Chapter 2
Single-node Architecture
Outline

- 2.1. Sensor Node Architecture
- 2.2. Introduction of Sensor Hardware Platform
- 2.3. Energy Consumption of Sensor Node
- 2.4. Network Architecture
- 2.5. Challenges of Sensor Nodes
- 2.6. Summary
2.1. Sensor Node Architecture
Main Architecture of Sensor Node

- The main architecture of sensor node includes following components:
 - Controller module
 - Memory module
 - Communication module
 - Sensing modules
 - Power supply module
Main Components of a Sensor Node: Controller module

- **Main options:**
 - **MCUs (Microcontrollers)**
 - The processor for general purposes
 - Optimized for embedded applications
 - Low energy consumption
 - **DSPs (Digital Signal Processors)**
 - Optimized for signal processing
 - Low cost
 - High processing speed
 - Not suitable for sensor node
 - **FPGAs (Field Programmable Gate Arrays)**
 - Suitable for product development and testing
 - Cost higher than DSPs
 - High energy consumption
 - Processing speed lower than ASICs
 - **ASICs (Application-Specific Integrated Circuits)**
 - Only when peak performance is needed
 - For special purpose
 - Not flexible
Main Components of a Sensor Node: Controller module

- Example of microcontrollers are recently used in Sensor Node
 - ATMega128L, Atmel
 - 8-bit controller
 - 128KB program memory (flash)
 - 512KB additional data flash memory
 - larger memory than MSP430
 - slower
 - MSP430, TI (Texas Instruments)
 - 16-bit RISC core
 - 8MHz
 - 48KB Flash
 - 10KB RAM
 - several DACs
 - RT clock
 - 8051 in CC2430 & CC2431, TI (Texas Instruments)
 - 8-bit MCU
 - 32/64/128 KB program memory
 - 8 KB RAM
 - 21I/O
Main Components of a Sensor Node: Communication module

- The communication module of a sensor node is called “Radio Transceiver”
- The essentially tasks of transceiver is to “transmit” and “receive” data between a pair of nodes
- Which characteristics of the transceiver should be consider for sensor nodes?
 - Capabilities
 - Energy characteristics
 - Radio performance
Main Components of a Sensor Node: Communication module

- Transceiver characteristics
 - Capabilities
 - Interface to upper layers (most notably to the MAC layer)
 - bit, byte or packet?
 - Supported frequency range?
 - Typically, somewhere in 433 MHz – 2.4 GHz, ISM band
 - Supported multiple channels?
 - Transmission data rates?
 - Communication range?
Main Components of a Sensor Node: Communication module

- Transceiver characteristics
 - Energy characteristics
 - Power consumption to send/receive data?
 - Time and energy consumption to change between different states?
 - Supported transmission power control?
 - Power efficiency (which percentage of consumed power is radiated?)
Main Components of a Sensor Node: Communication module

- Radio performance
 - Modulation?
 - ASK, FSK, PSK, QPSK…
 - Noise figure?
 - Gain?
 - Carrier sensing and RSSI characteristics
 - Frequency stability (Ex: towards temperature changes)
 - Voltage range
Main Components of a Sensor Node:
Communication module

- Transceivers typically have several different states/modes:
 - **Transmit** mode
 - Transmitting data
 - **Receive** mode
 - Receiving data
 - **Idle** mode
 - Ready to receive, but not doing so
 - Some functions in hardware can be switched off
 - Reducing energy consumption a little
 - **Sleep** mode
 - Significant parts of the transceiver are switched off
 - Not able to immediately receive something
 - Recovery time and startup energy to leave sleep state can be significant
Main Components of a Sensor Node: Communication module

Example of transceivers are recently used in Sensor Node

- **RFM TR1000 family**
 - 916 or 868 MHz
 - 400 kHz bandwidth
 - Up to 115.2 kbps
 - On/off keying or ASK
 - Dynamically tuneable output power
 - Maximum power about 1.4 mW
 - Low power consumption

- **Chipcon CC1000**
 - Range 300 to 1000 MHz, programmable in 250 Hz steps
 - FSK modulation
 - Provides RSSI

- **Chipcon CC 2400**
 - Ex: TI CC2420
 - Implements 802.15.4
 - 2.4 GHz, DSSS modem
 - 250 kbps
 - Higher power consumption than above transceivers

