Chapter 19: Fibonacci Heap I

About this lecture

- · Introduce Fibonacci Heap
 - another example of mergeable heap
 - no good worst-case guarantee for any operation (except Insert/Make-Heap)
 - excellent amortized cost to perform each operation

Fibonacci Heap

 Like binomial heap, Fibonacci heap consists of a set of min-heap ordered component trees

- · However, unlike binomial heap, it has
 - no limit on #trees (up to O(n)), and
 - no limit on height of a tree (up to O(n))

Fibonacci Heap

Consequently,
 Find-Min, Extract-Min, Union,
 Decrease-Key, Delete
 all have worst-case O(n) running time

 However, in the amortized sense, each operation performs very quickly ...

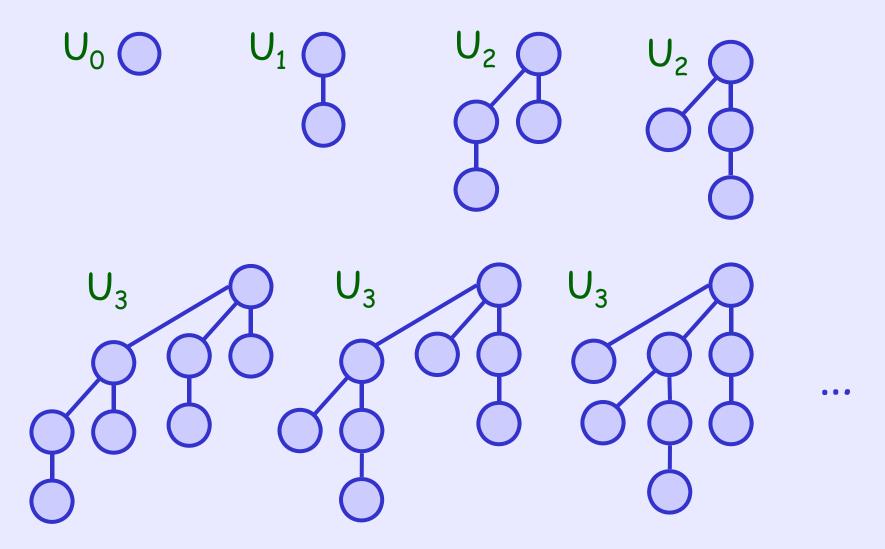
Comparison of Three Heaps

	Binary (worst-case)	Binomial (worst-case)	Fibonacci (amortized)
Make-Heap	Θ(1)	Θ(1)	Θ(1)
Find-Min	Θ(1)	⊕(log n)	Θ(1)
Extract-Min	⊕(log n)	⊕(log n)	⊕(log n)
Insert	⊕(log n)	⊕(log n)	Θ(1)
Delete	⊕(log n)	⊕(log n)	⊕(log n)
Decrease-Key	⊕(log n)	⊕(log n)	Θ(1)
Union	Θ(n)	⊕(log n)	Θ(1)

Fibonacci Heap

- If we never perform Decrease-Key or Delete, each component tree of Fibonacci heap will be an unordered binomial tree
 - An order-k unordered binomial tree U_k is a tree whose root is connected to $U_{k-1},\,U_{k-2},\,...,\,U_0$, in any order
 - \rightarrow in this case, height = $O(\log n)$
- · In general, the tree can be very skew

Unordered Binomial Tree



Properties of Uk

Lemma: For an unordered binomial tree Uk,

- 1. There are 2k nodes
- 2. height = k
- 3. deg(root) = k; deg(other node) < k
- 4. Children of root are U_{k-1} , U_{k-2} , ..., U_0 in any order
- 5. Exactly C(k,i) nodes at depth i

How to prove? (By induction on k)

