THE APPLICATIONS OF SDN

Benefits from SDN

- Network Virtualization
- Switch based Firewall
- Multipath Forwarding
- Congestion Control
- Identify bugs

Network Virtualization in SDN

The process of combining hardware and software network resources to be some virtual networks

SDN-based Network Virtualization

- Each tenant can run his virtual network with controller in SDN.
- OpenFlow network removes limitations, allowing administrators to create a flow-based virtual network abstraction.

SDN-based Network Virtualization

Switch based Firewall in SDN

OpenFlow switches can emulate Firewall by assigning rules to switches.
Flow Classifer

Multipath Forwarding in SDN

Forwarding by rule and central controller's decision.

Controller can install multipath roles in SDN switches

Congestion Control by SDN

Controller can get SDN switches information to know if congestion happened.

Identify Bugs by SDN

- Identify bugs with systematically tracking down their root cause
- When an operational network misbehaves, it is very hard to find the root cause
- Allows users to define a Network Breakpoint
- Capture and reconstruct the sequence of events leading to the breakpoint

CHALLENGES

Challenges

- Complex designing solutions
- Limited TCAM size
- Controller delay and overhead
- Multi-controller working together
- Migrating from legacy to SDN

SDN - Data-Plane Challenges

State of Specification

- Maturity Concerns
- OF 1.0 single flow table, ... OF 1.1 leverages multiple tables

Silicon Concerns

- Spec is much ahead of silicon development... OF Spec is a moving target for merchant silicon
- Merchant silicon is not optimized for OF... supports of current networking features is a higher priority

Specific issues

- Scalability of Flow-Matches (limited by TCAM size)
- Cost concerns

SDN – Control-Plane Challenges

- Control Plane scalability
 - Centralized vs. distributed controllers...
 - Single view of the state of the network, forwarding tables,... is this a distributed database problem?
- Interoperability
 - SDN/NON-SDN
 - Inter-Controller
 - Between different controllers
 - Orchestrating SDNs managed by different controllers
 - With Hypervisor virtual networking

SDN- Application-Environments Challenges

Network Resource Abstraction & Conflict Resolution

- Resource abstraction
- Conflict resolution among different application actions
- Development tools and New Application Paradigm
 - Computing system style application...
 - New class of Network Programming
 - Languages... New tools
 - New development skills... New talents... New education curriculum...

RESEARCH RESOURCES

Research Platform for SDN

- Mininet
 - Network emulator
 - Designed for emulating SDN networks
 - Easy to use
 - High performance (100 nodes on a laptop)
- Network OS for Research
 - NOX (C++/Python) <u>http://noxrepo.org</u>
 - Maestro (Rice University)
 - Helios (NEC)
 - Beacon (Java) coming soon, ...
- Network OS Commerce
 - ONIX [OSDI 2010, Google, Nicira, NEC]
 - Expect others

OpenFlow Testbed

Candidate controllers:

- Nicira's Nox: C++ and python ← prototyping
- NTT's Ryu : python \leftarrow more production level

Candidate switches:

Standalone switches

- Pica8 (3290): OpenFlow v1.1, a spin-off of Quanta
- HP (5400zl): either OpenFlow mode or legacy mode.
- NEC(IP8800): either OpenFlow mode or legacy mode.
- Pronto: legacy routing stack and OpenFlow enabled features can not be support in the same VLAN
- Brocade (CES/CER/MLX/XMR/MLXe): fully support hybrid mode

PC-based switches (decreasing programmability)

- OVS (OpenVSwitch): pure software based OpenFlow enabled data path
- Netronome: network processor PCI card
- NetFPGA (Stanford): research oriented cards