- **Infineon TDA 525x family**
 - E.g., 5250: 868 MHz
 - ASK or FSK modulation
 - RSSI, highly efficient power amplifier
 - Intelligent power down, “self-polling” mechanism
 - Excellent blocking performance
Main Components of a Sensor Node:

Communication module

- TI CC 2431
 - 8051 MCU core
 - 128KB in-system programmable flash
 - 8KB RAM, 4KB with data retention in all power mode
 - Powerful DMA
 - One IEEE 802.15.4 MAC timer
 - 2.4GHz IEEE 802.15.4 compliant RF
 - RX (27mA), TX (27mA), MCU running at 32MHz
 - 0.5uA current consumption in powerdown mode
 - 0.3uA current consumption in stand-by mode
 - Wide supply voltage range (2.0V-3.6V)
 - CSMA/CA hardware support
 - Digital RSSI/LQI support
 - 12-bit ADC with up to eight inputs and configuration resolution
 - Two USARTs with support for several serial protocols
Main Components of a Sensor Node: Sensing module

- Sensor’s main categories [1]
 - Passive vs. Active
 - Directional vs. Omnidirectional

- Some sensor examples
 - Passive, omnidirectional
 - light, thermometer, microphones, hygrometer, …
 - Passive, directional
 - electronic compass, gyroscope, …
 - Passive, narrow-beam
 - CCD Camera, triple axis accelerometer, infrared sensor …
 - Active sensors
 - Radar, Ultrasonic, …
Main Components of a Sensor Node:
Sensing module

- Example of sensors are integrated with Sensor Node

- Infar sensor
- Electronic compass
- Triple axis accelerometer
- Ultrasonic
- Pressure Sensor
- Gyroscope
- Temperature and Humidity Sensor
Main Components of a Sensor Node: Power supply module

- **Power supply module**
 - Provides as much energy as possible and includes following requirements
 - Longevity (long shelf live)
 - Low self-discharge
 - Voltage stability
 - Smallest cost
 - High capacity/volume
 - Efficient recharging at low current
 - Shorter recharge time

- **Options of power supply module**
 - Primary batteries
 - not rechargeable
 - Secondary batteries
 - rechargeable
 - In WSN, recharging may or may not be an option
Main Components of a Sensor Node : Memory module

- The memory module of a sensor node has two major tasks
 - To store intermediate sensor readings, packets from other nodes, and so on.
 - To store program code
- For the first task
 - Random Access Memory (RAM) is suitable
 - The advantage of RAM is fast
 - The main disadvantage is that it loses its content if power supply is interrupted
Main Components of a Sensor Node: Memory module

- For the second task
 - Read-Only Memory (ROM)
 - Electrically Erasable Programmable Read-Only Memory (EEPROM)
 - Flash memory (allowing data to be erased or written in blocks)
 - can also serve as intermediate storage of data in case RAM is insufficient or when the power supply of RAM should be shut down for some time
 - long read and write access delays
 - high required energy
2.2. Introduction of Sensor Hardware Platform
Overview of Sensor Node Platforms

- Some modules developed by U.C. Berkeley & Crossbow Tech.
 - **MICA2**
 - 8-bit Atmel ATmega128L microcontroller
 - (4 KB SRAM + 128 KB Flash)
 - RF: CC1000 (data rate: 38.4kbits/s)
 - **MICAz**
 - 8-bit Atmel ATmega128L microcontroller
 - RF: CC2420 (data rate: 250kbits/s)
 - **TelosB**
 - 16-bit MSP430 microcontroller
 - (10 KB RAM + 48KB Flash) + 1MB Flash
 - RF: CC2420 (data rate: 250kbits/s)
 - **IRIS**
 - 8-bit Atmel ATmega1281 microcontroller
 - (8 KB RAM + 128KB Flash) + 512KB Flash
 - RF: RF230, data rate: 250kbits/s
Overview of Sensor Node Platforms

