
Chapter 5: Process Chapter 5: Process
SchedulingScheduling

5.2 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Chapter 5: Process SchedulingChapter 5: Process Scheduling

■ Basic Concepts

■ Scheduling Criteria

■ Scheduling Algorithms

■ Multiple-Processor Scheduling

■ Thread Scheduling

■ Operating Systems Examples

■ Algorithm Evaluation

5.3 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Basic ConceptsBasic Concepts

■ The idea of multiprogramming:

● Keep several processes in memory. Every time one
process has to wait, another process takes over the
use of the CPU

■ CPU-I/O burst cycle: Process execution consists of a
cycle of CPU execution and I/O wait (i.e., CPU burst and I/
O burst).

● Generally, there is a large number of short CPU bursts,
and a small number of long CPU bursts.

● An I/O-bound program would typically has many very
short CPU bursts.

● A CPU-bound program might have a few long CPU
bursts

5.4 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Alternating Sequence of CPU And I/O BurstsAlternating Sequence of CPU And I/O Bursts

5.5 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Histogram of CPU-burst TimesHistogram of CPU-burst Times

5.6 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

CPU SchedulerCPU Scheduler

■ Selects from among the processes in memory that
are ready to execute, and allocates the CPU to
one of them

■ CPU scheduling decisions may take place when a
process:

1.Switches from running to waiting state

2.Switches from running to ready state

3.Switches from waiting to ready

4.Terminates

■ Scheduling under 1 and 4 is nonpreemptive

■ All other scheduling is preemptive

5.7 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Preemptive IssuesPreemptive Issues

■ Inconsistent cases may occur: preemptive scheduling
incurs a cost associated with access to shared data

■ Affect the design of OS kernel: What happens if the
process is preempted in the middle of critical changes
(for instance, I/O queues) and the kernel (or the device
driver) needs to read or modify the same structure?

● Unix solution: waiting either for a system call to
complete or for an I/O block to take place before doing
a context switch

● However, weak in supporting real-time computing and
multiprocessing

5.8 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

DispatcherDispatcher

■ Dispatcher module gives control of the CPU to the
process selected by the short-term scheduler; this
involves:

● switching context

● switching to user mode

● jumping to the proper location in the user
program to restart that program

■ Dispatch latency – time it takes for the dispatcher
to stop one process and start another running

5.9 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Scheduling CriteriaScheduling Criteria

■ CPU utilization – keep the CPU as busy as
possible

■ Throughput – # of processes that complete
their execution per time unit

■ Turnaround time – amount of time to
execute a particular process

■ Waiting time – amount of time a process has
been waiting in the ready queue

■ Response time – amount of time it takes
from when a request was submitted until the
first response is produced, not output (for
time-sharing environment)

5.10 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Optimization CriteriaOptimization Criteria

■ Max CPU utilization

■ Max throughput

■ Min turnaround time

■ Min waiting time

■ Min response time

5.11 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Scheduling AlgorithmsScheduling Algorithms

■ First-come, first-served (FCFS) scheduling

■ Shortest-job-first (SJF) scheduling

■ Priority scheduling

■ Round-robin scheduling

■ Multilevel queue scheduling

■ Multilevel feedback queue scheduling

5.12 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

First-Come, First-Served (FCFS) SchedulingFirst-Come, First-Served (FCFS) Scheduling

Process Burst Time

P1 24

 P2 3

 P3 3

■ Suppose that the processes arrive in the order: P1 , P2 , P3

The Gantt Chart for the schedule is:

■ Waiting time for P1 = 0; P2 = 24; P3 = 27

■ Average waiting time: (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 300

5.13 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

FCFS Scheduling (Cont.)FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order

 P2 , P3 , P1

■ The Gantt chart for the schedule is:

■ Waiting time for P1 = 6; P2 = 0; P3 = 3

■ Average waiting time: (6 + 0 + 3)/3 = 3

■ Much better than previous case

■ Convoy effect short process behind long process

P1P3P2

63 300

5.14 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Shortest-Job-First (SJR) SchedulingShortest-Job-First (SJR) Scheduling

