
3.1 What are the benefits and the disadvantages of each of the following? 

Consider both the system level and the programmer level. 

a. Synchronous and asynchronous communication 

ANS: 

A benefit of synchronous communication is that it allows a rendezvous between 

the sender and receiver. A disadvantage of a blocking send is that a rendezvous 

may not be required and the message could be delivered asynchronously. As a 

result, message-passing systems often provide both forms of synchronization. 

答案可參考第八版課本 P.122  , 第七版 P.99 

b. Automatic and explicit buffering 

ANS: 

Automatic buffering provides a queue with indefinite length, thus ensuring the 

sender will never have to block while waiting to copy a message. There are no 

specifications on how automatic buffering will be provided; one scheme may 

reserve sufficiently large memory where much of the memory is wasted. Explicit 

buffering specifies how large the buffer is. In this situation, the sender may be 

blocked while waiting for available space in the queue. However, it is less likely 

that memory will be wasted with explicit buffering. 

答案可參考第八版課本 P.122~123 , 第七版 P.99 

c. Send by copy and send by reference 

ANS: 

Send by copy does not allow the receiver to alter the state of the parameter; 

send by reference does allow it. A benefit of send by reference is that it allows 

the programmer to write a distributed version of a centralized application. Java’s 

RMI provides both; however, passing a parameter by reference requires 

declaring the parameter as a remote object as well 

d. Fixed-sized and variable-sized messages 

ANS: 

The implications of this are mostly related to buffering issues; with fixed-size 

messages, a buffer with a specific size can hold a known number of messages. 

The number of variable-sized messages that can be held by such a buffer is 

unknown. Consider how Windows 2000 handles this situation: with fixed-sized 

messages (anything < 256 bytes), the messages are copied from the address 

space of the sender to the address space of the receiving process. Larger 

messages (i.e. variable-sized messages) use shared memory to pass the message. 

 



3.11 Using the program in Figure 3.29, identify the values of pid at lines A, B, C and D. 

(Assume that the actual pids of the parent and child are 2600 and 2603, 

respectively.) 

#include <sys/types.h> 

#include <stdio.h> 

#include <unistd.h> 

 

int main () 

{ 

 /* fork a child process */ 

 pid = fork(); 

 if ( pid < 0 ) { /*error occurred 

  fprintf(stderr, “Fork Failed”); 

  return 1; 

 } 

 else if (pid ==0) { /* child process */ 

  pid1 = getpid(); 

  printf(“child: pid = %d” ,pid); /* A */ 

  printf(“child: pid1 = %d” ,pid1); /* B */ 

 } 

 else { /* parent process */ 

  pid1 = getpid(); 

  printf(“parent: pid = %d” ,pid); /* C */ 

  printf(“parent: pid1 = %d” ,pid1); /* D */ 

  wait(NULL); 

 } 

 return 0; 

} 

Figure3.29 what are the pid values? 

 

ANS: 

A = 0, B = 2603, C = 2603, D = 2600 

 

 

 

 

 

 



3.13 The Fibonacci sequence is the series of numbers 0, 1, 1, 2, 3, 5, 8 …. Formally, it 

can be expressed as: 

  fib0 = 0 

  fib1 = 1 

  fibn = fibn-1 + fibn-2 

Write a C program using the fork() system call that generates the Fibonacci sequence 

in the child process. The number of the sequence will be provided in the command 

line. For example if 5 is provided, the first five numbers in the Fibonacci sequence 

will be output by the child process. Because the parent and child processes have 

their own copies of the data, it will be necessary for the child to output the sequence. 

Have the parent invoke the wait() call to wait for the child process to complete 

before exiting the program. Perform necessary error checking to ensure that a 

non-negative number is passed on the command line. 

 

題目重點在於 fork 和 wait 

答案可參考第八版課本 P.113 , 第七版 P.89 