- Octopus modules were developed by NTHU
 - Octopus I (Compatible with MICAz)
 - 8-bit Atmel ATmega128L microcontroller
 - RF: CC2420 (data rate: 250kbits/s)
 - Octopus II
 - 16-bit MSP430 microcontroller
 - 10 KB RAM + 48KB Flash) + 1MB Flash
 - RF: CC2420 (data rate: 250kbits/s)
 - Octopus X
 - 8-bit 8051 microcontroller
 - 128KB in-system programmable flash
 - 8KB RAM + 4KB EEPROM
 - RF: CC2430, EEE 802.15.4 compliant RF transceiver
Introduction of Octopus X Hardware Platform

- Octopus X includes three models
 - Octopus X-A
 - CC2431 + Inverted F Antenna
 - Octopus X-B
 - CC2431 + SMA Type Antenna
 - Octopus X-C
 - CC2431 + Inverted F and SMA Type Antenna + USB interface

- Peripherals of Octopus X
 - Octopus X-USB dongle
 - Octopus X-Sensor board
 - Temperature sensor
 - Gyroscope
 - Three axis accelerometer
 - Electronic Compass
Introduction of Octopus X Hardware Platform

Octopus X-A
(28mm × 28mm)

Octopus X-B
(28mm × 28mm)

Octopus X-C
(57mm × 31mm)
Features of Octopus X-A

- Size: 28mm × 28mm
- Inverted-F antenna
- RF transmission range ≒ 100m
- External crystal (32MHz + 32.768KHz)
- 30-Pin expansion connector
- Polymer batter (3.7V 300mAh)

- MCU (CC2431)
- Inverted-F antenna
- RF transmission range ≒ 100m
- External crystal (32MHz + 32.768KHz)
- 30-Pin expansion connector
- Polymer batter (3.7V 300mAh)
Features of Octopus X-B

- Size: 28mm × 28mm
- SMA Type Antenna
- 30-Pin expansion connector
- CC2431 (MCU+RF)
- MCU (CC2431)
- SMA type antenna
- RF transmission range ≒ 150m
- External crystal (32MHz+32.768KHz)
- 30-Pin expansion connector
- Polymer battery (3.7V 300mAh)

- Height: 7mm
- Polymer battery
Features of Octopus X-C

Size: 57mm × 31mm

- MCU (CC2431)
- SMA type and Inverted-F antenna
- Humidity & Temperature sensor
 - Humidity 0~100%RH (0.03%RH)
 - Temperature -40°C~120°C (0.01°C)
- External flash memory (2MB)
- MicroSD socket (up to 8GB)
- USB Interface
 - Programming
 - Debugging
 - Data collection
Features of Octopus X - USB Dongle

- Octopus X-USB dongle provides an easy-to-use USB protocol for
 - Programming
 - Debugging
 - Data collections
Features of Octopus X - Sensor Boards

Size: 28mm × 18mm

Temperature sensor

Front view of Octopus X-sensor board

Electronic Compass

Back view of Octopus X-sensor board

Sensor board
(Gyroscope + Triple axis accelerometer)
Features of Octopus X - Dock

- USB interface
 - Programming with our flash programmer
 - Data collections
- Debug interface
 - Programming with TI SmartRF04EB
- 30-Pin expansion connector
- User switch and reset switch
- Test points
- DC power switch
- 3 LEDs

Size: 60mm × 71mm
Summary of Octopus X

- Octopus X is not only compatible with IAR embedded workbench but also “Keil C” software
- Octopus X is of 2-Layer design to reduce production cost
- Octopus X can be not only programmed from USB interface but also TI programming board
- RF transmission range of Octopus X is up to 150m
- Expansion connector design on Octopus X provides a user interface for sensor boards and dock
Introduction of Octopus II Hardware Platform

- Octopus II includes two models
 - Octopus II-A
 - MSP430F1611 + USB Interface + Inverted F and SMA Type Antenna
 - Octopus II-B
 - Octopus II-A + External Power Amplifier

- Peripherals of Octopus II
 - Octopus II-Sensor board
 - Temperature sensor
 - Light sensors
 - Gyroscope
 - Three axis accelerometer
Introduction of Octopus II Hardware Platform

Octopus II
Size: 65mm × 31mm

Sensor Board
Size: 50mm × 31mm
Introduction of Octopus II Hardware Platform

- Octopus II block diagram
Introduction of Octopus II Hardware Platform

- Octopus II block diagram

16-bit MSP430 microcontroller core 8MHz
48 KB in-system programmable flash
10 KB RAM
ADC 12-Bit 8 Channels
Features of Octopus II-A