Potential Function

- To help the running time analysis, we may mark a tree node from time to time
 - Roughly, we mark a node if it has lost a child
- For a heap H, let
 t(H) = #trees, m(H) = #marked nodes
- The potential function Φ for H is simply:

$$\Phi(H) = t(H) + 2 m(H)$$

[Here, we assume a unit of potential is large enough to pay for any constant amount of work]

Remark

- Let Φ_i = potential after i^{th} operation
 - \rightarrow Φ_0 = 0, $\Phi_i \ge \Phi_0$ for all i So, if each operation sets its amortized cost α_i by the formula $(\alpha_i = c_i + \Phi_i - \Phi_{i-1})$
 - → total amortized ≥ total actual
- We claim that we can compute MaxDeg(n), which can bound max degree of any node.
 Also, MaxDeg(n) = O(log n)
 - → This claim will be proven later

Make-Heap():

It just creates an empty heap

- → no trees and no nodes at all !!
- \rightarrow amortized cost = O(1)

Find-Min(H):

The heap H always maintain a pointer min(H) which points at the node with minimum key

- → actual cost = 1
- \rightarrow no change in t(H) and m(H)
- \rightarrow amortized cost = O(1)

Insert(H,x,k):

```
It adds a tree with a single node to H, storing the item x with key k
```

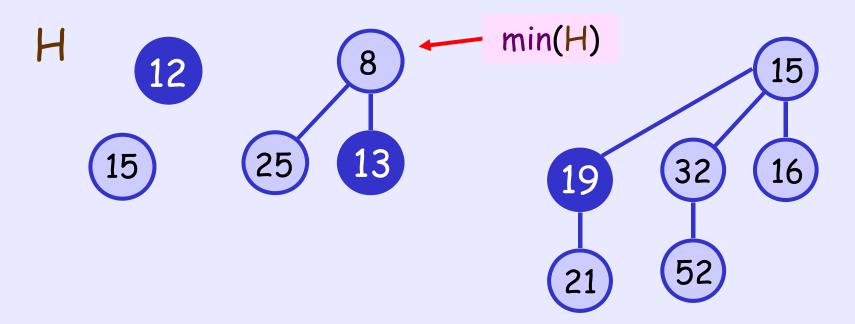
Also, update min(H) if necessary

- → t(H) increased by 1, m(H) unchanged
- \rightarrow amortized cost = 2 + 1 = O(1)

Add a node, and update min(H)

Insertion (Example)