■ Associate with each process the length of its next
CPU burst. Use these lengths to schedule the
process with the shortest time

■ Two schemes:
● nonpreemptive – once CPU given to the process it

cannot be preempted until completes its CPU burst

● preemptive – if a new process arrives with CPU burst
length less than remaining time of current executing
process, preempt. This scheme is know as the
Shortest-Remaining-Time-First (SRTF)

■ SJF is optimal – gives minimum average waiting
time for a given set of processes

5.15 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Process Arrival Time Burst Time

P1 0.0 7

 P2 2.0 4

 P3 4.0 1

 P4 5.0 4

■ SJF (non-preemptive)

■ Average waiting time = (0 + 6 + 3 + 7)/4 = 4

Example of Non-Preemptive SJFExample of Non-Preemptive SJF

P1 P3 P2

73 160

P4

8 12

5.16 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Example of Preemptive SJFExample of Preemptive SJF

Process Arrival Time Burst Time

P1 0.0 7

 P2 2.0 4

 P3 4.0 1

 P4 5.0 4

■ SJF (preemptive)

■ Average waiting time = (9 + 1 + 0 +2)/4 = 3

P1 P3P2

42 110

P4

5 7

P2 P1

16

5.17 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Determining Length of Next CPU BurstDetermining Length of Next CPU Burst

■ Frequently used in long-term scheduling

● A user is asked to estimate the job length. A lower
value means faster response. Too low a value will
cause timeout.

■ Approximate SJF: the next burst can be predicted as an
exponential average of the measured length of
previous CPU bursts

nnn t τ)α1(ατ 1 −+=+

...)
2
1()

2
1()

2
1(

...α)α1(α)α1(α

2
3

1
2

2
2

1

+++=

+−+−+=

−−

−−

nnn

nnn

ttt

ttt

1/2
Commonly,

=α

history

new one

5.18 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Prediction of the Length of the Next CPU BurstPrediction of the Length of the Next CPU Burst

5.19 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Examples of Exponential AveragingExamples of Exponential Averaging

■ α =0

● τn+1 = τn

● Recent history does not count
■ α =1

● τn+1 = α tn = tn

● Only the actual last CPU burst counts
■ Since both α and (1 - α) are less than or equal to 1,

each successive term has less weight than its
predecessor

5.20 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Priority SchedulingPriority Scheduling
■ A priority number (integer) is associated with each

process

■ The CPU is allocated to the process with the
highest priority (smallest integer ≡ highest priority)

● Preemptive

● nonpreemptive

■ SJF is a priority scheduling where priority is the
predicted next CPU burst time

■ Problem: Starvation – low priority processes may
never execute

■ Solution: Aging – as time progresses increase the
priority of the process

5.21 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Process Burst Time Priority
P1 10 3
P2 1 1
P3 2 4
P4 1 5

P5 P3
0 1 6 16 18 19

P4P2 P1

P5 5 2

AWT = (6+0+16+18+1)/5=8.2

An Example

5.22 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Round Robin (RR)Round Robin (RR)

■ Each process gets a small unit of CPU time (time
quantum), usually 10-100 milliseconds. After this time
has elapsed, the process is preempted and added to
the end of the ready queue.

■ If there are n processes in the ready queue and the
time quantum is q, then each process gets 1/n of the
CPU time in chunks of at most q time units at once.
No process waits more than (n-1)q time units.

■ Performance

● q large ⇒ FIFO

● q small ⇒ q must be large with respect to context
switch, otherwise overhead is too high

5.23 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Example of RR with Time Quantum = 20Example of RR with Time Quantum = 20

Process Burst Time

P1 53

 P2 17

 P3 68

 P4 24

■ The Gantt chart is:

■ Typically, higher average turnaround than SJF, but
better response

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162

5.24 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Time Quantum and Context Switch TimeTime Quantum and Context Switch Time

5.25 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Turnaround Time Varies With The Time Turnaround Time Varies With The Time
QuantumQuantum

p1p2p3p4p1p2p4p1p2p4p1p4p1p4p1p4p4

 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7

5.26 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Multilevel QueueMultilevel Queue

■ Ready queue is partitioned into separate queues:
foreground (interactive) and background (batch)

■ Each queue has its own scheduling algorithm
● foreground – RR

● background – FCFS

■ Scheduling must be done between the queues
● Fixed priority scheduling; (i.e., serve all from foreground then from

background). Possibility of starvation.

