance gain are possible if OS is aware
that.

* e.g., Consider a system with two PPs, both are idle.
The scheduler should first try scheduling separate
threads on each PP rather than on separate LPs on
the same PP.

y
Operating System Concepts 5.32 Silberschatz, Galvin and Gagne ©2005



A Typical SMT Architecture

logical | | logical logical | | logical
CPU e iGE L) Gl
physical physical
R CPU
system bus

Operating System Concepts 5.33 Silberschatz, Galvin and Gagne ©2005



Real-Time Scheduling

® Hard real-time systems — required to complete
a critical task within a guaranteed amount of
time

® Soft real-time computing — requires that critical
processes receive priority over less fortunate
ones

Operating System Concepts 5.34 Silberschatz, Galvin and Gagne ©2005



Thread Scheduling

® [ ocal Scheduling — How the threads library
decides which thread to put onto an available

LWP

® Global Scheduling — How the kernel decides
which kernel thread to run next

Operating System Concepts 5.35 Silberschatz, Galvin and Gagne ©2005



Thread Scheduling

m User-level threads are managed by a thread library, and
the kernel is unaware of them. To run on a CPU, user-
level threads are ultimately mapped to an associated
kernel-level thread, or LWP.

J Process local scheduling: Thread scheduling is
done local to the application. The threads library
schedules user-level threads to run on an available
LWP

d System global scheduling: The kernel decides
which kernel thread to schedule

Operating System Concepts 5.36 Silberschatz, Galvin and Gagne ©2005



). ) Pthread Scheduling API
{’55 include <pthread.h>
#include <stdio.h>
#define NUM THREADS 5
int main(int argc, char *argvl[])
{
int 1;
pthread t tid[NUM THREADS];
pthread attr t attr;
/* get the default attributes */
pthread attr init (&attr);

i; set the scheduling algorithm to PROCESS or SYSTEM
pthread attr setscope(&attr, PTHREAD SCOPE SYSTEM) ;
/* set the scheduling policy - FIFO, RT, or OTHER */
pthread attr setschedpolicy(&attr, SCHED OTHER) ;
/* create the threads */

for (1 = 0; 1 < NUM THREADS; 1++)

Operating System Conceﬂt 5.37 Silberschatz, Galvin and Gagne ©2005

1- . _ S Y 2P T . T L | P I L 'I\TTTTT\_




Pthread Scheduling API

/* now join on each thread */

for (1 = 0; 1 < NUM THREADS; 1i++)
pthread join(tid[1], NULL);

}
/* Each thread will begin control in this

function */

volid *runner (vold *param)

{
printf ("I am a thread\n");
pthread ex1it (0);

}

¥ ¥
Operating System Concepts 5.38 Silberschatz, Galvin and Gaghe ©2005

< ,: : ::: )



Operating System Examples

® Solaris scheduling
® Windows XP scheduling

® Linux scheduling

R < ’, _,
Operating System Concepts 5.39 Silberschatz, Galvin and Gaghe ©2005



Solaris 2 Scheduling

class-
global scheduling specific scheduler run
Ppriority order priorities classes queue
highest first real time kernel
A - Q . threads of
real-time
LWPs
QD ==
system kernel
Q I service
threacds
D —
interactive & kernel
time sharing Q P threads of
interactive &
time-sharing
LWPs
D
L 4 v
lowest last

Operating System Concepts 5.40 Silberschatz, Galvin and Gagne ©005



Solaris Scheduling

® Four classes of scheduling: real-time -> system ->
Interactive -> time sharing.

® A process starts with one LWP and is able to create new
LWPs as needed. Each LWP inherits the scheduling
class and priority of the parent process. Default : time
sharing (multilevel feedback queue)

® |nverse relationship between priorities and time slices:
the high the priority, the smaller the time slice.

® Interactive processes typical have a higher priority; CPU-
bound processes have a lower priority.

/ o
Operating System Concepts 5.41 Silberschatz, Galvin and Gagne ©2005



Solaris Scheduling

®m Uses the system class to run kernel processes, such as
the scheduler and paging daemon. The system class is
reserved for kernel use only. User process running in
kernel mode are not in the system class.

® Threads in the real-time class are given the highest
priority to run among all classes.