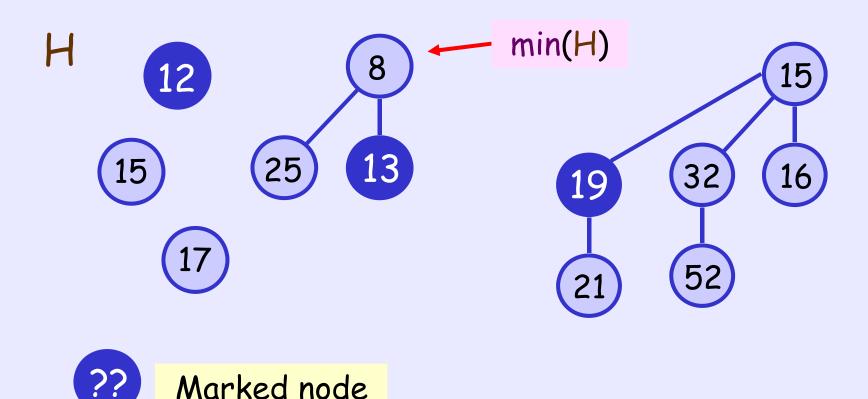
Before Insertion



??? Marked node

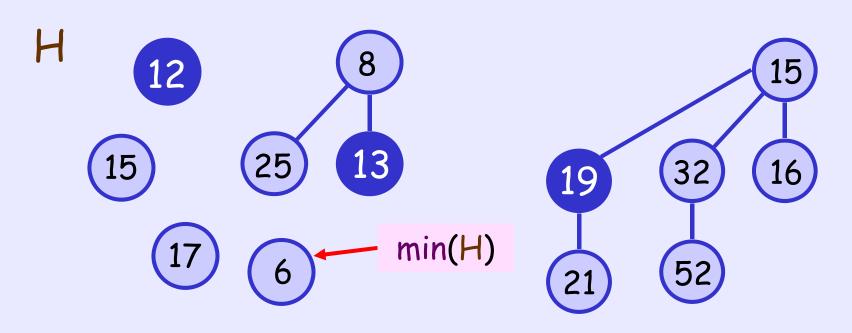
Insertion (Example)

Inserting an item with key = 17



Insertion (Example)

Inserting an item with key = 6



?? Marked node

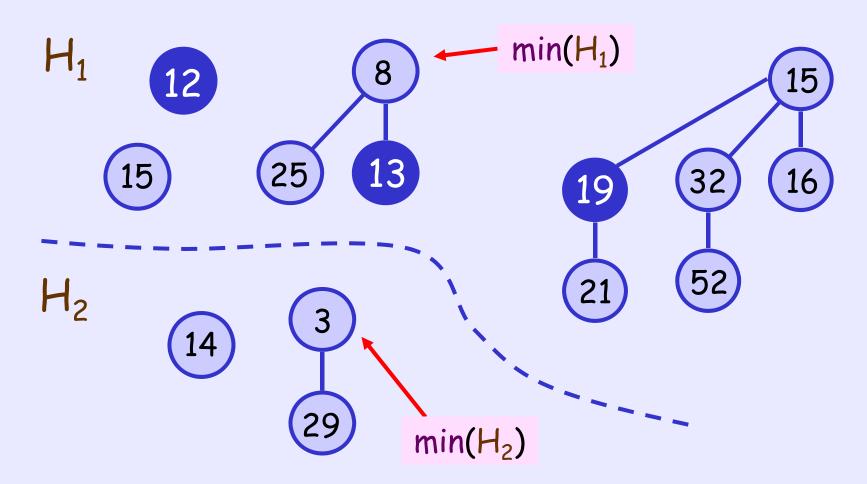
Question: What will happen after k consecutive Insert?

- Union (H_1, H_2) :
 - It puts the trees in H_1 and H_2 together, forming a new heap H
 - does not merge any trees into one
 Set min(H) accordingly
 - → t(H) and m(H) unchanged
 - \rightarrow amortized cost = 2 + 0 = O(1)

Put trees together, and set min(H)

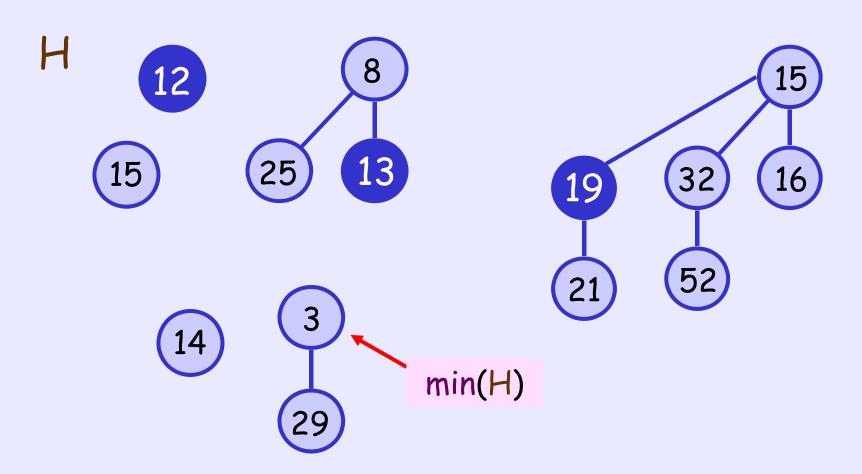
Union (Example)

Before Union



Union (Example)