● Time slice – each queue gets a certain amount of CPU time which
it can schedule amongst its processes; i.e., 80% to foreground in
RR

● 20% to background in FCFS

5.27 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Multilevel Queue SchedulingMultilevel Queue Scheduling

5.28 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Multilevel Feedback QueueMultilevel Feedback Queue

■ A process can move between the various queues; aging
can be implemented this way

■ Multilevel-feedback-queue scheduler defined by the
following parameters:

● number of queues

● scheduling algorithms for each queue

● method used to determine when to upgrade a
process

● method used to determine when to demote a process

● method used to determine which queue a process
will enter when that process needs service

5.29 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Example of Multilevel Feedback QueueExample of Multilevel Feedback Queue
■ Three queues:

● Q0 – RR with time quantum 8 milliseconds

● Q1 – RR time quantum 16 milliseconds

● Q2 – FCFS

■ Scheduling

● A new job enters queue Q0 which is served FCFS.
When it gains CPU, job receives 8 milliseconds. If it
does not finish in 8 milliseconds, job is moved to
queue Q1.

● At Q1 job is again served FCFS and receives 16
additional milliseconds. If it still does not complete, it
is preempted and moved to queue Q2.

5.30 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Multilevel Feedback QueuesMultilevel Feedback Queues

5.31 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Multiple-Processor SchedulingMultiple-Processor Scheduling

■ Only homogeneous systems are discussed here

■ Symmetric multiprocessing

● Each processor is self-scheduling

● All processes may be in a common ready queue or
each processor have its own private queue

■ Asymmetric multiprocessing: all system activities are
handled by a processor, the others only execute user
code (allocated by the master), which is far simple than
symmetric multiprocessing

■ Processor affinity: a process has an affinity for the
processor on which it is currently running

● Keep a process running on the same processor

5.32 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

SMT: Symmetric MultithreadingSMT: Symmetric Multithreading

■ SMP: Allow several threads to run concurrently by
providing multiple physical processors (PPs).

■ SMT: providing multiple logical processors (LPs) on the
same PP.

■ Each LP has its own architecture state, including
general-purpose and machine-state registers.
● LP is responsible for its own interrupt handling

■ SMT is a feature provided by H/W (state, interrupt
handling), not S/W.
● Certain performance gain are possible if OS is aware

that.
● e.g., Consider a system with two PPs, both are idle.

The scheduler should first try scheduling separate
threads on each PP rather than on separate LPs on
the same PP.

5.33 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

A Typical SMT ArchitectureA Typical SMT Architecture

5.34 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Real-Time SchedulingReal-Time Scheduling

■ Hard real-time systems – required to complete
a critical task within a guaranteed amount of
time

■ Soft real-time computing – requires that critical
processes receive priority over less fortunate
ones

5.35 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Thread SchedulingThread Scheduling

■ Local Scheduling – How the threads library
decides which thread to put onto an available
LWP

■ Global Scheduling – How the kernel decides
which kernel thread to run next

5.36 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Thread SchedulingThread Scheduling

■ User-level threads are managed by a thread library, and
the kernel is unaware of them. To run on a CPU, user-
level threads are ultimately mapped to an associated
kernel-level thread, or LWP.
 Process local scheduling: Thread scheduling is

done local to the application. The threads library
schedules user-level threads to run on an available
LWP

 System global scheduling: The kernel decides
which kernel thread to schedule

5.37 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Pthread Scheduling APIPthread Scheduling API
#include <pthread.h>
#include <stdio.h>
#define NUM_THREADS 5
int main(int argc, char *argv[])
{

int i;
pthread_t tid[NUM_THREADS];
pthread_attr_t attr;
/* get the default attributes */
pthread_attr_init(&attr);
/* set the scheduling algorithm to PROCESS or SYSTEM
*/
pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);
/* set the scheduling policy - FIFO, RT, or OTHER */
pthread_attr_setschedpolicy(&attr, SCHED_OTHER);
/* create the threads */
for (i = 0; i < NUM_THREADS; i++)

pthread_create(&tid[i],&attr,runner,NULL);