® There is a set of priorities within each class. However,
the scheduler converts the class-specific priorities into
global priorities. (round-robin queue)

¥ il A
Operating System Concepts 5.42 Silberschatz, Galvin and Gagne ©2005



Solaris Dispatch Table (for interactive
and time-sharing threads)

time return
time quantum from
priority quantum expired sleep
0 200 0 50
5 200 0 50
10 160 0 5l
15 160 5) 51
20 120 10 52
25 12 15 e
30 80 20 53
35 80 25 54
40 40 30 55
45 40 35 56
50 40 40 58
£ 40 45 58
59 20 49 59

S vt
Operating System Concepts 5.43 Silberschatz, Galvin and Gaghe ©2005



Dispatch Table

® Priority: a higher number indicates a higher priority

® Time quantum: the lower priority has the higher time
guantum

® Time quantum expired: the new priority of a thread
that has used its entire time quantum without
blocking. Such threads are considered CPU-
Intensive. Lower priority of these thread

B Return from sleep: the priority of a thread that is
returning from sleeping (such as waiting for 1/O). Its
priority is boosted to between 50 and 59.

/ "
Operating System Concepts 5.44 Silberschatz, Galvin and Gagne ©2005



Windows XP Priorities

real- bl above e below dle

time normal normal | priority
time-critical 1 15 s 15 5 5
highest 26 15 12 10 8 6
above normal 25 14 11 9 7 5
normal 24 13 10 8 6 4
below normal 2 12 9 i - :)
lowest 22 11 8 6 4 2
idle 16 1 1 1 1 1

=" ». _;’l; D
Operating System Concepts 5.45 Silberschatz, Galvin and Gaghe ©2005



Windows XP Scheduling

® Using a priority-based, preemptive scheduling
algorithm

® There are 32-level priority which are divided into
two classes

* The variable class contains priorities from 1 to 15
* The real-time class contains threads from 16 to 31
= \Within each of the priority classes is a relative
priority

® The priority of each thread is based on the priority
class it belongs to and its relative priority within
that class.

Operating System Concepts 5.46 Silberschatz, Galvin and Gagne ©2005



Linux Scheduling — preemptive &
| priority

‘m Version 2.5: support SMP, Load balancing & Processor affinity
® Time-sharing (100-140) and Real-time (0-99)

= Higher priority with longer time quanta

® Time-sharing

* Prioritized credit-based — process with most credits is scheduled
next

* Credit subtracted when timer interrupt occurs

* When credit = 0, another process chosen

* When all processes have credit = 0, recrediting occurs
» Based on factors including priority and history

® Real-time

* Soft real-time

* Posix.1b compliant — two classes
» FCFS and RR
» Highest priority process always runs first

Operating System Concepts 5.47 Silberschatz, Galvin and Gagne ©2005




The Relationship Between Priorities and
N Time-slice length

numeric
priority

relative
priority

0

99
100

140

highest

lowest

real-time
tasks

other
tasks

time
gquantum

200 ms

10 ms

Operating System Concepts

5.48

Silberschatz, Galvin and\ Gagne ©005



List of Tasks Indexed According to

Prorities
active expired
array array
lpriority task lists priority task lists
[O] O—0 [O]
[1] O0—0—0 [1]
[140] @ [140]

Operating System Concepts 5.49 Silberschatz, Galvin and Gagne ©2005



Algorithm Evaluation

® Criteria to select a CPU scheduling algorithm may include
several measures, such as:

e Maximize CPU utilization under the constraint that the
maximum response time is 1 second

e Maximize throughput such that turnaround time is (on
average) linearly proportional to total execution time

® Evaluation methods ?
* deterministic modeling
* queuing models
* simulations
* Implementation

Operating System Concepts 5.50 Silberschatz, Galvin and Gagne ©2005



Deterministic Modeling

= Analytic evaluation
Input: a given algorithm and a system workload to
Output: performance of the algorithm for that workload
® Deterministic modeling

e Taking a particular predetermined workload and
defining the performance of each algorithm for that
workload.