After Union

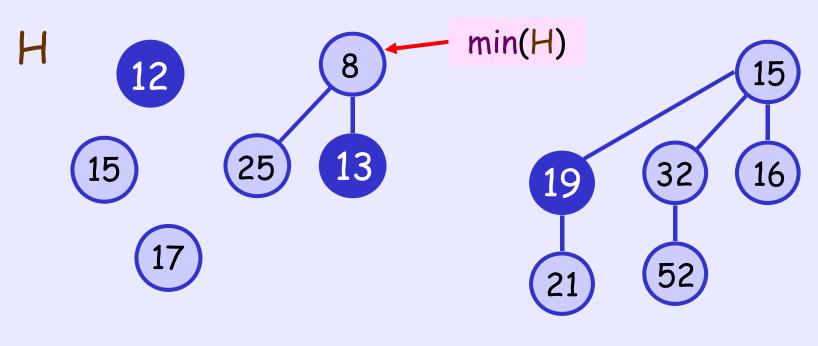


- Insert and Union are both very lazy...
- Extract-Min is a hardworking operation
 - → It reduces the #trees by joining them together
- What if Extract-Min is also lazy ??
 - a sequence of n/2 Insert and n/2 Extract-Min has worst-case O(n²) time

Extract-Min

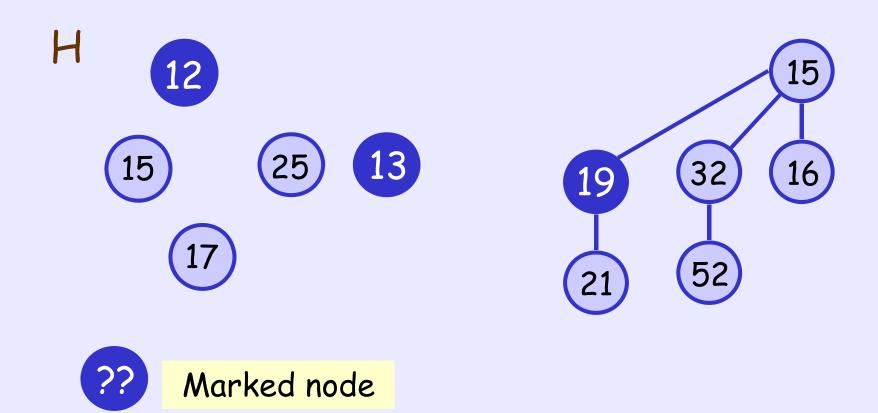
- Two major steps:
 - 1. Remove node with minimum key → its children form roots of new trees in H
 - 2. Consolidation: Repeatedly joining roots of two trees with same degree
 - → in the end, the roots of any two trees do not have same degree
- ** During consolidation, if a marked node receives a parent → we unmark the node