- **MCU (MSP430F1611)**
 - Flash Memory (48 KB + 256 KB)
 - RAM (10 KB)
 - External Flash (1 MB)
 - External Crystal (4 MHz + 32.768 KHz)
 - Serial Communication Interface (USART, SPI or I²C)
 - Low Supply-Voltage Range (1.8V ~ 3.6V)
 - Five Power-Saving Modes

- **Sensors**
 - Humidity & Temperature sensor
 - Humidity 0 ~ 100%RH (0.03%RH)
 - Temperature -40°C ~ 120°C (0.01°C)
 - Light sensors
Features of Octopus II-A

- **Radio (CC2420)**
 - 2.4GHz IEEE 802.15.4 compliant RF
 - Data rate (250 Kbps)
 - Rx (18.8 mA), Tx (17.4 mA)
 - Programmable output power
 - Digital RSSI/LQI support
 - Hardware MAC encryption
 - Battery monitor
 - RF transmission range ≈ 250 m

- **Serial number ID**

- **50-Pin expansion connector**

- **External DC power connector**
Features of Octopus II-A

- Front view of Octopus II-A

Size: 65mm × 31mm
Features of Octopus II-A

- Back view of Octopus II-A
Features of Octopus II-B

- RF transmission range ≃ 450m
- CC2420 with external power amplifier
- Maximum output power: ~10dBm
- Compliance with IEEE 802.15.4 (ZigBee)

Size: 80mm × 31mm

Processor (MSP430F1611)

RF(CC2420)

Power Amplifier
Features of Octopus II - Sensor board

Size: 50mm x 31mm

• Light sensors
• Temperature sensor

Sensors

• Humidity & Temperature sensor
 - Humidity 0-100%RH (0.03%RH)
 - Temperature -40°C~120°C (0.01°C)

• Light sensors

• Gyroscope
 - Integrated X and Y-axis gyro

• Three axis accelerometer
 - Selectable sensitivity (1.5g/2g/4g/6g)
 - Low current consumption (600uA)
 - Sleep mode (3uA)
 - Low voltage operation (2.2V-3.6V)
 - High sensitivity (800mV/g @ 1.5g)
Features of Octopus II - Dock

- Easy-to-develop WSN applications
- Debug interface
 - Programming with TI flash programmer
- DC power input
- Power switch
- 3 power LEDs
- 4 user LEDs
- User switch and reset switch
- 2 row expansion connectors

Size: 90mm × 54mm
Summary of Octopus II

- Octopus II is not only compatible with TinyOS but also standard C programming
- Octopus II is of 2-Layer design to reduce production cost
- Octopus II can be programmed from USB interface
- Octopus II has two kinds of antennas, SMA type and inverted F type
- RF transmission range of Octopus II is up to 450m
- Expansion connector design on Octopus II provides a user interface for sensor boards and dock
2.3. Energy Consumption of Sensor Node
The Main Consumers of Energy

- Microcontroller
- Radio front ends
 - RF transceiver IC
 - RF antenna
- Degree of Memory
 - RAM
 - EEPROM
 - Flash memory
- Depending on the type of sensors
 - Temperature sensor
 - Humidity sensor
- Other components
 - LED
 - External Crystal
 - USB IC
Energy consumption of Microcontroller

- A “back of the envelope” estimation for energy consumption
 - It means “energy consumption” is easily to estimate

- Number of instructions
 - Energy per instruction: 1 \(nJ \) [4]
 - Small battery (“smart dust”): 1 \(J = 1 \) \(Ws \)
 - Corresponds: \(10^9 \) instructions!

- Lifetime
 - Require a single day operational lifetime
 \[24\text{hr} \times 60\text{mins} \times 60\text{secs} = 86400 \text{ secs} \]
 - \(1 \) \(Ws / 86400\text{secs} \equiv 11.5 \mu W \) as max. sustained power consumption!

- Not feasible!
 - Most of the time a wireless sensor node has nothing to do
 - Hence, it is best to turn it off
Multiple power consumption modes

- Way out: Do not run sensor node at full operation all the time
 - If nothing to do, switch to *power safe mode*
 - Question: When to throttle down? How to wake up again?