Operating System Concepts 551 Silberschatz, Galvin and Gagne ©2005



Deterministic Modeling

Process Burst Time
P1 10
P2 29
P3 3
P4 7
e FCFS P5 12
P1 P2 P3| P4 P5 AWT = 28 ms
0 10 39 42 49 61
e SJF |
P3| P4 P1 P5 P2 AWT =13 ms
0 3 10 20 32 61
® RR (g =10)

P1 | P2 (P3| P4 | P5 P2 |P5 P2 AWT =23 ms
0 10 20 23 30 40 50 52 61

Operating System Concepts 5.52 Silberschatz, Galvin and Gagne ©2005



Deterministic Modeling

® A simple and fast method. It gives the exact numbers,
allows the algorithms to be compared.

® |t requires exact numbers of input, and its answers apply to
only those cases. In general, deterministic modeling is too

specific, and requires too much exact knowledge, to be
useful.

m Usage |
» Describing algorithm and providing examples
* A set of programs that may run over and over again
 |ndicating the trends that can then be proved

¥ il A
Operating System Concepts 5.53 Silberschatz, Galvin and Gagne ©2005



Queuing Models

® Queuing network analysis
* Using
» the distribution of service times (CPU and I/O bursts)
» the distribution of process arrival times

* The computer system is described as a network of
servers. Each server has a queue of waiting processes.

* Determining

» utilization, average queue length, average waiting
time, and so on

Operating System Concepts 5.54 Silberschatz, Galvin and Gagne ©2005



Queuing Models

m Little's formula (for a stable system):

n= A x W 14 persons in queue =
7 arrives/per second %
A : average arrival n:average queue length 2 seconds waiting

rate
| S queue | >

W: average waiting time

® Queuing analysis can be useful in comparing scheduling
algorithms, but it also has limitations.

® Queuing model is only an approximation of a real system.
Thus, the result is questionable.

* The arrival and service distributions are often defined in unrealistic,
but mathematically tractable, ways.

* Besides, independent assumptions may not be true.

Silberschatz, Galvin and Gagne ©2005

Operating System Concepts 5.55



Simulations

® Simulations involve programming a model of the system.
Software data structures represent the major components
of the system.

® Simulations get a more accurate evaluation of scheduling
algorithms.

e expensive (several hours of computer time).
e |large storage
e coding a simulator can be a major task
® Generating data to drive the simulator
e a random number generator.

* trace tapes: created by monitoring the real system,
recording the sequence of actual events.

Operating System Concepts 5.56 Silberschatz, Galvin and Gagne ©2005



Evaluation of CPU Schedulers by
Simulation

. : performance
simulation —>»  statistics

for FCFS
FCFS

GRELl 10
[ B
actual &l 2 performance
process —=p{l/O 112 —lp simulation —»  statistics

execution GRPll 3 for SJF

e 147

Rl 3 Ik

trace tape

. . performance
simulation —>»  statistics
for RR (g = 14)

RR (g = 14)

Operating System Concepts 557 Silberschatz, Galvin and Gagne ©2005



Implementation

® Put data into a real system and see how it works.
® The only accurate way
e cost Is too high

* environment will change (All methods have this
problem!)

* e.g., To avoid moving to a lower priority gueue, a user
may output a meaningless character on the screen
regularly to keep itself in the interactive queue.

Operating System Concepts 5.58 Silberschatz, Galvin and Gagne ©2005



Home Works

m2 3579
® First exam.: Nov. 3 (10:10 ~ 11:30)

Operating System Concepts 5.59 Silberschatz, Galvin and Gaghe ©2005



End of Chapter 5
QIBBDIIGIBBDIIGIIBDIIGIIBB I




	頁 1
	頁 2
	頁 3
	頁 4
	頁 5
	頁 6
	頁 7
	頁 8
	頁 9
	頁 10
	頁 11
	頁 12
	頁 13
	頁 14
	頁 15
	頁 16
	頁 17
	頁 18
	頁 19
	頁 20
	頁 21
	頁 22
	頁 23
	頁 24
	頁 25
	頁 26
	頁 27
	頁 28
	頁 29
	頁 30
	頁 31
	頁 32
	頁 33
	頁 34
	頁 35
	頁 36
	頁 37
	頁 38
	頁 39
	頁 40
	頁 41
	頁 42
	頁 43
	頁 44
	頁 45
	頁 46
	頁 47
	頁 48
	頁 49
	頁 50
	頁 51
	頁 52
	頁 53
	頁 54
	頁 55
	頁 56
	頁 57
	頁 58
	頁 59
	頁 60