Before Extract-Min

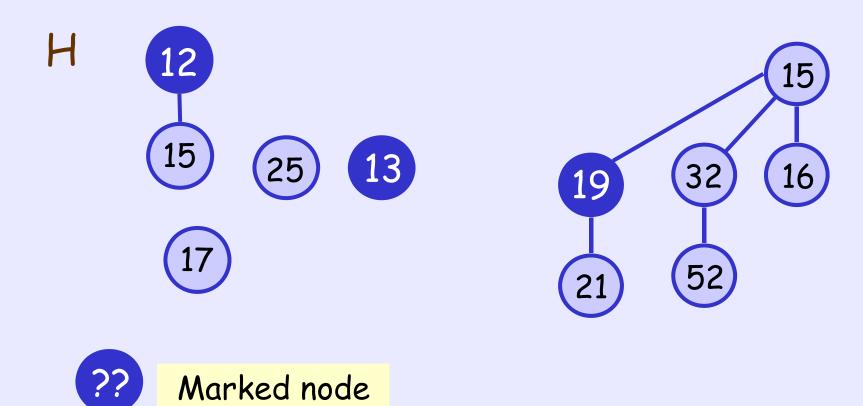


?? Marked node

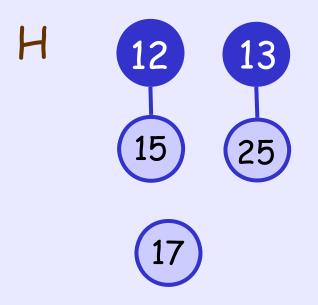
Step 1: Remove node with min-key

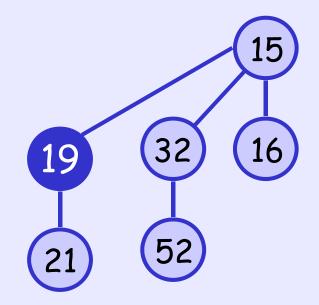


Step 2: Consolidation



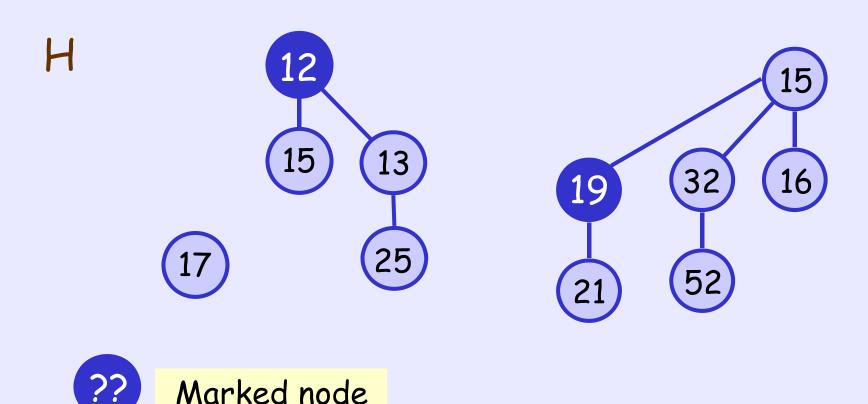
Step 2: Consolidation



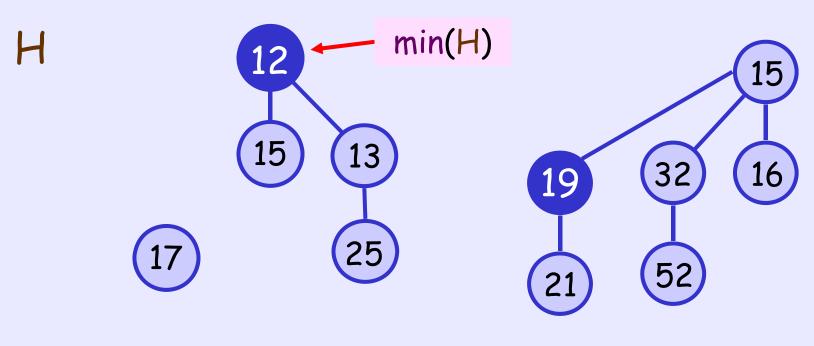


?? Marked node

Step 2: Consolidation



Step 3: After consolidation, update min(H)



?? Marked node

More on Consolidation

- The consolidation step will examine each tree in H one by one, in arbitrary order
- To facilitate the step, we use an array of size MaxDeg(n)

[Recall: $MaxDeg(n) \ge max deg of a node in final heap]$

- At any time, we keep track of at most one tree of a particular degree
 - > If there are two, we join their roots

Amortized Cost

- Let H' denote the heap just before the Extract-Min operation
- → actual cost: O(t(H') + MaxDeg(n))
 potential before: t(H') + 2m(H')
 potential after:
 at most MaxDeg(n) + 1 + 2m(H')

[since #trees \leq MaxDeg(n) +1, and no new marked nodes]

 \rightarrow amortized cost $\leq 2MaxDeg(n) + 1 = O(log n)$