- Typical modes
 - Microcontroller
 - Active, Idle, Sleep
 - Radio mode
 - Turn on/off transmitter/receiver or Both

- Multiple modes possible, “deeper” sleep modes
 - Strongly depends on hardware
 - Ex: TI MSP 430
 - Four different sleep modes
 - Atmel ATMega
 - Six different modes
Some Energy Consumption Figures

- **Microcontroller power consumption**
 - **TI MSP 430 (@ 1 MHz, 3V) [6]**
 - Fully operation : 1.2 mW
 - Deepest sleep mode : 0.3 µW
 - Only woken up by external interrupts (not even timer is running any more)
 - **Atmel ATMega128L [7]**
 - Operational mode:
 - Active : 15 mW
 - Idle : 6 mW
 - Sleep mode : 75 µW
Some Energy Consumption Figures

 - MCU Active Mode, static : 492 µA
 - No radio, crystals, or peripherals
 - MCU Active Mode, dynamic : 210µA/MHz
 - No radio, crystals, or peripherals
 - MCU Active Mode, highest speed : 7.0 mA
 - MCU running at full speed (32MHz)
 - No peripherals
 - Power mode 1 : 296µA
 - RAM retention
 - Power mode 2 : 0.9 µA
 - RAM retention
 - Power mode 3: 0.6µA
 - No clocks, RAM retention
Some Energy Consumption Figures

- Memory power consumption
 - Power for RAM almost negligible
 - FLASH memory is crucial part

- FLASH writing/erasing is expensive
 - Example: FLASH on Mica motes
 - Reading: $\approx 1.1 \, nAh$ per byte
 - Writing: $\approx 83.3 \, nAh$ per byte
Switching between Modes

- Simplest idea: Greedily switch to lower mode whenever possible
- Problem: Time and power consumption required to reach higher modes not negligible
 - Introduces overhead
 - Switching only pays off if \(E_{\text{saved}} > E_{\text{overhead}} \)
- Example:
 Event-triggered wake up from sleep mode
- Scheduling problem with uncertainty
Switching between Modes

\[E_{\text{saved}} = (t_{\text{event}} - t_1) \times P_{\text{active}} - (\tau_{\text{down}} \times (P_{\text{active}} + P_{\text{sleep}}) / 2 + (t_{\text{event}} - t_1 - \tau_{\text{down}}) \times P_{\text{sleep}}) \]

\[E_{\text{overhead}} = \tau_{\text{up}} \times (P_{\text{active}} + P_{\text{sleep}}) / 2 \]
Power Consumption vs. Transmission Distance

- Free space loss: direct-path signal

\[P_r = P_t G_r G_t \frac{\lambda^2}{(4\pi)^2 (d)^2} = P_t \frac{A_r A_t}{(\lambda d)^2} \]

- \(d \) = distance between transmitter and receiver
- \(P_t \) = transmitting power
- \(P_r \) = receiving power
- \(G_t \) = gain of transmitting antenna
- \(G_r \) = gain of receiving antenna
- \(A_t \) = effective area of transmitting antenna
- \(A_r \) = effective area of receiving antenna
Power Consumption vs. Transmission Distance

- Two-path model

\[P_r = P_t G_r G_t \left(\frac{h_t h_r}{d^2} \right)^2 \]

- \(h_t \) and \(h_r \) are the height of the transmitter and receiver

- The general form

\[P_r = P_t G_r G_t \left(\frac{\lambda}{4\pi} \right)^2 \frac{1}{d^\gamma} \]

- \(\gamma \) is the propagation coefficient that varies 2 ~ 5
Computation vs. Communication Energy Cost

- **Tradeoff?**
 - It’s not possible to directly compare computation/communication energy cost
 - Energy ratio of “sending one bit” vs. “computing one instruction”
 - Communicate (send & receive) 1 KB ≈ Computing 3,000,000 (3 million) instructions [10]

- **Hence**
 - Try to compute instead of communicate whenever possible

- **Key technique in WSN**
 - In-network processing
 - Exploit data centric/aggregation, data compression, intelligent coding, signal processing …
2.4. Network Architecture
Difference between Ad hoc and Sensor Networks

- (Mobile) Ad hoc Scenarios
 - Nodes communicate with each other
 - That means each node can be a source node or destination node
 - Nodes can communicate “some” node in another network
 - Ex: Access to Web-Mail-DNS server on the Internet
 - Typically requires some connection to the fixed network