5.38 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Pthread Scheduling APIPthread Scheduling API

/* now join on each thread */
for (i = 0; i < NUM THREADS; i++)

pthread_join(tid[i], NULL);
}
 /* Each thread will begin control in this
function */

void *runner(void *param)
{
printf("I am a thread\n");
pthread_exit(0);

}

5.39 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Operating System ExamplesOperating System Examples

■ Solaris scheduling

■ Windows XP scheduling

■ Linux scheduling

5.40 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Solaris 2 SchedulingSolaris 2 Scheduling

5.41 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Solaris Scheduling Solaris Scheduling

■ Four classes of scheduling: real-time -> system ->
interactive -> time sharing.

■ A process starts with one LWP and is able to create new
LWPs as needed. Each LWP inherits the scheduling
class and priority of the parent process. Default : time
sharing (multilevel feedback queuemultilevel feedback queue)

■ Inverse relationship between priorities and time slices:
the high the priority, the smaller the time slice.

■ Interactive processes typical have a higher priority; CPU-
bound processes have a lower priority.

5.42 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Solaris Scheduling Solaris Scheduling

■ Uses the system classsystem class to run kernel processes, such as
the scheduler and paging daemon. The system class is
reserved for kernel use onlykernel use only. User process running in
kernel mode are not in the system class.

■ Threads in the real-time class are given the highest
priority to run among all classes.

■ There is a set of priorities within each class. However,
the scheduler converts the class-specific priorities into
global priorities. (round-robin queue)

5.43 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Solaris Dispatch Table (for interactive Solaris Dispatch Table (for interactive
and time-sharing threads) and time-sharing threads)

5.44 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Dispatch TableDispatch Table

■ Priority: a higher number indicates a higher priority

■ Time quantum: the lower priority has the higher time
quantum

■ Time quantum expired: the new priority of a thread
that has used its entire time quantum without
blocking. Such threads are considered CPU-
intensive. Lower priority of these thread

■ Return from sleep: the priority of a thread that is
returning from sleeping (such as waiting for I/O). Its
priority is boosted to between 50 and 59.

5.45 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Windows XP PrioritiesWindows XP Priorities

5.46 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Windows XP SchedulingWindows XP Scheduling

■ Using a priority-based, preemptive scheduling
algorithm

■ There are 32-level priority which are divided into
two classes

● The variable class contains priorities from 1 to 15

● The real-time class contains threads from 16 to 31

■ Within each of the priority classes is a relative
priority

■ The priority of each thread is based on the priority
class it belongs to and its relative priority within
that class.

5.47 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Linux Scheduling – preemptive & Linux Scheduling – preemptive &
prioritypriority

■ Version 2.5: support SMP, Load balancing & Processor affinity
■ Time-sharing (100-140) and Real-time (0-99)
■ Higher priority with longer time quanta
■ Time-sharing

● Prioritized credit-based – process with most credits is scheduled
next

● Credit subtracted when timer interrupt occurs
● When credit = 0, another process chosen
● When all processes have credit = 0, recrediting occurs

Based on factors including priority and history
■ Real-time

● Soft real-time
● Posix.1b compliant – two classes

FCFS and RR
Highest priority process always runs first

5.48 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

The Relationship Between Priorities and The Relationship Between Priorities and
Time-slice lengthTime-slice length

5.49 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

List of Tasks Indexed According to List of Tasks Indexed According to
ProritiesProrities

5.50 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Algorithm EvaluationAlgorithm Evaluation

■ Criteria to select a CPU scheduling algorithm may include
several measures, such as:
● Maximize CPU utilization under the constraint that the

maximum response time is 1 second
● Maximize throughput such that turnaround time is (on

average) linearly proportional to total execution time
■ Evaluation methods ?