- Applications of Ad hoc networks
 - Traditional data (http, ftp, collaborative apps, …)
 - Multimedia (voice, video)
Difference between Ad hoc and Sensor Networks

(Mobile) Ad hoc Scenarios

- **ITS system**
- **Disaster area**
Difference between Ad hoc and Sensor Networks

Sensor Network Scenarios

- **Sources**: Any sensor node that provides sensing data/measurements
- **Sinks**: Sensor nodes where information is required
 - Belongs to the sensor network
 - Could be the same sensor node or an external entity such as PDA/NB/Table PC
 - Is part of an external network (e.g., internet), somehow connected to the WSN

Applications of Sensor Network

- Usually, machine to machine
- Often limited amounts of data
- Different notions of importance
Difference between Ad hoc and Sensor Network

- Sensor Network Scenarios
Single-hop vs. Multi-hop Networks

- One common problem: limited range of wireless communication
 - Limited transmission power
 - Path loss
 - Obstacles

- Solution: multi-hop networks
 - Send packets to an intermediate node
 - Intermediate node forwards packet to its destination
 - **Store-and-forward** multi-hop network

- Basic technique applies to both WSN and MANET

- Note:
 - Store-and-forward multi-hopping NOT the only possible solution
 - Ex: Collaborative networking, Network coding [11] [12]….
Single-hop vs. Multi-hop Networks

Single-hop networks

Multi-hop networks
Multiple Sinks, Multiple Sources WSN
In-network Processing

- MANETs are supposed to deliver bits from one end to the other.

- WSNs, on the other end, are expected to provide information, not necessarily original bits.
 - Ex: *manipulate* or *process* the data in the network.

- Main example: aggregation
 - Typical functions: minimum, maximum, average, sum, …
In-network Processing

- Processing Aggregation example
 - The simplest in-network processing technique
 - Reduce number of transmitted bits/packets by applying an aggregation function in the network
Gateway concepts for WSN/MANET

- Gateways are necessary to the Internet for remote access to/from the WSN
 - For ad hoc networks
 - Additional complications due to mobility
 - Ex: Change route to the gateway, use different gateways
 - For WSN
 - Additionally bridge the gap between different interaction semantics in the gateway
Gateway concepts for WSN/MANET

- Gateway support for different radios/protocols, …
WSN to Internet communication

- Scenario: Deliver an alarm message to an Internet host
- Problems
 - Need to find a gateway (integrates routing & service discovery)
 - Choose “best” gateway if several are available
 - How to find John or John’s IP address?
Internet to WSN communication

- How to find the right WSN to answer a need?
- How to translate from IP protocols to WSN protocols, semantics?
WSN Tunneling

- The idea is to build a larger, “Virtual” WSN
- Use the Internet to “tunnel” WSN packets between two remote WSNs
WSN Tunneling

- Example of WSN tunneling
 - WSNs Testbed
WSN tunneling

- Example of WSN tunneling
 - Testbed scenario
2.5. Challenges of Sensor Nodes
Challenges of Wireless Sensor Node

- More energy-efficient
 - Self-sufficiency in power supply such as the installation of solar collector panels
 - Design more energy-efficient of the circuit, or to adopt more energy-efficient electronic components

- Integrating more sensors
 - For multiple purposes such as detecting human’s motion, temperature, blood pressure and heartbeat at the same time

- Higher processing performance
 - In future, more complex application need more powerful computation
Challenges of Wireless Sensor Node

- More Robust and Secure
 - Not easy damaged or be destroyed
 - Secure transmission of sensing data and not easy being tapped

- Easy to buy and deployment
 - Low price and easy to use
2.6. Summary
Summary

- For WSN, the need to build cheap, low-energy, (small) devices has various consequences for system design
 - Radio front ends and controllers are much simpler than in conventional mobile networks
 - Energy supply and scavenging are still (and for the foreseeable future) a premium resource
 - Power management (switching off or throttling down devices) crucial

- Unique programming challenges of embedded systems
 - Concurrency without support, protection
 - Lack of standard
References

References

Recommend Reading

- **Wireless sensor node concept**

- **Network coding**

- **WSN Testbed**