● deterministic modelingdeterministic modeling
● queuing modelsqueuing models
● simulationssimulations
● implementationimplementation

5.51 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Deterministic Modeling Deterministic Modeling

■ Analytic evaluationAnalytic evaluation

Input: a given algorithm and a system workload to

Output: performance of the algorithm for that workload
■ Deterministic modelingDeterministic modeling

● Taking a particular predetermined workload and
defining the performance of each algorithm for that
workload.

5.52 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Deterministic Modeling Deterministic Modeling

 FCFS

 SJF

 RR (q = 10)

Process Burst Time
P1 10
P2 29
P3 3
P4 7

P5P3
0 10 39 42 49 61

P4P2P1

P5 12

P5P3
0 3 10 20 32 61

P4 P2P1

P5P3
0 10 20 23 30 40 50 52 61

P4P2P1 P2 P2P5

AWT = 28 ms

AWT = 13 ms

AWT = 23 ms

5.53 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Deterministic Modeling Deterministic Modeling

■ A simple and fast method. It gives the exact numbers,
allows the algorithms to be compared.

■ It requires exact numbers of input, and its answers apply to its answers apply to
only those casesonly those cases. In general, deterministic modeling is too
specific, and requires too much exact knowledge, to be
useful.

■ Usage

● Describing algorithm and providing examples

● A set of programs that may run over and over againA set of programs that may run over and over again

● Indicating the trends that can then be proved

5.54 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Queuing Models Queuing Models

■ Queuing network analysis

● Using

the distributiondistribution of service times (CPU and I/O bursts)

the distributiondistribution of process arrival times

● The computer system is described as a network of
servers. Each server has a queue of waiting processes.

● Determining

 utilization, average queue length, average waiting
time, and so on

5.55 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Queuing Models Queuing Models
■ Little's formula (for a stable system):

n = λ × W

■ Queuing analysis can be useful in comparing scheduling
algorithms, but it also has limitations.

■ Queuing model is only an approximation of a real system.
Thus, the result is questionable.

● The arrival and service distributions are often defined in unrealistic,
but mathematically tractable, ways.

● Besides, independent assumptions may not be true.

n : average queue lengthn : average queue length

W: average waiting time

queue server

λλ : average arrival : average arrival
raterate

14 persons in queue =14 persons in queue =
7 arrives/per second 7 arrives/per second ××
22 seconds waitingseconds waiting

5.56 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

SimulationsSimulations

■ Simulations involve programming a model of the system.
Software data structures represent the major components
of the system.

■ Simulations get a more accurate evaluation of scheduling
algorithms.
● expensive (several hours of computer time).
● large storage
● coding a simulator can be a major task

■ Generating data to drive the simulator
● a random number generator.
● trace tapestrace tapes: created by monitoring the real system,

recording the sequence of actual events.

5.57 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Evaluation of CPU Schedulers by Evaluation of CPU Schedulers by
SimulationSimulation

5.58 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

ImplementationImplementation

■ Put data into a real system and see how it works.
■ The only accurate way

● cost is too high
● environment will change (All methods have this

problem!)
● e.g., To avoid moving to a lower priority queue, a user

may output a meaningless character on the screen
regularly to keep itself in the interactive queue.

5.59 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Home WorksHome Works

■ 2, 3, 5, 7, 9

■ First exam.: Nov. 3 (10:10 ~ 11:30)

End of Chapter 5End of Chapter 5

	頁 1
	頁 2
	頁 3
	頁 4
	頁 5
	頁 6
	頁 7
	頁 8
	頁 9
	頁 10
	頁 11
	頁 12
	頁 13
	頁 14
	頁 15
	頁 16
	頁 17
	頁 18
	頁 19
	頁 20
	頁 21
	頁 22
	頁 23
	頁 24
	頁 25
	頁 26
	頁 27
	頁 28
	頁 29
	頁 30
	頁 31
	頁 32
	頁 33
	頁 34
	頁 35
	頁 36
	頁 37
	頁 38
	頁 39
	頁 40
	頁 41
	頁 42
	頁 43
	頁 44
	頁 45
	頁 46
	頁 47
	頁 48
	頁 49
	頁 50
	頁 51
	頁 52
	頁 53
	頁 54
	頁 55
	頁 56
	頁 57
	頁 58
	頁 59
	頁 60

